diff --git a/com.oracle.truffle.r.native/Makefile b/com.oracle.truffle.r.native/Makefile
index fcc82719fd07527dbca2faa3463ce892557b817d..5ef07e48d29f61366c4d6baa12640d644b92e8be 100644
--- a/com.oracle.truffle.r.native/Makefile
+++ b/com.oracle.truffle.r.native/Makefile
@@ -21,16 +21,38 @@
 # questions.
 #
 
-all:
 ifneq ($(shell uname), Darwin)
-	gcc -fPIC -shared -o ./lib/linux/libRDerived.so ./src/fft.c 
+OS_DIR=linux
 else
-	gcc -fPIC -dynamiclib -o ./lib/darwin/libRDerived.dylib ./src/fft.c 
+OS_DIR=darwin
 endif
 
-clean:
+SRC = src
+OBJ = lib/$(OS_DIR)
+
+C_SOURCES := $(wildcard $(SRC)/*.c)
+F_SOURCES := $(wildcard $(SRC)/*.f)
+
+C_OBJECTS := $(subst $(SRC),$(OBJ),$(C_SOURCES:.c=.o))
+F_OBJECTS := $(subst $(SRC),$(OBJ),$(F_SOURCES:.f=.o))
+
+all: $(C_OBJECTS) $(F_OBJECTS)
 ifneq ($(shell uname), Darwin)
-	rm -f ./lib/linux/libRDerived.*
+	gcc -fPIC -shared -o ./lib/linux/libRDerived.so $(C_OBJECTS) $(F_OBJECTS)
 else
-	rm -f ./lib/darwin/libRDerived.*
+	gcc -dynamiclib -undefined dynamic_lookup -o ./lib/darwin/libRDerived.dylib $(C_OBJECTS) $(F_OBJECTS)
 endif
+
+$(OBJ)/%.o: $(SRC)/%.c
+	gcc -fPIC -O2 -c $< -o $@
+
+$(OBJ)/%.o: $(SRC)/%.f
+	gfortran -fPIC -O2 -c $< -o $@
+
+
+clean:
+	rm -f ./lib/$(OS_DIR)/libRDerived.*
+	rm -f ./lib/$(OS_DIR)/*.o
+
+cleanobj:
+	rm -f ./lib/$(OS_DIR)/*.o
diff --git a/com.oracle.truffle.r.native/lib/darwin/libR.dylib b/com.oracle.truffle.r.native/lib/darwin/libR.dylib
deleted file mode 100755
index 6dea2826530ec11fb3ebd03d113c7fa306b85550..0000000000000000000000000000000000000000
Binary files a/com.oracle.truffle.r.native/lib/darwin/libR.dylib and /dev/null differ
diff --git a/com.oracle.truffle.r.native/lib/darwin/libRDerived.dylib b/com.oracle.truffle.r.native/lib/darwin/libRDerived.dylib
index 8d58a619d4c489fe40556023a711d7e24dc88d08..66e95724987b1332831dd1ae19e6c627c00e511e 100755
Binary files a/com.oracle.truffle.r.native/lib/darwin/libRDerived.dylib and b/com.oracle.truffle.r.native/lib/darwin/libRDerived.dylib differ
diff --git a/com.oracle.truffle.r.native/lib/linux/libRDerived.so b/com.oracle.truffle.r.native/lib/linux/libRDerived.so
index df669c1619b86fcc6e372d68e839821f88c0205d..f1baa25c44c6dfd1638c2092596acd382bf35ba7 100755
Binary files a/com.oracle.truffle.r.native/lib/linux/libRDerived.so and b/com.oracle.truffle.r.native/lib/linux/libRDerived.so differ
diff --git a/com.oracle.truffle.r.native/src/dchdc.f b/com.oracle.truffle.r.native/src/dchdc.f
new file mode 100644
index 0000000000000000000000000000000000000000..81b6786bde7f53ae804c641e6f7a66ce12734ef5
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dchdc.f
@@ -0,0 +1,234 @@
+      subroutine dchdc(a,lda,p,work,jpvt,job,info)
+      integer lda,p,jpvt(p),job,info
+      double precision a(lda,p),work(*)
+c
+c     dchdc computes the cholesky decomposition of a positive definite
+c     matrix.  a pivoting option allows the user to estimate the
+c     condition of a positive definite matrix or determine the rank
+c     of a positive semidefinite matrix.
+c
+c     on entry
+c
+c         a      double precision(lda,p).
+c                a contains the matrix whose decomposition is to
+c                be computed.  onlt the upper half of a need be stored.
+c                the lower part of the array a is not referenced.
+c
+c         lda    integer.
+c                lda is the leading dimension of the array a.
+c
+c         p      integer.
+c                p is the order of the matrix.
+c
+c         work   double precision.
+c                work is a work array.
+c
+c         jpvt   integer(p).
+c                jpvt contains integers that control the selection
+c                of the pivot elements, if pivoting has been requested.
+c                each diagonal element a(k,k)
+c                is placed in one of three classes according to the
+c                value of jpvt(k).
+c
+c                   if jpvt(k) .gt. 0, then x(k) is an initial
+c                                      element.
+c
+c                   if jpvt(k) .eq. 0, then x(k) is a free element.
+c
+c                   if jpvt(k) .lt. 0, then x(k) is a final element.
+c
+c                before the decomposition is computed, initial elements
+c                are moved by symmetric row and column interchanges to
+c                the beginning of the array a and final
+c                elements to the end.  both initial and final elements
+c                are frozen in place during the computation and only
+c                free elements are moved.  at the k-th stage of the
+c                reduction, if a(k,k) is occupied by a free element
+c                it is interchanged with the largest free element
+c                a(l,l) with l .ge. k.  jpvt is not referenced if
+c                job .eq. 0.
+c
+c        job     integer.
+c                job is an integer that initiates column pivoting.
+c                if job .eq. 0, no pivoting is done.
+c                if job .ne. 0, pivoting is done.
+c
+c     on return
+c
+c         a      a contains in its upper half the cholesky factor
+c                of the matrix a as it has been permuted by pivoting.
+c
+c         jpvt   jpvt(j) contains the index of the diagonal element
+c                of a that was moved into the j-th position,
+c                provided pivoting was requested.
+c
+c         info   contains the index of the last positive diagonal
+c                element of the cholesky factor.
+c
+c     for positive definite matrices info = p is the normal return.
+c     for pivoting with positive semidefinite matrices info will
+c     in general be less than p.  however, info may be greater than
+c     the rank of a, since rounding error can cause an otherwise zero
+c     element to be positive. indefinite systems will always cause
+c     info to be less than p.
+c
+c     linpack. this version dated 08/14/78 .
+c     j.j. dongarra and g.w. stewart, argonne national laboratory and
+c     university of maryland.
+c
+c
+c     blas daxpy,dswap
+c     fortran dsqrt
+c
+c     internal variables
+c
+      integer pu,pl,plp1,j,jp,jt,k,kb,km1,kp1,l,maxl
+      double precision temp
+      double precision maxdia
+      logical swapk,negk
+c
+      pl = 1
+      pu = 0
+      info = p
+      if (job .eq. 0) go to 160
+c
+c        pivoting has been requested. rearrange the
+c        the elements according to jpvt.
+c
+         do 70 k = 1, p
+            swapk = jpvt(k) .gt. 0
+            negk = jpvt(k) .lt. 0
+            jpvt(k) = k
+            if (negk) jpvt(k) = -jpvt(k)
+            if (.not.swapk) go to 60
+               if (k .eq. pl) go to 50
+                  call dswap(pl-1,a(1,k),1,a(1,pl),1)
+                  temp = a(k,k)
+                  a(k,k) = a(pl,pl)
+                  a(pl,pl) = temp
+                  plp1 = pl + 1
+                  if (p .lt. plp1) go to 40
+                  do 30 j = plp1, p
+                     if (j .ge. k) go to 10
+                        temp = a(pl,j)
+                        a(pl,j) = a(j,k)
+                        a(j,k) = temp
+                     go to 20
+   10                continue
+                     if (j .eq. k) go to 20
+                        temp = a(k,j)
+                        a(k,j) = a(pl,j)
+                        a(pl,j) = temp
+   20                continue
+   30             continue
+   40             continue
+                  jpvt(k) = jpvt(pl)
+                  jpvt(pl) = k
+   50          continue
+               pl = pl + 1
+   60       continue
+   70    continue
+         pu = p
+         if (p .lt. pl) go to 150
+         do 140 kb = pl, p
+            k = p - kb + pl
+            if (jpvt(k) .ge. 0) go to 130
+               jpvt(k) = -jpvt(k)
+               if (pu .eq. k) go to 120
+                  call dswap(k-1,a(1,k),1,a(1,pu),1)
+                  temp = a(k,k)
+                  a(k,k) = a(pu,pu)
+                  a(pu,pu) = temp
+                  kp1 = k + 1
+                  if (p .lt. kp1) go to 110
+                  do 100 j = kp1, p
+                     if (j .ge. pu) go to 80
+                        temp = a(k,j)
+                        a(k,j) = a(j,pu)
+                        a(j,pu) = temp
+                     go to 90
+   80                continue
+                     if (j .eq. pu) go to 90
+                        temp = a(k,j)
+                        a(k,j) = a(pu,j)
+                        a(pu,j) = temp
+   90                continue
+  100             continue
+  110             continue
+                  jt = jpvt(k)
+                  jpvt(k) = jpvt(pu)
+                  jpvt(pu) = jt
+  120          continue
+               pu = pu - 1
+  130       continue
+  140    continue
+  150    continue
+  160 continue
+      do 270 k = 1, p
+c
+c        reduction loop.
+c
+         maxdia = a(k,k)
+         kp1 = k + 1
+         maxl = k
+c
+c        determine the pivot element.
+c
+         if (k .lt. pl .or. k .ge. pu) go to 190
+            do 180 l = kp1, pu
+               if (a(l,l) .le. maxdia) go to 170
+                  maxdia = a(l,l)
+                  maxl = l
+  170          continue
+  180       continue
+  190    continue
+c
+c        quit if the pivot element is not positive.
+c
+         if (maxdia .gt. 0.0d0) go to 200
+            info = k - 1
+c     ......exit
+            go to 280
+  200    continue
+         if (k .eq. maxl) go to 210
+c
+c           start the pivoting and update jpvt.
+c
+            km1 = k - 1
+            call dswap(km1,a(1,k),1,a(1,maxl),1)
+            a(maxl,maxl) = a(k,k)
+            a(k,k) = maxdia
+            jp = jpvt(maxl)
+            jpvt(maxl) = jpvt(k)
+            jpvt(k) = jp
+  210    continue
+c
+c        reduction step. pivoting is contained across the rows.
+c
+         work(k) = dsqrt(a(k,k))
+         a(k,k) = work(k)
+         if (p .lt. kp1) go to 260
+         do 250 j = kp1, p
+            if (k .eq. maxl) go to 240
+               if (j .ge. maxl) go to 220
+                  temp = a(k,j)
+                  a(k,j) = a(j,maxl)
+                  a(j,maxl) = temp
+               go to 230
+  220          continue
+               if (j .eq. maxl) go to 230
+                  temp = a(k,j)
+                  a(k,j) = a(maxl,j)
+                  a(maxl,j) = temp
+  230          continue
+  240       continue
+            a(k,j) = a(k,j)/work(k)
+            work(j) = a(k,j)
+            temp = -a(k,j)
+            call daxpy(j-k,temp,work(kp1),1,a(kp1,j),1)
+  250    continue
+  260    continue
+  270 continue
+  280 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dpbfa.f b/com.oracle.truffle.r.native/src/dpbfa.f
new file mode 100644
index 0000000000000000000000000000000000000000..3c22a86094bd3ddb31493f63f09115d0106124fd
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dpbfa.f
@@ -0,0 +1,100 @@
+      subroutine dpbfa(abd,lda,n,m,info)
+
+      integer lda,n,m,info
+      double precision abd(lda,n)
+c
+c     dpbfa factors a double precision symmetric positive definite
+c     matrix stored in band form.
+c
+c     dpbfa is usually called by dpbco, but it can be called
+c     directly with a saving in time if  rcond  is not needed.
+c
+c     on entry
+c
+c        abd     double precision(lda, n)
+c                the matrix to be factored.  the columns of the upper
+c                triangle are stored in the columns of abd and the
+c                diagonals of the upper triangle are stored in the
+c                rows of abd .  see the comments below for details.
+c
+c        lda     integer
+c                the leading dimension of the array  abd .
+c                lda must be .ge. m + 1 .
+c
+c        n       integer
+c                the order of the matrix  a .
+c
+c        m       integer
+c                the number of diagonals above the main diagonal.
+c                0 .le. m .lt. n .
+c
+c     on return
+c
+c        abd     an upper triangular matrix  r , stored in band
+c                form, so that  a = trans(r)*r .
+c
+c        info    integer
+c                = 0  for normal return.
+c                = k  if the leading minor of order  k  is not
+c                     positive definite.
+c
+c     band storage
+c
+c           if  a  is a symmetric positive definite band matrix,
+c           the following program segment will set up the input.
+c
+c                   m = (band width above diagonal)
+c                   do 20 j = 1, n
+c                      i1 = max0(1, j-m)
+c                      do 10 i = i1, j
+c                         k = i-j+m+1
+c                         abd(k,j) = a(i,j)
+c                10    continue
+c                20 continue
+c
+c     linpack.  this version dated 08/14/78 .
+c     cleve moler, university of new mexico, argonne national lab.
+c
+c     subroutines and functions
+c
+c     blas ddot
+c     fortran max0,sqrt
+c
+c     internal variables
+c
+      double precision ddot,t
+      double precision s
+      integer ik,j,jk,k,mu
+c     begin block with ...exits to 40
+c
+c
+         do 30 j = 1, n
+            info = j
+            s = 0.0d0
+            ik = m + 1
+            jk = max0(j-m,1)
+            mu = max0(m+2-j,1)
+            if (m .lt. mu) go to 20
+            do 10 k = mu, m
+
+               t = abd(k,j) - ddot(k-mu,abd(ik,jk),1,abd(mu,j),1)
+               t = t/abd(m+1,jk)
+               abd(k,j) = t
+               s = s + t*t
+               ik = ik - 1
+               jk = jk + 1
+   10       continue
+   20       continue
+
+            s = abd(m+1,j) - s
+c     ......exit
+            if (s .le. 0.0d0) go to 40
+
+            abd(m+1,j) = sqrt(s)
+
+   30    continue
+         info = 0
+   40 continue
+      return
+      end
+
diff --git a/com.oracle.truffle.r.native/src/dpbsl.f b/com.oracle.truffle.r.native/src/dpbsl.f
new file mode 100644
index 0000000000000000000000000000000000000000..d910deef88ecd031b13d86af743201e31b49be0d
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dpbsl.f
@@ -0,0 +1,83 @@
+      subroutine dpbsl(abd,lda,n,m,b)
+
+      integer lda,n,m
+      double precision abd(lda,n),b(n)
+c
+c     dpbsl solves the double precision symmetric positive definite
+c     band system  a*x = b
+c     using the factors computed by dpbco or dpbfa.
+c
+c     on entry
+c
+c        abd     double precision(lda, n)
+c                the output from dpbco or dpbfa.
+c
+c        lda     integer
+c                the leading dimension of the array  abd .
+c
+c        n       integer
+c                the order of the matrix  a .
+c
+c        m       integer
+c                the number of diagonals above the main diagonal.
+c
+c        b       double precision(n)
+c                the right hand side vector.
+c
+c     on return
+c
+c        b       the solution vector  x .
+c
+c     error condition
+c
+c        a division by zero will occur if the input factor contains
+c        a zero on the diagonal.  technically this indicates
+c        singularity but it is usually caused by improper subroutine
+c        arguments.  it will not occur if the subroutines are called
+c        correctly and  info .eq. 0 .
+c
+c     to compute  inverse(a) * c  where  c  is a matrix
+c     with  p  columns
+c           call dpbco(abd,lda,n,rcond,z,info)
+c           if (rcond is too small .or. info .ne. 0) go to ...
+c           do 10 j = 1, p
+c              call dpbsl(abd,lda,n,c(1,j))
+c        10 continue
+c
+c     linpack.  this version dated 08/14/78 .
+c     cleve moler, university of new mexico, argonne national lab.
+c
+c     subroutines and functions
+c
+c     blas daxpy,ddot
+c     fortran min0
+c
+c     internal variables
+c
+      double precision ddot,t
+      integer k,kb,la,lb,lm
+c
+c     solve trans(r)*y = b
+c
+      do 10 k = 1, n
+         lm = min0(k-1,m)
+         la = m + 1 - lm
+         lb = k - lm
+         t = ddot(lm,abd(la,k),1,b(lb),1)
+         b(k) = (b(k) - t)/abd(m+1,k)
+   10 continue
+c
+c     solve r*x = y
+c
+      do 20 kb = 1, n
+         k = n + 1 - kb
+         lm = min0(k-1,m)
+         la = m + 1 - lm
+         lb = k - lm
+         b(k) = b(k)/abd(m+1,k)
+         t = -b(k)
+         call daxpy(lm,t,abd(la,k),1,b(lb),1)
+   20 continue
+      return
+      end
+
diff --git a/com.oracle.truffle.r.native/src/dpoco.f b/com.oracle.truffle.r.native/src/dpoco.f
new file mode 100644
index 0000000000000000000000000000000000000000..83a7f1bd9b5f259f6e04549adec7d692a8011200
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dpoco.f
@@ -0,0 +1,195 @@
+c
+c     dpoco factors a double precision symmetric positive definite
+c     matrix and estimates the condition of the matrix.
+c
+c     if  rcond  is not needed, dpofa is slightly faster.
+c     to solve  a*x = b , follow dpoco by dposl.
+c     to compute  inverse(a)*c , follow dpoco by dposl.
+c     to compute  determinant(a) , follow dpoco by dpodi.
+c     to compute  inverse(a) , follow dpoco by dpodi.
+c
+c     on entry
+c
+c        a       double precision(lda, n)
+c                the symmetric matrix to be factored.  only the
+c                diagonal and upper triangle are used.
+c
+c        lda     integer
+c                the leading dimension of the array  a .
+c
+c        n       integer
+c                the order of the matrix  a .
+c
+c     on return
+c
+c        a       an upper triangular matrix  r  so that  a = trans(r)*r
+c                where  trans(r)  is the transpose.
+c                the strict lower triangle is unaltered.
+c                if  info .ne. 0 , the factorization is not complete.
+c
+c        rcond   double precision
+c                an estimate of the reciprocal condition of  a .
+c                for the system  a*x = b , relative perturbations
+c                in  a  and  b  of size  epsilon  may cause
+c                relative perturbations in  x  of size  epsilon/rcond .
+c                if  rcond  is so small that the logical expression
+c                           1.0 + rcond .eq. 1.0
+c                is true, then  a  may be singular to working
+c                precision.  in particular,  rcond  is zero  if
+c                exact singularity is detected or the estimate
+c                underflows.  if info .ne. 0 , rcond is unchanged.
+c
+c        z       double precision(n)
+c                a work vector whose contents are usually unimportant.
+c                if  a  is close to a singular matrix, then  z  is
+c                an approximate null vector in the sense that
+c                norm(a*z) = rcond*norm(a)*norm(z) .
+c                if  info .ne. 0 , z  is unchanged.
+c
+c        info    integer
+c                = 0  for normal return.
+c                = k  signals an error condition.  the leading minor
+c                     of order  k  is not positive definite.
+c
+c     linpack.  this version dated 08/14/78 .
+c     cleve moler, university of new mexico, argonne national lab.
+c
+c     subroutines and functions
+c
+c     linpack dpofa
+c     blas daxpy,ddot,dscal,dasum
+c     fortran dabs,dmax1,dreal,dsign
+c
+      subroutine dpoco(a,lda,n,rcond,z,info)
+      integer lda,n,info
+      double precision a(lda,*),z(*)
+      double precision rcond
+c
+c     internal variables
+c
+      double precision ddot,ek,t,wk,wkm
+      double precision anorm,s,dasum,sm,ynorm
+      integer i,j,jm1,k,kb,kp1
+c
+c
+c     find norm of a using only upper half
+c
+      do 30 j = 1, n
+         z(j) = dasum(j,a(1,j),1)
+         jm1 = j - 1
+         if (jm1 .lt. 1) go to 20
+         do 10 i = 1, jm1
+            z(i) = z(i) + dabs(a(i,j))
+   10    continue
+   20    continue
+   30 continue
+      anorm = 0.0d0
+      do 40 j = 1, n
+         anorm = dmax1(anorm,z(j))
+   40 continue
+c
+c     factor
+c
+      call dpofa(a,lda,n,info)
+      if (info .ne. 0) go to 180
+c
+c        rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
+c        estimate = norm(z)/norm(y) where  a*z = y  and  a*y = e .
+c        the components of  e  are chosen to cause maximum local
+c        growth in the elements of w  where  trans(r)*w = e .
+c        the vectors are frequently rescaled to avoid overflow.
+c
+c        solve trans(r)*w = e
+c
+         ek = 1.0d0
+         do 50 j = 1, n
+            z(j) = 0.0d0
+   50    continue
+         do 110 k = 1, n
+            if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
+            if (dabs(ek-z(k)) .le. a(k,k)) go to 60
+               s = a(k,k)/dabs(ek-z(k))
+               call dscal(n,s,z,1)
+               ek = s*ek
+   60       continue
+            wk = ek - z(k)
+            wkm = -ek - z(k)
+            s = dabs(wk)
+            sm = dabs(wkm)
+            wk = wk/a(k,k)
+            wkm = wkm/a(k,k)
+            kp1 = k + 1
+            if (kp1 .gt. n) go to 100
+               do 70 j = kp1, n
+                  sm = sm + dabs(z(j)+wkm*a(k,j))
+                  z(j) = z(j) + wk*a(k,j)
+                  s = s + dabs(z(j))
+   70          continue
+               if (s .ge. sm) go to 90
+                  t = wkm - wk
+                  wk = wkm
+                  do 80 j = kp1, n
+                     z(j) = z(j) + t*a(k,j)
+   80             continue
+   90          continue
+  100       continue
+            z(k) = wk
+  110    continue
+         s = 1.0d0/dasum(n,z,1)
+         call dscal(n,s,z,1)
+c
+c        solve r*y = w
+c
+         do 130 kb = 1, n
+            k = n + 1 - kb
+            if (dabs(z(k)) .le. a(k,k)) go to 120
+               s = a(k,k)/dabs(z(k))
+               call dscal(n,s,z,1)
+  120       continue
+            z(k) = z(k)/a(k,k)
+            t = -z(k)
+            call daxpy(k-1,t,a(1,k),1,z(1),1)
+  130    continue
+         s = 1.0d0/dasum(n,z,1)
+         call dscal(n,s,z,1)
+c
+         ynorm = 1.0d0
+c
+c        solve trans(r)*v = y
+c
+         do 150 k = 1, n
+            z(k) = z(k) - ddot(k-1,a(1,k),1,z(1),1)
+            if (dabs(z(k)) .le. a(k,k)) go to 140
+               s = a(k,k)/dabs(z(k))
+               call dscal(n,s,z,1)
+               ynorm = s*ynorm
+  140       continue
+            z(k) = z(k)/a(k,k)
+  150    continue
+         s = 1.0d0/dasum(n,z,1)
+         call dscal(n,s,z,1)
+         ynorm = s*ynorm
+c
+c        solve r*z = v
+c
+         do 170 kb = 1, n
+            k = n + 1 - kb
+            if (dabs(z(k)) .le. a(k,k)) go to 160
+               s = a(k,k)/dabs(z(k))
+               call dscal(n,s,z,1)
+               ynorm = s*ynorm
+  160       continue
+            z(k) = z(k)/a(k,k)
+            t = -z(k)
+            call daxpy(k-1,t,a(1,k),1,z(1),1)
+  170    continue
+c        make znorm = 1.0
+         s = 1.0d0/dasum(n,z,1)
+         call dscal(n,s,z,1)
+         ynorm = s*ynorm
+c
+         if (anorm .ne. 0.0d0) rcond = ynorm/anorm
+         if (anorm .eq. 0.0d0) rcond = 0.0d0
+  180 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dpodi.f b/com.oracle.truffle.r.native/src/dpodi.f
new file mode 100644
index 0000000000000000000000000000000000000000..4d52c5998fbefb4cf81542a8966d757e80d7650c
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dpodi.f
@@ -0,0 +1,122 @@
+c
+c     dpodi computes the determinant and inverse of a certain
+c     double precision symmetric positive definite matrix (see below)
+c     using the factors computed by dpoco, dpofa or dqrdc.
+c
+c     on entry
+c
+c        a       double precision(lda, n)
+c                the output  a  from dpoco or dpofa
+c                or the output  x  from dqrdc.
+c
+c        lda     integer
+c                the leading dimension of the array  a .
+c
+c        n       integer
+c                the order of the matrix  a .
+c
+c        job     integer
+c                = 11   both determinant and inverse.
+c                = 01   inverse only.
+c                = 10   determinant only.
+c
+c     on return
+c
+c        a       if dpoco or dpofa was used to factor  a  then
+c                dpodi produces the upper half of inverse(a) .
+c                if dqrdc was used to decompose  x  then
+c                dpodi produces the upper half of inverse(trans(x)*x)
+c                where trans(x) is the transpose.
+c                elements of  a  below the diagonal are unchanged.
+c                if the units digit of job is zero,  a  is unchanged.
+c
+c        det     double precision(2)
+c                determinant of  a  or of  trans(x)*x  if requested.
+c                otherwise not referenced.
+c                determinant = det(1) * 10.0**det(2)
+c                with  1.0 .le. det(1) .lt. 10.0
+c                or  det(1) .eq. 0.0 .
+c
+c     error condition
+c
+c        a division by zero will occur if the input factor contains
+c        a zero on the diagonal and the inverse is requested.
+c        it will not occur if the subroutines are called correctly
+c        and if dpoco or dpofa has set info .eq. 0 .
+c
+c     linpack.  this version dated 08/14/78 .
+c     cleve moler, university of new mexico, argonne national lab.
+c
+c     subroutines and functions
+c
+c     blas daxpy,dscal
+c     fortran mod
+c
+      subroutine dpodi(a,lda,n,det,job)
+      integer lda,n,job
+      double precision a(lda,*)
+      double precision det(2)
+c
+c     internal variables
+c
+      double precision t
+      double precision s
+      integer i,j,jm1,k,kp1
+c
+c     compute determinant
+c
+      if (job/10 .eq. 0) go to 70
+         det(1) = 1.0d0
+         det(2) = 0.0d0
+         s = 10.0d0
+         do 50 i = 1, n
+            det(1) = a(i,i)**2*det(1)
+c        ...exit
+            if (det(1) .eq. 0.0d0) go to 60
+   10       if (det(1) .ge. 1.0d0) go to 20
+               det(1) = s*det(1)
+               det(2) = det(2) - 1.0d0
+            go to 10
+   20       continue
+   30       if (det(1) .lt. s) go to 40
+               det(1) = det(1)/s
+               det(2) = det(2) + 1.0d0
+            go to 30
+   40       continue
+   50    continue
+   60    continue
+   70 continue
+c
+c     compute inverse(r)
+c
+      if (mod(job,10) .eq. 0) go to 140
+         do 100 k = 1, n
+            a(k,k) = 1.0d0/a(k,k)
+            t = -a(k,k)
+            call dscal(k-1,t,a(1,k),1)
+            kp1 = k + 1
+            if (n .lt. kp1) go to 90
+            do 80 j = kp1, n
+               t = a(k,j)
+               a(k,j) = 0.0d0
+               call daxpy(k,t,a(1,k),1,a(1,j),1)
+   80       continue
+   90       continue
+  100    continue
+c
+c        form  inverse(r) * trans(inverse(r))
+c
+         do 130 j = 1, n
+            jm1 = j - 1
+            if (jm1 .lt. 1) go to 120
+            do 110 k = 1, jm1
+               t = a(k,j)
+               call daxpy(k,t,a(1,j),1,a(1,k),1)
+  110       continue
+  120       continue
+            t = a(j,j)
+            call dscal(j,t,a(1,j),1)
+  130    continue
+  140 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dpofa.f b/com.oracle.truffle.r.native/src/dpofa.f
new file mode 100644
index 0000000000000000000000000000000000000000..94d71d20ede3f1788dd2bd6bf8ab9c11a23f6fef
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dpofa.f
@@ -0,0 +1,78 @@
+C  Modified 2002-05-20 for R to add a tolerance of positive definiteness.
+C
+c
+c     dpofa factors a double precision symmetric positive definite
+c     matrix.
+c
+c     dpofa is usually called by dpoco, but it can be called
+c     directly with a saving in time if  rcond  is not needed.
+c     (time for dpoco) = (1 + 18/n)*(time for dpofa) .
+c
+c     on entry
+c
+c        a       double precision(lda, n)
+c                the symmetric matrix to be factored.  only the
+c                diagonal and upper triangle are used.
+c
+c        lda     integer
+c                the leading dimension of the array  a .
+c
+c        n       integer
+c                the order of the matrix  a .
+c
+c     on return
+c
+c        a       an upper triangular matrix  r  so that  a = trans(r)*r
+c                where  trans(r)  is the transpose.
+c                the strict lower triangle is unaltered.
+c                if  info .ne. 0 , the factorization is not complete.
+c
+c        info    integer
+c                = 0  for normal return.
+c                = k  signals an error condition.  the leading minor
+c                     of order  k  is not positive definite.
+c
+c     linpack.  this version dated 08/14/78 .
+c     cleve moler, university of new mexico, argonne national lab.
+c
+c     subroutines and functions
+c
+c     blas ddot
+c     fortran dsqrt
+c
+      subroutine dpofa(a,lda,n,info)
+      integer lda,n,info
+      double precision a(lda,*)
+c
+c     internal variables
+c
+      double precision ddot,t,eps
+      double precision s
+      integer j,jm1,k
+      data eps/1.d-14/
+
+c     begin block with ...exits to 40
+c
+c
+         do 30 j = 1, n
+            info = j
+            s = 0.0d0
+            jm1 = j - 1
+            if (jm1 .lt. 1) go to 20
+            do 10 k = 1, jm1
+               t = a(k,j) - ddot(k-1,a(1,k),1,a(1,j),1)
+               t = t/a(k,k)
+               a(k,j) = t
+               s = s + t*t
+   10       continue
+   20       continue
+            s = a(j,j) - s
+c     ......exit
+c            if (s .le. 0.0d0) go to 40
+            if (s .le. eps * abs(a(j,j))) go to 40
+            a(j,j) = dsqrt(s)
+   30    continue
+         info = 0
+   40 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dposl.f b/com.oracle.truffle.r.native/src/dposl.f
new file mode 100644
index 0000000000000000000000000000000000000000..41c0e69502fc3cd94e3301364059ce3c1bdae1ac
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dposl.f
@@ -0,0 +1,72 @@
+c
+c     dposl solves the double precision symmetric positive definite
+c     system a * x = b
+c     using the factors computed by dpoco or dpofa.
+c
+c     on entry
+c
+c        a       double precision(lda, n)
+c                the output from dpoco or dpofa.
+c
+c        lda     integer
+c                the leading dimension of the array  a .
+c
+c        n       integer
+c                the order of the matrix  a .
+c
+c        b       double precision(n)
+c                the right hand side vector.
+c
+c     on return
+c
+c        b       the solution vector  x .
+c
+c     error condition
+c
+c        a division by zero will occur if the input factor contains
+c        a zero on the diagonal.  technically this indicates
+c        singularity but it is usually caused by improper subroutine
+c        arguments.  it will not occur if the subroutines are called
+c        correctly and  info .eq. 0 .
+c
+c     to compute  inverse(a) * c  where  c  is a matrix
+c     with  p  columns
+c           call dpoco(a,lda,n,rcond,z,info)
+c           if (rcond is too small .or. info .ne. 0) go to ...
+c           do 10 j = 1, p
+c              call dposl(a,lda,n,c(1,j))
+c        10 continue
+c
+c     linpack.  this version dated 08/14/78 .
+c     cleve moler, university of new mexico, argonne national lab.
+c
+c     subroutines and functions
+c
+c     blas daxpy,ddot
+c
+      subroutine dposl(a,lda,n,b)
+      integer lda,n
+      double precision a(lda,*),b(*)
+c
+c     internal variables
+c
+      double precision ddot,t
+      integer k,kb
+c
+c     solve trans(r)*y = b
+c
+      do 10 k = 1, n
+         t = ddot(k-1,a(1,k),1,b(1),1)
+         b(k) = (b(k) - t)/a(k,k)
+   10 continue
+c
+c     solve r*x = y
+c
+      do 20 kb = 1, n
+         k = n + 1 - kb
+         b(k) = b(k)/a(k,k)
+         t = -b(k)
+         call daxpy(k-1,t,a(1,k),1,b(1),1)
+   20 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dqrdc.f b/com.oracle.truffle.r.native/src/dqrdc.f
new file mode 100644
index 0000000000000000000000000000000000000000..54c9320cbea64ada95353a5231b39b158e168794
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dqrdc.f
@@ -0,0 +1,208 @@
+c
+c     dqrdc uses householder transformations to compute the qr
+c     factorization of an n by p matrix x.  column pivoting
+c     based on the 2-norms of the reduced columns may be
+c     performed at the users option.
+c
+c     on entry
+c
+c        x       double precision(ldx,p), where ldx .ge. n.
+c                x contains the matrix whose decomposition is to be
+c                computed.
+c
+c        ldx     integer.
+c                ldx is the leading dimension of the array x.
+c
+c        n       integer.
+c                n is the number of rows of the matrix x.
+c
+c        p       integer.
+c                p is the number of columns of the matrix x.
+c
+c        jpvt    integer(p).
+c                jpvt contains integers that control the selection
+c                of the pivot columns.  the k-th column x(k) of x
+c                is placed in one of three classes according to the
+c                value of jpvt(k).
+c
+c                   if jpvt(k) .gt. 0, then x(k) is an initial
+c                                      column.
+c
+c                   if jpvt(k) .eq. 0, then x(k) is a free column.
+c
+c                   if jpvt(k) .lt. 0, then x(k) is a final column.
+c
+c                before the decomposition is computed, initial columns
+c                are moved to the beginning of the array x and final
+c                columns to the end.  both initial and final columns
+c                are frozen in place during the computation and only
+c                free columns are moved.  at the k-th stage of the
+c                reduction, if x(k) is occupied by a free column
+c                it is interchanged with the free column of largest
+c                reduced norm.  jpvt is not referenced if
+c                job .eq. 0.
+c
+c        work    double precision(p).
+c                work is a work array.  work is not referenced if
+c                job .eq. 0.
+c
+c        job     integer.
+c                job is an integer that initiates column pivoting.
+c                if job .eq. 0, no pivoting is done.
+c                if job .ne. 0, pivoting is done.
+c
+c     on return
+c
+c        x       x contains in its upper triangle the upper
+c                triangular matrix r of the qr factorization.
+c                below its diagonal x contains information from
+c                which the orthogonal part of the decomposition
+c                can be recovered.  note that if pivoting has
+c                been requested, the decomposition is not that
+c                of the original matrix x but that of x
+c                with its columns permuted as described by jpvt.
+c
+c        qraux   double precision(p).
+c                qraux contains further information required to recover
+c                the orthogonal part of the decomposition.
+c
+c        jpvt    jpvt(k) contains the index of the column of the
+c                original matrix that has been interchanged into
+c                the k-th column, if pivoting was requested.
+c
+c     linpack. this version dated 08/14/78 .
+c     g.w. stewart, university of maryland, argonne national lab.
+c
+c     dqrdc uses the following functions and subprograms.
+c
+c     blas daxpy,ddot,dscal,dswap,dnrm2
+c     fortran dabs,dmax1,min0,dsqrt
+c
+      subroutine dqrdc(x,ldx,n,p,qraux,jpvt,work,job)
+      integer ldx,n,p,job
+      integer jpvt(*)
+      double precision x(ldx,*),qraux(*),work(*)
+c
+c     internal variables
+c
+      integer j,jp,jj, l,lp1,lup,maxj,pl,pu
+      double precision maxnrm,dnrm2,tt
+      double precision ddot,nrmxl,t
+      logical negj,swapj
+c
+c
+      pl = 1
+      pu = 0
+      if (job .eq. 0) go to 60
+c
+c        pivoting has been requested.  rearrange the columns
+c        according to jpvt.
+c
+         do 20 j = 1, p
+            swapj = jpvt(j) .gt. 0
+            negj = jpvt(j) .lt. 0
+            jpvt(j) = j
+            if (negj) jpvt(j) = -j
+            if (.not.swapj) go to 10
+               if (j .ne. pl) call dswap(n,x(1,pl),1,x(1,j),1)
+               jpvt(j) = jpvt(pl)
+               jpvt(pl) = j
+               pl = pl + 1
+   10       continue
+   20    continue
+         pu = p
+         do 50 jj = 1, p
+            j = p - jj + 1
+            if (jpvt(j) .ge. 0) go to 40
+               jpvt(j) = -jpvt(j)
+               if (j .eq. pu) go to 30
+                  call dswap(n,x(1,pu),1,x(1,j),1)
+                  jp = jpvt(pu)
+                  jpvt(pu) = jpvt(j)
+                  jpvt(j) = jp
+   30          continue
+               pu = pu - 1
+   40       continue
+   50    continue
+   60 continue
+c
+c     compute the norms of the free columns.
+c
+      if (pu .lt. pl) go to 80
+      do 70 j = pl, pu
+         qraux(j) = dnrm2(n,x(1,j),1)
+         work(j) = qraux(j)
+   70 continue
+   80 continue
+c
+c     perform the householder reduction of x.
+c
+      lup = min0(n,p)
+      do 200 l = 1, lup
+         if (l .lt. pl .or. l .ge. pu) go to 120
+c
+c           locate the column of largest norm and bring it
+c           into the pivot position.
+c
+            maxnrm = 0.0d0
+            maxj = l
+            do 100 j = l, pu
+               if (qraux(j) .le. maxnrm) go to 90
+                  maxnrm = qraux(j)
+                  maxj = j
+   90          continue
+  100       continue
+            if (maxj .eq. l) go to 110
+               call dswap(n,x(1,l),1,x(1,maxj),1)
+               qraux(maxj) = qraux(l)
+               work(maxj) = work(l)
+               jp = jpvt(maxj)
+               jpvt(maxj) = jpvt(l)
+               jpvt(l) = jp
+  110       continue
+  120    continue
+         qraux(l) = 0.0d0
+         if (l .eq. n) go to 190
+c
+c           compute the householder transformation for column l.
+c
+            nrmxl = dnrm2(n-l+1,x(l,l),1)
+            if (nrmxl .eq. 0.0d0) go to 180
+               if (x(l,l) .ne. 0.0d0) nrmxl = dsign(nrmxl,x(l,l))
+               call dscal(n-l+1,1.0d0/nrmxl,x(l,l),1)
+               x(l,l) = 1.0d0 + x(l,l)
+c
+c              apply the transformation to the remaining columns,
+c              updating the norms.
+c
+               lp1 = l + 1
+               if (p .lt. lp1) go to 170
+               do 160 j = lp1, p
+                  t = -ddot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l)
+                  call daxpy(n-l+1,t,x(l,l),1,x(l,j),1)
+                  if (j .lt. pl .or. j .gt. pu) go to 150
+                  if (qraux(j) .eq. 0.0d0) go to 150
+                     tt = 1.0d0 - (dabs(x(l,j))/qraux(j))**2
+                     tt = dmax1(tt,0.0d0)
+                     t = tt
+                     tt = 1.0d0 + 0.05d0*tt*(qraux(j)/work(j))**2
+                     if (tt .eq. 1.0d0) go to 130
+                        qraux(j) = qraux(j)*dsqrt(t)
+                     go to 140
+  130                continue
+                        qraux(j) = dnrm2(n-l,x(l+1,j),1)
+                        work(j) = qraux(j)
+  140                continue
+  150             continue
+  160          continue
+  170          continue
+c
+c              save the transformation.
+c
+               qraux(l) = x(l,l)
+               x(l,l) = -nrmxl
+  180       continue
+  190    continue
+  200 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dqrdc2.f b/com.oracle.truffle.r.native/src/dqrdc2.f
new file mode 100644
index 0000000000000000000000000000000000000000..6e9e23ff2d92bf847dbd2767ef3c426742b8a71a
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dqrdc2.f
@@ -0,0 +1,194 @@
+c
+c     dqrdc2 uses householder transformations to compute the qr
+c     factorization of an n by p matrix x.  a limited column
+c     pivoting strategy based on the 2-norms of the reduced columns
+c     moves columns with near-zero norm to the right-hand edge of
+c     the x matrix.  this strategy means that sequential one
+c     degree-of-freedom effects can be computed in a natural way.
+c
+c     i am very nervous about modifying linpack code in this way.
+c     if you are a computational linear algebra guru and you really
+c     understand how to solve this problem please feel free to
+c     suggest improvements to this code.
+c
+c     Another change was to compute the rank.
+c
+c     on entry
+c
+c        x       double precision(ldx,p), where ldx .ge. n.
+c                x contains the matrix whose decomposition is to be
+c                computed.
+c
+c        ldx     integer.
+c                ldx is the leading dimension of the array x.
+c
+c        n       integer.
+c                n is the number of rows of the matrix x.
+c
+c        p       integer.
+c                p is the number of columns of the matrix x.
+c
+c        tol     double precision
+c                tol is the nonnegative tolerance used to
+c                determine the subset of the columns of x
+c                included in the solution.
+c
+c        jpvt    integer(p).
+c                integers which are swapped in the same way as the
+c                the columns of x during pivoting.  on entry these
+c                should be set equal to the column indices of the
+c                columns of the x matrix (typically 1 to p).
+c
+c        work    double precision(p,2).
+c                work is a work array.
+c
+c     on return
+c
+c        x       x contains in its upper triangle the upper
+c                triangular matrix r of the qr factorization.
+c                below its diagonal x contains information from
+c                which the orthogonal part of the decomposition
+c                can be recovered.  note that if pivoting has
+c                been requested, the decomposition is not that
+c                of the original matrix x but that of x
+c                with its columns permuted as described by jpvt.
+c
+c        k       integer.
+c                k contains the number of columns of x judged
+c                to be linearly independent.
+c
+c        qraux   double precision(p).
+c                qraux contains further information required to recover
+c                the orthogonal part of the decomposition.
+c
+c        jpvt    jpvt(k) contains the index of the column of the
+c                original matrix that has been interchanged into
+c                the k-th column.
+c
+c     original (dqrdc.f) linpack version dated 08/14/78 .
+c     g.w. stewart, university of maryland, argonne national lab.
+c
+c     this version dated 22 august 1995
+c     ross ihaka
+c
+c     bug fixes 29 September 1999 BDR (p > n case, inaccurate ranks)
+c
+c
+c     dqrdc2 uses the following functions and subprograms.
+c
+c     blas daxpy,ddot,dscal,dnrm2
+c     fortran dabs,dmax1,min0,dsqrt
+c
+      subroutine dqrdc2(x,ldx,n,p,tol,k,qraux,jpvt,work)
+      integer ldx,n,p
+      integer jpvt(*)
+      double precision x(ldx,*),qraux(*),work(p,2),tol
+c
+c     internal variables
+c
+      integer i,j,l,lp1,lup,k
+      double precision dnrm2,tt,ttt
+      double precision ddot,nrmxl,t
+c
+c
+c     compute the norms of the columns of x.
+c
+      do 70 j = 1, p
+         qraux(j) = dnrm2(n,x(1,j),1)
+         work(j,1) = qraux(j)
+         work(j,2) = qraux(j)
+         if(work(j,2) .eq. 0.0d0) work(j,2) = 1.0d0
+   70 continue
+c
+c     perform the householder reduction of x.
+c
+      lup = min0(n,p)
+      k = p + 1
+      do 200 l = 1, lup
+c
+c     previous version only cycled l to lup
+c
+c     cycle the columns from l to p left-to-right until one
+c     with non-negligible norm is located.  a column is considered
+c     to have become negligible if its norm has fallen below
+c     tol times its original norm.  the check for l .le. k
+c     avoids infinite cycling.
+c
+   80    continue
+         if (l .ge. k .or. qraux(l) .ge. work(l,2)*tol) go to 120
+            lp1 = l+1
+            do 100 i=1,n
+               t = x(i,l)
+               do 90 j=lp1,p
+                  x(i,j-1) = x(i,j)
+   90          continue
+               x(i,p) = t
+  100       continue
+            i = jpvt(l)
+            t = qraux(l)
+            tt = work(l,1)
+            ttt = work(l,2)
+            do 110 j=lp1,p
+               jpvt(j-1) = jpvt(j)
+               qraux(j-1) = qraux(j)
+               work(j-1,1) = work(j,1)
+               work(j-1,2) = work(j,2)
+  110       continue
+            jpvt(p) = i
+            qraux(p) = t
+            work(p,1) = tt
+            work(p,2) = ttt
+            k = k - 1
+            go to 80
+  120    continue
+         if (l .eq. n) go to 190
+c
+c           compute the householder transformation for column l.
+c
+            nrmxl = dnrm2(n-l+1,x(l,l),1)
+            if (nrmxl .eq. 0.0d0) go to 180
+               if (x(l,l) .ne. 0.0d0) nrmxl = dsign(nrmxl,x(l,l))
+               call dscal(n-l+1,1.0d0/nrmxl,x(l,l),1)
+               x(l,l) = 1.0d0 + x(l,l)
+c
+c              apply the transformation to the remaining columns,
+c              updating the norms.
+c
+               lp1 = l + 1
+               if (p .lt. lp1) go to 170
+               do 160 j = lp1, p
+                  t = -ddot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l)
+                  call daxpy(n-l+1,t,x(l,l),1,x(l,j),1)
+                  if (qraux(j) .eq. 0.0d0) go to 150
+                     tt = 1.0d0 - (dabs(x(l,j))/qraux(j))**2
+                     tt = dmax1(tt,0.0d0)
+                     t = tt
+c
+c modified 9/99 by BDR. Re-compute norms if there is large reduction
+c The tolerance here is on the squared norm
+c In this version we need accurate norms, so re-compute often.
+c  work(j,1) is only updated in one case: looks like a bug -- no longer used
+c
+c                     tt = 1.0d0 + 0.05d0*tt*(qraux(j)/work(j,1))**2
+c                     if (tt .eq. 1.0d0) go to 130
+                     if (dabs(t) .lt. 1d-6) go to 130
+                        qraux(j) = qraux(j)*dsqrt(t)
+                     go to 140
+  130                continue
+                        qraux(j) = dnrm2(n-l,x(l+1,j),1)
+                        work(j,1) = qraux(j)
+  140                continue
+  150             continue
+  160          continue
+  170          continue
+c
+c              save the transformation.
+c
+               qraux(l) = x(l,l)
+               x(l,l) = -nrmxl
+  180       continue
+  190    continue
+  200 continue
+      k = min0(k - 1, n)
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dqrls.f b/com.oracle.truffle.r.native/src/dqrls.f
new file mode 100644
index 0000000000000000000000000000000000000000..31e029f5a02fe6201476b3c26b24fb9a915c67f7
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dqrls.f
@@ -0,0 +1,116 @@
+c
+c     dqrfit is a subroutine to compute least squares solutions
+c     to the system
+c
+c     (1)               x * b = y
+c
+c     which may be either under-determined or over-determined.
+c     the user must supply a tolerance to limit the columns of
+c     x used in computing the solution.  in effect, a set of
+c     columns with a condition number approximately bounded by
+c     1/tol is used, the other components of b being set to zero.
+c
+c     on entry
+c
+c        x      double precision(n,p).
+c               x contains n-by-p coefficient matrix of
+c               the system (1), x is destroyed by dqrfit.
+c
+c        n      the number of rows of the matrix x.
+c
+c        p      the number of columns of the matrix x.
+c
+c        y      double precision(n,ny)
+c               y contains the right hand side(s) of the system (1).
+c
+c        ny     the number of right hand sides of the system (1).
+c
+c        tol    double precision
+c               tol is the nonnegative tolerance used to
+c               determine the subset of columns of x included
+c               in the solution.  columns are pivoted out of
+c               decomposition if
+c
+c        jpvt   integer(p)
+c               the values in jpvt are permuted in the same
+c               way as the columns of x.  this can be useful
+c               in unscrambling coefficients etc.
+c
+c        work   double precision(2*p)
+c               work is an array used by dqrdc2 and dqrsl.
+c
+c     on return
+c
+c        x      contains the output array from dqrdc2.
+c               namely the qr decomposition of x stored in
+c               compact form.
+c
+c        b      double precision(p,ny)
+c               b contains the solution vectors with rows permuted
+c               in the same way as the columns of x.  components
+c               corresponding to columns not used are set to zero.
+c
+c        rsd    double precision(n,ny)
+c               rsd contains the residual vectors y-x*b.
+c
+c        qty    double precision(n,ny)     t
+c               qty contains the vectors  q y.   note that
+c               the initial p elements of this vector are
+c               permuted in the same way as the columns of x.
+c
+c        k      integer
+c               k contains the number of columns used in the
+c               solution.
+c
+c        jpvt   has its contents permuted as described above.
+c
+c        qraux  double precision(p)
+c               qraux contains auxiliary information on the
+c               qr decomposition of x.
+c
+c
+c     on return the arrays x, jpvt and qraux contain the
+c     usual output from dqrdc, so that the qr decomposition
+c     of x with pivoting is fully available to the user.
+c     in particular, columns jpvt(1), jpvt(2),...,jpvt(k)
+c     were used in the solution, and the condition number
+c     associated with those columns is estimated by
+c     abs(x(1,1)/x(k,k)).
+c
+c     dqrfit uses the linpack routines dqrdc and dqrsl.
+c
+      subroutine dqrls(x,n,p,y,ny,tol,b,rsd,qty,k,jpvt,qraux,work)
+      integer n,p,ny,k,jpvt(p)
+      double precision x(n,p),y(n,ny),tol,b(p,ny),rsd(n,ny),
+     .                 qty(n,ny),qraux(p),work(p)
+c
+c     internal variables.
+c
+      integer info,j,jj,kk
+c
+c     reduce x.
+c
+      call dqrdc2(x,n,n,p,tol,k,qraux,jpvt,work)
+c
+c     solve the truncated least squares problem for each rhs.
+c
+      if(k .gt. 0) then
+         do 20 jj=1,ny
+   20       call dqrsl(x,n,n,k,qraux,y(1,jj),rsd(1,jj),qty(1,jj),
+     1           b(1,jj),rsd(1,jj),rsd(1,jj),1110,info)
+      else
+         do 30 i=1,n
+            do 30 jj=1,ny
+   30           rsd(i,jj) = y(i,jj)
+      endif
+c
+c     set the unused components of b to zero.
+c
+      kk = k + 1
+      do 50 j=kk,p
+         do 40 jj=1,ny
+            b(j,jj) = 0.d0
+   40    continue
+   50 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dqrsl.f b/com.oracle.truffle.r.native/src/dqrsl.f
new file mode 100644
index 0000000000000000000000000000000000000000..aab138a5feb558905e7f4c597afdb2c1b14002a8
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dqrsl.f
@@ -0,0 +1,275 @@
+c
+c     dqrsl applies the output of dqrdc to compute coordinate
+c     transformations, projections, and least squares solutions.
+c     for k .le. min(n,p), let xk be the matrix
+c
+c            xk = (x(jpvt(1)),x(jpvt(2)), ... ,x(jpvt(k)))
+c
+c     formed from columnns jpvt(1), ... ,jpvt(k) of the original
+c     n x p matrix x that was input to dqrdc (if no pivoting was
+c     done, xk consists of the first k columns of x in their
+c     original order).  dqrdc produces a factored orthogonal matrix q
+c     and an upper triangular matrix r such that
+c
+c              xk = q * (r)
+c                       (0)
+c
+c     this information is contained in coded form in the arrays
+c     x and qraux.
+c
+c     on entry
+c
+c        x      double precision(ldx,p).
+c               x contains the output of dqrdc.
+c
+c        ldx    integer.
+c               ldx is the leading dimension of the array x.
+c
+c        n      integer.
+c               n is the number of rows of the matrix xk.  it must
+c               have the same value as n in dqrdc.
+c
+c        k      integer.
+c               k is the number of columns of the matrix xk.  k
+c               must nnot be greater than min(n,p), where p is the
+c               same as in the calling sequence to dqrdc.
+c
+c        qraux  double precision(p).
+c               qraux contains the auxiliary output from dqrdc.
+c
+c        y      double precision(n)
+c               y contains an n-vector that is to be manipulated
+c               by dqrsl.
+c
+c        job    integer.
+c               job specifies what is to be computed.  job has
+c               the decimal expansion abcde, with the following
+c               meaning.
+c
+c                    if a.ne.0, compute qy.
+c                    if b,c,d, or e .ne. 0, compute qty.
+c                    if c.ne.0, compute b.
+c                    if d.ne.0, compute rsd.
+c                    if e.ne.0, compute xb.
+c
+c               note that a request to compute b, rsd, or xb
+c               automatically triggers the computation of qty, for
+c               which an array must be provided in the calling
+c               sequence.
+c
+c     on return
+c
+c        qy     double precision(n).
+c               qy conntains q*y, if its computation has been
+c               requested.
+c
+c        qty    double precision(n).
+c               qty contains trans(q)*y, if its computation has
+c               been requested.  here trans(q) is the
+c               transpose of the matrix q.
+c
+c        b      double precision(k)
+c               b contains the solution of the least squares problem
+c
+c                    minimize norm2(y - xk*b),
+c
+c               if its computation has been requested.  (note that
+c               if pivoting was requested in dqrdc, the j-th
+c               component of b will be associated with column jpvt(j)
+c               of the original matrix x that was input into dqrdc.)
+c
+c        rsd    double precision(n).
+c               rsd contains the least squares residual y - xk*b,
+c               if its computation has been requested.  rsd is
+c               also the orthogonal projection of y onto the
+c               orthogonal complement of the column space of xk.
+c
+c        xb     double precision(n).
+c               xb contains the least squares approximation xk*b,
+c               if its computation has been requested.  xb is also
+c               the orthogonal projection of y onto the column space
+c               of x.
+c
+c        info   integer.
+c               info is zero unless the computation of b has
+c               been requested and r is exactly singular.  in
+c               this case, info is the index of the first zero
+c               diagonal element of r and b is left unaltered.
+c
+c     the parameters qy, qty, b, rsd, and xb are not referenced
+c     if their computation is not requested and in this case
+c     can be replaced by dummy variables in the calling program.
+c     to save storage, the user may in some cases use the same
+c     array for different parameters in the calling sequence.  a
+c     frequently occuring example is when one wishes to compute
+c     any of b, rsd, or xb and does not need y or qty.  in this
+c     case one may identify y, qty, and one of b, rsd, or xb, while
+c     providing separate arrays for anything else that is to be
+c     computed.  thus the calling sequence
+c
+c          call dqrsl(x,ldx,n,k,qraux,y,dum,y,b,y,dum,110,info)
+c
+c     will result in the computation of b and rsd, with rsd
+c     overwriting y.  more generally, each item in the following
+c     list contains groups of permissible identifications for
+c     a single callinng sequence.
+c
+c          1. (y,qty,b) (rsd) (xb) (qy)
+c
+c          2. (y,qty,rsd) (b) (xb) (qy)
+c
+c          3. (y,qty,xb) (b) (rsd) (qy)
+c
+c          4. (y,qy) (qty,b) (rsd) (xb)
+c
+c          5. (y,qy) (qty,rsd) (b) (xb)
+c
+c          6. (y,qy) (qty,xb) (b) (rsd)
+c
+c     in any group the value returned in the array allocated to
+c     the group corresponds to the last member of the group.
+c
+c     linpack. this version dated 08/14/78 .
+c     g.w. stewart, university of maryland, argonne national lab.
+c
+c     dqrsl uses the following functions and subprograms.
+c
+c     BLAS      daxpy,dcopy,ddot
+c     Fortran   dabs,min0,mod
+c
+      subroutine dqrsl(x,ldx,n,k,qraux,y,qy,qty,b,rsd,xb,job,info)
+      integer ldx,n,k,job,info
+      double precision x(ldx,*),qraux(*),y(*),qy(*),qty(*),b(*),rsd(*),
+     *                 xb(*)
+c
+c     internal variables
+c
+      integer i,j,jj,ju,kp1
+      double precision ddot,t,temp
+      logical cb,cqy,cqty,cr,cxb
+c
+c
+c     set info flag.
+c
+      info = 0
+c
+c     determine what is to be computed.
+c
+      cqy = job/10000 .ne. 0
+      cqty = mod(job,10000) .ne. 0
+      cb = mod(job,1000)/100 .ne. 0
+      cr = mod(job,100)/10 .ne. 0
+      cxb = mod(job,10) .ne. 0
+      ju = min0(k,n-1)
+c
+c     special action when n=1.
+c
+      if (ju .ne. 0) go to 40
+         if (cqy) qy(1) = y(1)
+         if (cqty) qty(1) = y(1)
+         if (cxb) xb(1) = y(1)
+         if (.not.cb) go to 30
+            if (x(1,1) .ne. 0.0d0) go to 10
+               info = 1
+            go to 20
+   10       continue
+               b(1) = y(1)/x(1,1)
+   20       continue
+   30    continue
+         if (cr) rsd(1) = 0.0d0
+      go to 250
+   40 continue
+c
+c        set up to compute qy or qty.
+c
+         if (cqy) call dcopy(n,y,1,qy,1)
+         if (cqty) call dcopy(n,y,1,qty,1)
+         if (.not.cqy) go to 70
+c
+c           compute qy.
+c
+            do 60 jj = 1, ju
+               j = ju - jj + 1
+               if (qraux(j) .eq. 0.0d0) go to 50
+                  temp = x(j,j)
+                  x(j,j) = qraux(j)
+                  t = -ddot(n-j+1,x(j,j),1,qy(j),1)/x(j,j)
+                  call daxpy(n-j+1,t,x(j,j),1,qy(j),1)
+                  x(j,j) = temp
+   50          continue
+   60       continue
+   70    continue
+         if (.not.cqty) go to 100
+c
+c           compute trans(q)*y.
+c
+            do 90 j = 1, ju
+               if (qraux(j) .eq. 0.0d0) go to 80
+                  temp = x(j,j)
+                  x(j,j) = qraux(j)
+                  t = -ddot(n-j+1,x(j,j),1,qty(j),1)/x(j,j)
+                  call daxpy(n-j+1,t,x(j,j),1,qty(j),1)
+                  x(j,j) = temp
+   80          continue
+   90       continue
+  100    continue
+c
+c        set up to compute b, rsd, or xb.
+c
+         if (cb) call dcopy(k,qty,1,b,1)
+         kp1 = k + 1
+         if (cxb) call dcopy(k,qty,1,xb,1)
+         if (cr .and. k .lt. n) call dcopy(n-k,qty(kp1),1,rsd(kp1),1)
+         if (.not.cxb .or. kp1 .gt. n) go to 120
+            do 110 i = kp1, n
+               xb(i) = 0.0d0
+  110       continue
+  120    continue
+         if (.not.cr) go to 140
+            do 130 i = 1, k
+               rsd(i) = 0.0d0
+  130       continue
+  140    continue
+         if (.not.cb) go to 190
+c
+c           compute b.
+c
+            do 170 jj = 1, k
+               j = k - jj + 1
+               if (x(j,j) .ne. 0.0d0) go to 150
+                  info = j
+c           ......exit
+                  go to 180
+  150          continue
+               b(j) = b(j)/x(j,j)
+               if (j .eq. 1) go to 160
+                  t = -b(j)
+                  call daxpy(j-1,t,x(1,j),1,b,1)
+  160          continue
+  170       continue
+  180       continue
+  190    continue
+         if (.not.cr .and. .not.cxb) go to 240
+c
+c           compute rsd or xb as required.
+c
+            do 230 jj = 1, ju
+               j = ju - jj + 1
+               if (qraux(j) .eq. 0.0d0) go to 220
+                  temp = x(j,j)
+                  x(j,j) = qraux(j)
+                  if (.not.cr) go to 200
+                     t = -ddot(n-j+1,x(j,j),1,rsd(j),1)/x(j,j)
+                     call daxpy(n-j+1,t,x(j,j),1,rsd(j),1)
+  200             continue
+                  if (.not.cxb) go to 210
+                     t = -ddot(n-j+1,x(j,j),1,xb(j),1)/x(j,j)
+                     call daxpy(n-j+1,t,x(j,j),1,xb(j),1)
+  210             continue
+                  x(j,j) = temp
+  220          continue
+  230       continue
+  240    continue
+  250 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dqrutl.f b/com.oracle.truffle.r.native/src/dqrutl.f
new file mode 100644
index 0000000000000000000000000000000000000000..2d208ca0d8cb33e6215801c7637bc9465f167181
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dqrutl.f
@@ -0,0 +1,66 @@
+c dqr Utilities:  Interface to the different "switches" of  dqrsl().
+c
+      subroutine dqrqty(x, n, k, qraux, y, ny, qty)
+
+      integer n, k, ny
+      double precision x(n,k), qraux(k), y(n,ny), qty(n,ny)
+      integer info, j
+      double precision dummy(1)
+      do 10 j = 1,ny
+          call dqrsl(x, n, n, k, qraux, y(1,j), dummy, qty(1,j),
+     &               dummy, dummy, dummy, 1000, info)
+   10 continue
+      return
+      end
+c
+      subroutine dqrqy(x, n, k, qraux, y, ny, qy)
+
+      integer n, k, ny
+      double precision x(n,k), qraux(k), y(n,ny), qy(n,ny)
+      integer info, j
+      double precision dummy(1)
+      do 10 j = 1,ny
+          call dqrsl(x, n, n, k, qraux, y(1,j), qy(1,j),
+     &               dummy,  dummy, dummy, dummy, 10000, info)
+   10 continue
+      return
+      end
+c
+      subroutine dqrcf(x, n, k, qraux, y, ny, b, info)
+
+      integer n, k, ny, info
+      double precision x(n,k), qraux(k), y(n,ny), b(k,ny)
+      integer j
+      double precision dummy(1)
+      do 10 j = 1,ny
+          call dqrsl(x, n, n, k, qraux, y(1,j), dummy,
+     &               y(1,j), b(1,j), dummy, dummy, 100, info)
+   10 continue
+      return
+      end
+c
+      subroutine dqrrsd(x, n, k, qraux, y, ny, rsd)
+
+      integer n, k, ny
+      double precision x(n,k), qraux(k), y(n,ny), rsd(n,ny)
+      integer info, j
+      double precision dummy(1)
+      do 10 j = 1,ny
+          call dqrsl(x, n, n, k, qraux, y(1,j), dummy,
+     &               y(1,j), dummy, rsd(1,j), dummy, 10, info)
+   10 continue
+      return
+      end
+c
+      subroutine dqrxb(x, n, k, qraux, y, ny, xb)
+
+      integer n, k, ny
+      double precision x(n,k), qraux(k), y(n,ny), xb(n,ny)
+      integer info, j
+      double precision dummy(1)
+      do 10 j = 1,ny
+          call dqrsl(x, n, n, k, qraux, y(1,j), dummy,
+     &               y(1,j), dummy, dummy, xb(1,j), 1, info)
+   10 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dsvdc.f b/com.oracle.truffle.r.native/src/dsvdc.f
new file mode 100644
index 0000000000000000000000000000000000000000..bdfd97d77a42a9a378a9e2b06ab802e325ee9505
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dsvdc.f
@@ -0,0 +1,495 @@
+c -- called from R's  svd(x, ..., LINPACK = TRUE)  , i.e, *NOT* by default -- 
+c
+c     dsvdc is a subroutine to reduce a double precision nxp matrix x
+c     by orthogonal transformations u and v to diagonal form.  the
+c     diagonal elements s(i) are the singular values of x.  the
+c     columns of u are the corresponding left singular vectors,
+c     and the columns of v the right singular vectors.
+c
+c     on entry
+c
+c         x         double precision(ldx,p), where ldx.ge.n.
+c                   x contains the matrix whose singular value
+c                   decomposition is to be computed.  x is
+c                   destroyed by dsvdc.
+c
+c         ldx       integer.
+c                   ldx is the leading dimension of the array x.
+c
+c         n         integer.
+c                   n is the number of rows of the matrix x.
+c
+c         p         integer.
+c                   p is the number of columns of the matrix x.
+c
+c         ldu       integer.
+c                   ldu is the leading dimension of the array u.
+c                   (see below).
+c
+c         ldv       integer.
+c                   ldv is the leading dimension of the array v.
+c                   (see below).
+c
+c         work      double precision(n).
+c                   work is a scratch array.
+c
+c         job       integer.
+c                   job controls the computation of the singular
+c                   vectors.  it has the decimal expansion ab
+c                   with the following meaning
+c
+c                        a.eq.0    do not compute the left singular
+c                                  vectors.
+c                        a.eq.1    return the n left singular vectors
+c                                  in u.
+c                        a.ge.2    return the first min(n,p) singular
+c                                  vectors in u.
+c                        b.eq.0    do not compute the right singular
+c                                  vectors.
+c                        b.eq.1    return the right singular vectors
+c                                  in v.
+c
+c     on return
+c
+c         s         double precision(mm), where mm=min(n+1,p).
+c                   the first min(n,p) entries of s contain the
+c                   singular values of x arranged in descending
+c                   order of magnitude.
+c
+c         e         double precision(p), 
+c                   e ordinarily contains zeros.  however see the
+c                   discussion of info for exceptions.
+c
+c         u         double precision(ldu,k), where ldu.ge.n.  if
+c                                   joba.eq.1 then k.eq.n, if joba.ge.2
+c                                   then k.eq.min(n,p).
+c                   u contains the matrix of left singular vectors.
+c                   u is not referenced if joba.eq.0.  if n.le.p
+c                   or if joba.eq.2, then u may be identified with x
+c                   in the subroutine call.
+c
+c         v         double precision(ldv,p), where ldv.ge.p.
+c                   v contains the matrix of right singular vectors.
+c                   v is not referenced if job.eq.0.  if p.le.n,
+c                   then v may be identified with x in the
+c                   subroutine call.
+c
+c         info      integer.
+c                   the singular values (and their corresponding
+c                   singular vectors) s(info+1),s(info+2),...,s(m)
+c                   are correct (here m=min(n,p)).  thus if
+c                   info.eq.0, all the singular values and their
+c                   vectors are correct.  in any event, the matrix
+c                   b = trans(u)*x*v is the bidiagonal matrix
+c                   with the elements of s on its diagonal and the
+c                   elements of e on its super-diagonal (trans(u)
+c                   is the transpose of u).  thus the singular
+c                   values of x and b are the same.
+c
+c     linpack. this version dated 08/14/78 .
+c              correction made to shift 2/84.
+c     g.w. stewart, university of maryland, argonne national lab.
+c
+c     Modified 2000-12-28 to use a relative convergence test,
+c     as this was infinite-looping on ix86.
+c
+c     dsvdc uses the following functions and subprograms.
+c
+c     external drot
+c     blas daxpy,ddot,dscal,dswap,dnrm2,drotg
+c     fortran dabs,dmax1,max0,min0,mod,dsqrt
+c
+      subroutine dsvdc(x,ldx,n,p,s,e,u,ldu,v,ldv,work,job,info)
+      integer ldx,n,p,ldu,ldv,job,info
+      double precision x(ldx,*),s(*),e(*),u(ldu,*),v(ldv,*),work(*)
+c
+c     internal variables
+c
+      integer i,iter,j,jobu,k,kase,kk,l,ll,lls,lm1,lp1,ls,lu,m,maxit,
+     *        mm,mm1,mp1,nct,nctp1,ncu,nrt,nrtp1
+      double precision ddot,t
+      double precision b,c,cs,el,emm1,f,g,dnrm2,scale,shift,sl,sm,sn,
+     *                 smm1,t1,test,ztest,acc
+      logical wantu,wantv
+c
+c     unnecessary initializations of l and ls to keep g77 -Wall happy
+c
+      l = 0
+      ls = 0
+c
+c
+c     set the maximum number of iterations.
+c
+      maxit = 30
+c
+c     determine what is to be computed.
+c
+      wantu = .false.
+      wantv = .false.
+      jobu = mod(job,100)/10
+      ncu = n
+      if (jobu .gt. 1) ncu = min0(n,p)
+      if (jobu .ne. 0) wantu = .true.
+      if (mod(job,10) .ne. 0) wantv = .true.
+c
+c     reduce x to bidiagonal form, storing the diagonal elements
+c     in s and the super-diagonal elements in e.
+c
+      info = 0
+      nct = min0(n-1,p)
+      nrt = max0(0,min0(p-2,n))
+      lu = max0(nct,nrt)
+      if (lu .lt. 1) go to 170
+      do 160 l = 1, lu
+         lp1 = l + 1
+         if (l .gt. nct) go to 20
+c
+c           compute the transformation for the l-th column and
+c           place the l-th diagonal in s(l).
+c
+            s(l) = dnrm2(n-l+1,x(l,l),1)
+            if (s(l) .eq. 0.0d0) go to 10
+               if (x(l,l) .ne. 0.0d0) s(l) = dsign(s(l),x(l,l))
+               call dscal(n-l+1,1.0d0/s(l),x(l,l),1)
+               x(l,l) = 1.0d0 + x(l,l)
+   10       continue
+            s(l) = -s(l)
+   20    continue
+         if (p .lt. lp1) go to 50
+         do 40 j = lp1, p
+            if (l .gt. nct) go to 30
+            if (s(l) .eq. 0.0d0) go to 30
+c
+c              apply the transformation.
+c
+               t = -ddot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l)
+               call daxpy(n-l+1,t,x(l,l),1,x(l,j),1)
+   30       continue
+c
+c           place the l-th row of x into  e for the
+c           subsequent calculation of the row transformation.
+c
+            e(j) = x(l,j)
+   40    continue
+   50    continue
+         if (.not.wantu .or. l .gt. nct) go to 70
+c
+c           place the transformation in u for subsequent back
+c           multiplication.
+c
+            do 60 i = l, n
+               u(i,l) = x(i,l)
+   60       continue
+   70    continue
+         if (l .gt. nrt) go to 150
+c
+c           compute the l-th row transformation and place the
+c           l-th super-diagonal in e(l).
+c
+            e(l) = dnrm2(p-l,e(lp1),1)
+            if (e(l) .eq. 0.0d0) go to 80
+               if (e(lp1) .ne. 0.0d0) e(l) = dsign(e(l),e(lp1))
+               call dscal(p-l,1.0d0/e(l),e(lp1),1)
+               e(lp1) = 1.0d0 + e(lp1)
+   80       continue
+            e(l) = -e(l)
+            if (lp1 .gt. n .or. e(l) .eq. 0.0d0) go to 120
+c
+c              apply the transformation.
+c
+               do 90 i = lp1, n
+                  work(i) = 0.0d0
+   90          continue
+               do 100 j = lp1, p
+                  call daxpy(n-l,e(j),x(lp1,j),1,work(lp1),1)
+  100          continue
+               do 110 j = lp1, p
+                  call daxpy(n-l,-e(j)/e(lp1),work(lp1),1,x(lp1,j),1)
+  110          continue
+  120       continue
+            if (.not.wantv) go to 140
+c
+c              place the transformation in v for subsequent
+c              back multiplication.
+c
+               do 130 i = lp1, p
+                  v(i,l) = e(i)
+  130          continue
+  140       continue
+  150    continue
+  160 continue
+  170 continue
+c
+c     set up the final bidiagonal matrix or order m.
+c
+      m = min0(p,n+1)
+      nctp1 = nct + 1
+      nrtp1 = nrt + 1
+      if (nct .lt. p) s(nctp1) = x(nctp1,nctp1)
+      if (n .lt. m) s(m) = 0.0d0
+      if (nrtp1 .lt. m) e(nrtp1) = x(nrtp1,m)
+      e(m) = 0.0d0
+c
+c     if required, generate u.
+c
+      if (.not.wantu) go to 300
+         if (ncu .lt. nctp1) go to 200
+         do 190 j = nctp1, ncu
+            do 180 i = 1, n
+               u(i,j) = 0.0d0
+  180       continue
+            u(j,j) = 1.0d0
+  190    continue
+  200    continue
+         if (nct .lt. 1) go to 290
+         do 280 ll = 1, nct
+            l = nct - ll + 1
+            if (s(l) .eq. 0.0d0) go to 250
+               lp1 = l + 1
+               if (ncu .lt. lp1) go to 220
+               do 210 j = lp1, ncu
+                  t = -ddot(n-l+1,u(l,l),1,u(l,j),1)/u(l,l)
+                  call daxpy(n-l+1,t,u(l,l),1,u(l,j),1)
+  210          continue
+  220          continue
+               call dscal(n-l+1,-1.0d0,u(l,l),1)
+               u(l,l) = 1.0d0 + u(l,l)
+               lm1 = l - 1
+               if (lm1 .lt. 1) go to 240
+               do 230 i = 1, lm1
+                  u(i,l) = 0.0d0
+  230          continue
+  240          continue
+            go to 270
+  250       continue
+               do 260 i = 1, n
+                  u(i,l) = 0.0d0
+  260          continue
+               u(l,l) = 1.0d0
+  270       continue
+  280    continue
+  290    continue
+  300 continue
+c
+c     if it is required, generate v.
+c
+      if (.not.wantv) go to 350
+         do 340 ll = 1, p
+            l = p - ll + 1
+            lp1 = l + 1
+            if (l .gt. nrt) go to 320
+            if (e(l) .eq. 0.0d0) go to 320
+               do 310 j = lp1, p
+                  t = -ddot(p-l,v(lp1,l),1,v(lp1,j),1)/v(lp1,l)
+                  call daxpy(p-l,t,v(lp1,l),1,v(lp1,j),1)
+  310          continue
+  320       continue
+            do 330 i = 1, p
+               v(i,l) = 0.0d0
+  330       continue
+            v(l,l) = 1.0d0
+  340    continue
+  350 continue
+c
+c     main iteration loop for the singular values.
+c
+      mm = m
+      iter = 0
+  360 continue
+c
+c        quit if all the singular values have been found.
+c
+c     ...exit
+         if (m .eq. 0) go to 620
+c
+c        if too many iterations have been performed, set
+c        flag and return.
+c
+         if (iter .lt. maxit) go to 370
+            info = m
+c     ......exit
+            go to 620
+  370    continue
+c
+c        this section of the program inspects for
+c        negligible elements in the s and e arrays.  on
+c        completion the variables kase and l are set as follows.
+c
+c           kase = 1     if s(m) and e(l-1) are negligible and l.lt.m
+c           kase = 2     if s(l) is negligible and l.lt.m
+c           kase = 3     if e(l-1) is negligible, l.lt.m, and
+c                        s(l), ..., s(m) are not negligible (qr step).
+c           kase = 4     if e(m-1) is negligible (convergence).
+c
+         do 390 ll = 1, m
+            l = m - ll
+c        ...exit
+            if (l .eq. 0) go to 400
+            test = dabs(s(l)) + dabs(s(l+1))
+            ztest = test + dabs(e(l))
+            acc = dabs(test - ztest)/(1.0d-100 + test)
+            if (acc .gt. 1.d-15) goto 380
+c            if (ztest .ne. test) go to 380
+               e(l) = 0.0d0
+c        ......exit
+               go to 400
+  380       continue
+  390    continue
+  400    continue
+         if (l .ne. m - 1) go to 410
+            kase = 4
+         go to 480
+  410    continue
+            lp1 = l + 1
+            mp1 = m + 1
+            do 430 lls = lp1, mp1
+               ls = m - lls + lp1
+c           ...exit
+               if (ls .eq. l) go to 440
+               test = 0.0d0
+               if (ls .ne. m) test = test + dabs(e(ls))
+               if (ls .ne. l + 1) test = test + dabs(e(ls-1))
+               ztest = test + dabs(s(ls))
+c 1.0d-100 is to guard against a zero matrix, hence zero test
+               acc = dabs(test - ztest)/(1.0d-100 + test)
+               if (acc .gt. 1.d-15) goto 420
+c               if (ztest .ne. test) go to 420
+                  s(ls) = 0.0d0
+c           ......exit
+                  go to 440
+  420          continue
+  430       continue
+  440       continue
+            if (ls .ne. l) go to 450
+               kase = 3
+            go to 470
+  450       continue
+            if (ls .ne. m) go to 460
+               kase = 1
+            go to 470
+  460       continue
+               kase = 2
+               l = ls
+  470       continue
+  480    continue
+         l = l + 1
+c
+c        perform the task indicated by kase.
+c
+         go to (490,520,540,570), kase
+c
+c        deflate negligible s(m).
+c
+  490    continue
+            mm1 = m - 1
+            f = e(m-1)
+            e(m-1) = 0.0d0
+            do 510 kk = l, mm1
+               k = mm1 - kk + l
+               t1 = s(k)
+               call drotg(t1,f,cs,sn)
+               s(k) = t1
+               if (k .eq. l) go to 500
+                  f = -sn*e(k-1)
+                  e(k-1) = cs*e(k-1)
+  500          continue
+               if (wantv) call drot(p,v(1,k),1,v(1,m),1,cs,sn)
+  510       continue
+         go to 610
+c
+c        split at negligible s(l).
+c
+  520    continue
+            f = e(l-1)
+            e(l-1) = 0.0d0
+            do 530 k = l, m
+               t1 = s(k)
+               call drotg(t1,f,cs,sn)
+               s(k) = t1
+               f = -sn*e(k)
+               e(k) = cs*e(k)
+               if (wantu) call drot(n,u(1,k),1,u(1,l-1),1,cs,sn)
+  530       continue
+         go to 610
+c
+c        perform one qr step.
+c
+  540    continue
+c
+c           calculate the shift.
+c
+            scale = dmax1(dabs(s(m)),dabs(s(m-1)),dabs(e(m-1)),
+     *                    dabs(s(l)),dabs(e(l)))
+            sm = s(m)/scale
+            smm1 = s(m-1)/scale
+            emm1 = e(m-1)/scale
+            sl = s(l)/scale
+            el = e(l)/scale
+            b = ((smm1 + sm)*(smm1 - sm) + emm1**2)/2.0d0
+            c = (sm*emm1)**2
+            shift = 0.0d0
+            if (b .eq. 0.0d0 .and. c .eq. 0.0d0) go to 550
+               shift = dsqrt(b**2+c)
+               if (b .lt. 0.0d0) shift = -shift
+               shift = c/(b + shift)
+  550       continue
+            f = (sl + sm)*(sl - sm) + shift
+            g = sl*el
+c
+c           chase zeros.
+c
+            mm1 = m - 1
+            do 560 k = l, mm1
+               call drotg(f,g,cs,sn)
+               if (k .ne. l) e(k-1) = f
+               f = cs*s(k) + sn*e(k)
+               e(k) = cs*e(k) - sn*s(k)
+               g = sn*s(k+1)
+               s(k+1) = cs*s(k+1)
+               if (wantv) call drot(p,v(1,k),1,v(1,k+1),1,cs,sn)
+               call drotg(f,g,cs,sn)
+               s(k) = f
+               f = cs*e(k) + sn*s(k+1)
+               s(k+1) = -sn*e(k) + cs*s(k+1)
+               g = sn*e(k+1)
+               e(k+1) = cs*e(k+1)
+               if (wantu .and. k .lt. n)
+     *            call drot(n,u(1,k),1,u(1,k+1),1,cs,sn)
+  560       continue
+            e(m-1) = f
+            iter = iter + 1
+         go to 610
+c
+c        convergence.
+c
+  570    continue
+c
+c           make the singular value  positive.
+c
+            if (s(l) .ge. 0.0d0) go to 580
+               s(l) = -s(l)
+               if (wantv) call dscal(p,-1.0d0,v(1,l),1)
+  580       continue
+c
+c           order the singular value.
+c
+  590       if (l .eq. mm) go to 600
+c           ...exit
+               if (s(l) .ge. s(l+1)) go to 600
+               t = s(l)
+               s(l) = s(l+1)
+               s(l+1) = t
+               if (wantv .and. l .lt. p)
+     *            call dswap(p,v(1,l),1,v(1,l+1),1)
+               if (wantu .and. l .lt. n)
+     *            call dswap(n,u(1,l),1,u(1,l+1),1)
+               l = l + 1
+            go to 590
+  600       continue
+            iter = 0
+            m = m - 1
+  610    continue
+      go to 360
+  620 continue
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dtrco.f b/com.oracle.truffle.r.native/src/dtrco.f
new file mode 100644
index 0000000000000000000000000000000000000000..8f693e6a818fc23902117385b68d651a726fb556
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dtrco.f
@@ -0,0 +1,161 @@
+      subroutine dtrco(t,ldt,n,rcond,z,job)
+      integer ldt,n,job
+      double precision t(ldt,*),z(*)
+      double precision rcond
+c
+c     dtrco estimates the condition of a double precision triangular
+c     matrix.
+c
+c     on entry
+c
+c        t       double precision(ldt,n)
+c                t contains the triangular matrix. the zero
+c                elements of the matrix are not referenced, and
+c                the corresponding elements of the array can be
+c                used to store other information.
+c
+c        ldt     integer
+c                ldt is the leading dimension of the array t.
+c
+c        n       integer
+c                n is the order of the system.
+c
+c        job     integer
+c                = 0         t  is lower triangular.
+c                = nonzero   t  is upper triangular.
+c
+c     on return
+c
+c        rcond   double precision
+c                an estimate of the reciprocal condition of  t .
+c                for the system  t*x = b , relative perturbations
+c                in  t  and  b  of size  epsilon  may cause
+c                relative perturbations in  x  of size  epsilon/rcond .
+c                if  rcond  is so small that the logical expression
+c                           1.0 + rcond .eq. 1.0
+c                is true, then  t  may be singular to working
+c                precision.  in particular,  rcond  is zero  if
+c                exact singularity is detected or the estimate
+c                underflows.
+c
+c        z       double precision(n)
+c                a work vector whose contents are usually unimportant.
+c                if  t  is close to a singular matrix, then  z  is
+c                an approximate null vector in the sense that
+c                norm(a*z) = rcond*norm(a)*norm(z) .
+c
+c     linpack. this version dated 08/14/78 .
+c     cleve moler, university of new mexico, argonne national lab.
+c
+c     subroutines and functions
+c
+c     blas daxpy,dscal,dasum
+c     fortran dabs,dmax1,dsign
+c
+c     internal variables
+c
+      double precision w,wk,wkm,ek
+      double precision tnorm,ynorm,s,sm,dasum
+      integer i1,j,j1,j2,k,kk,l
+      logical lower
+c
+      lower = job .eq. 0
+c
+c     compute 1-norm of t
+c
+      tnorm = 0.0d0
+      do 10 j = 1, n
+         l = j
+         if (lower) l = n + 1 - j
+         i1 = 1
+         if (lower) i1 = j
+         tnorm = dmax1(tnorm,dasum(l,t(i1,j),1))
+   10 continue
+c
+c     rcond = 1/(norm(t)*(estimate of norm(inverse(t)))) .
+c     estimate = norm(z)/norm(y) where  t*z = y  and  trans(t)*y = e .
+c     trans(t)  is the transpose of t .
+c     the components of  e  are chosen to cause maximum local
+c     growth in the elements of y .
+c     the vectors are frequently rescaled to avoid overflow.
+c
+c     solve trans(t)*y = e
+c
+      ek = 1.0d0
+      do 20 j = 1, n
+         z(j) = 0.0d0
+   20 continue
+      do 100 kk = 1, n
+         k = kk
+         if (lower) k = n + 1 - kk
+         if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
+         if (dabs(ek-z(k)) .le. dabs(t(k,k))) go to 30
+            s = dabs(t(k,k))/dabs(ek-z(k))
+            call dscal(n,s,z,1)
+            ek = s*ek
+   30    continue
+         wk = ek - z(k)
+         wkm = -ek - z(k)
+         s = dabs(wk)
+         sm = dabs(wkm)
+         if (t(k,k) .eq. 0.0d0) go to 40
+            wk = wk/t(k,k)
+            wkm = wkm/t(k,k)
+         go to 50
+   40    continue
+            wk = 1.0d0
+            wkm = 1.0d0
+   50    continue
+         if (kk .eq. n) go to 90
+            j1 = k + 1
+            if (lower) j1 = 1
+            j2 = n
+            if (lower) j2 = k - 1
+            do 60 j = j1, j2
+               sm = sm + dabs(z(j)+wkm*t(k,j))
+               z(j) = z(j) + wk*t(k,j)
+               s = s + dabs(z(j))
+   60       continue
+            if (s .ge. sm) go to 80
+               w = wkm - wk
+               wk = wkm
+               do 70 j = j1, j2
+                  z(j) = z(j) + w*t(k,j)
+   70          continue
+   80       continue
+   90    continue
+         z(k) = wk
+  100 continue
+      s = 1.0d0/dasum(n,z,1)
+      call dscal(n,s,z,1)
+c
+      ynorm = 1.0d0
+c
+c     solve t*z = y
+c
+      do 130 kk = 1, n
+         k = n + 1 - kk
+         if (lower) k = kk
+         if (dabs(z(k)) .le. dabs(t(k,k))) go to 110
+            s = dabs(t(k,k))/dabs(z(k))
+            call dscal(n,s,z,1)
+            ynorm = s*ynorm
+  110    continue
+         if (t(k,k) .ne. 0.0d0) z(k) = z(k)/t(k,k)
+         if (t(k,k) .eq. 0.0d0) z(k) = 1.0d0
+         i1 = 1
+         if (lower) i1 = k + 1
+         if (kk .ge. n) go to 120
+            w = -z(k)
+            call daxpy(n-kk,w,t(i1,k),1,z(i1),1)
+  120    continue
+  130 continue
+c     make znorm = 1.0
+      s = 1.0d0/dasum(n,z,1)
+      call dscal(n,s,z,1)
+      ynorm = s*ynorm
+c
+      if (tnorm .ne. 0.0d0) rcond = ynorm/tnorm
+      if (tnorm .eq. 0.0d0) rcond = 0.0d0
+      return
+      end
diff --git a/com.oracle.truffle.r.native/src/dtrsl.f b/com.oracle.truffle.r.native/src/dtrsl.f
new file mode 100644
index 0000000000000000000000000000000000000000..b656627dfd5640eceb310ac6d8bffc1a209cdfac
--- /dev/null
+++ b/com.oracle.truffle.r.native/src/dtrsl.f
@@ -0,0 +1,141 @@
+c Triangular Solve  dtrsl()
+c ----------------
+c     solves systems of the form
+c
+c                   t * x = b
+c     or
+c                   trans(t) * x = b
+c
+c     where t is a triangular matrix of order n. here trans(t)
+c     denotes the transpose of the matrix t.
+c
+c     on entry
+c
+c         t         double precision(ldt,n)
+c                   t contains the matrix of the system. the zero
+c                   elements of the matrix are not referenced, and
+c                   the corresponding elements of the array can be
+c                   used to store other information.
+c
+c         ldt       integer
+c                   ldt is the leading dimension of the array t.
+c
+c         n         integer
+c                   n is the order of the system.
+c
+c         b         double precision(n).
+c                   b contains the right hand side of the system.
+c
+c         job       integer
+c                   job specifies what kind of system is to be solved.
+c                   if job is
+c
+c                        00   solve t*x=b, t lower triangular,
+c                        01   solve t*x=b, t upper triangular,
+c                        10   solve trans(t)*x=b, t lower triangular,
+c                        11   solve trans(t)*x=b, t upper triangular.
+c
+c     on return
+c
+c         b         b contains the solution, if info .eq. 0.
+c                   otherwise b is unaltered.
+c
+c         info      integer
+c                   info contains zero if the system is nonsingular.
+c                   otherwise info contains the index of
+c                   the first zero diagonal element of t.
+c
+c     linpack. this version dated 08/14/78 .
+c     g. w. stewart, university of maryland, argonne national lab.
+c
+c     subroutines and functions
+c
+c     blas:     daxpy,ddot
+c     fortran   mod
+c
+      subroutine dtrsl(t,ldt,n,b,job,info)
+      integer ldt,n,job,info
+      double precision t(ldt,*),b(*)
+c
+c     internal variables
+c
+      double precision ddot,temp
+      integer case,j,jj
+c
+c     begin block permitting ...exits to 150
+c
+c        check for zero diagonal elements.
+c
+      do 10 info = 1, n
+         if (t(info,info) .eq. 0.0d0) go to 150
+c     ......exit
+ 10   continue
+      info = 0
+c
+c     determine the task and go to it.
+c
+      case = 1
+      if (mod(job,10) .ne. 0) case = 2
+      if (mod(job,100)/10 .ne. 0) case = case + 2
+      go to (20,50,80,110), case
+c
+C Case 1 (job = 00):
+c        solve t*x=b for t lower triangular
+c
+ 20   continue
+      b(1) = b(1)/t(1,1)
+      if (n .ge. 2) then
+      do 30 j = 2, n
+         temp = -b(j-1)
+         call daxpy(n-j+1,temp,t(j,j-1),1,b(j),1)
+         b(j) = b(j)/t(j,j)
+ 30   continue
+      endif
+      go to 140
+c     
+C Case 2 (job = 01):
+c        solve t*x=b for t upper triangular.
+c
+ 50   continue
+      b(n) = b(n)/t(n,n)
+      if (n .ge. 2) then
+         do 60 jj = 2, n
+            j = n - jj + 1
+            temp = -b(j+1)
+            call daxpy(j,temp,t(1,j+1),1,b(1),1)
+            b(j) = b(j)/t(j,j)
+ 60      continue
+      endif
+      go to 140
+c     
+C Case 3 (job = 10):
+c        solve trans(t)*x=b for t lower triangular.
+c
+ 80   continue
+      b(n) = b(n)/t(n,n)
+      if (n .ge. 2) then
+         do 90 jj = 2, n
+            j = n - jj + 1
+            b(j) = b(j) - ddot(jj-1,t(j+1,j),1,b(j+1),1)
+            b(j) = b(j)/t(j,j)
+ 90      continue
+      endif
+      go to 140
+c     
+C Case 4 (job = 11):
+c        solve trans(t)*x=b for t upper triangular.
+c
+ 110  continue
+      b(1) = b(1)/t(1,1)
+      if (n .ge. 2) then
+         do 120 j = 2, n
+            b(j) = b(j) - ddot(j-1,t(1,j),1,b(1),1)
+            b(j) = b(j)/t(j,j)
+ 120     continue
+      endif
+C
+ 140  continue
+c     EXIT:
+ 150  continue
+      return
+      end
diff --git a/com.oracle.truffle.r.runtime/src/com/oracle/truffle/r/runtime/ffi/jnr/JNR_RFFIFactory.java b/com.oracle.truffle.r.runtime/src/com/oracle/truffle/r/runtime/ffi/jnr/JNR_RFFIFactory.java
index ebaf7a689fa043a8a7210e0d519a9582b81fa20a..564c7ca42c231db33b64f823b60dfbdce13e495d 100644
--- a/com.oracle.truffle.r.runtime/src/com/oracle/truffle/r/runtime/ffi/jnr/JNR_RFFIFactory.java
+++ b/com.oracle.truffle.r.runtime/src/com/oracle/truffle/r/runtime/ffi/jnr/JNR_RFFIFactory.java
@@ -396,7 +396,9 @@ public class JNR_RFFIFactory extends RFFIFactory implements RFFI, BaseRFFI, RDer
 
        @SlowPath
        private static Linpack createAndLoadLib() {
-           return LibraryLoader.create(Linpack.class).load("R");
+           // need to load blas lib as Fortran functions in RDerived lib need it
+           LibraryLoader.create(Linpack.class).load("Rblas");
+           return LibraryLoader.create(Linpack.class).load("RDerived");
        }
 
        static Linpack linpack() {
diff --git a/mx.fastr/mx_fastr.py b/mx.fastr/mx_fastr.py
index 52ba5c5f96ccf4bf785787915448859f73d62045..655c980a9c1a7b2c7fb0638a7138927f2fd8f959 100644
--- a/mx.fastr/mx_fastr.py
+++ b/mx.fastr/mx_fastr.py
@@ -257,7 +257,7 @@ def _bench_harness_body(args, vmArgs):
              'shootout.knucleotide', 'shootout.mandelbrot-ascii', 'shootout.nbody', 'shootout.pidigits',
              'shootout.regexdna', 'shootout.reversecomplement', 'shootout.spectralnorm',
              'b25.bench.prog-1', 'b25.bench.prog-2', 'b25.bench.prog-3', 'b25.bench.prog-4', 'b25.bench.prog-5',
-             'b25.bench.matcal-1', 'b25.bench.matcal-2', 'b25.bench.matcal-3', 'b25.bench.matcal-4',
+             'b25.bench.matcal-1', 'b25.bench.matcal-2', 'b25.bench.matcal-3', 'b25.bench.matcal-4', 'b25.bench.matcal-5',
              'b25.bench.matfunc-1', 'b25.bench.matfunc-2', 'b25.bench.matfunc-3', 'b25.bench.matfunc-4']
     if vmArgs:
         marks = ['--J', vmArgs] + marks