LualgX
Reference
Manual

beta
November 2017
Version 1.06.2

LualgX
Reference
Manual

copyright : LuaTgX development team
more info : www.luatex.org
version : November 27, 2017

Contents

Introduction
1 Basic TEX enhancements
1.1 Introduction
1.2 Version information
1.2.1 \luatexbanner, \luatexversion and \luatexrevision
1.2.2 \formatname
1.3 UNICODE text support
1.3.1 Extended ranges
1.3.2 \Uchar
1.4 Extended tables
1.5 Attributes
1.5.1 Attribute registers
1.5.2 Box attributes
1.6 LUA related primitives
1.6.1 \directlua
1.6.2 \latelua
1.6.3 \luaescapestring
1.6.4 \luafunction
1.7 Alignments
1.7.1 \alignmark
1.7.2 \aligntab
1.8 Catcode tables
1.8.1 \catcodetable
1.8.2 \initcatcodetable
1.8.3 \savecatcodetable
1.9 Suppressing errors
1.9.1 \suppressfontnotfounderror
1.9.2 \suppresslongerror
1.9.3 \suppressifcsnameerror
1.94 \suppressoutererror
1.9.5 \suppressmathparerror
1.9.6 \suppressprimitiveerror
1.10 Math
1.10.1 Extensions
1.10.2 \matheqnogapstep
1.11 Fonts
1.11.1 Font syntax
1.11.2 \fontid
1.11.3 \setfontid
1.11.4 \noligs and \nokerns
1.11.5 \nospaces
1.12 Tokens, commands and strings

11
11
11
11
12
12
12
13
13
13
13
14
14
14
16
16
16
17
17
17
17
17
17
18
18
18
18
18
19
19
19
19
19
19
20
20
20
20
20
21
21

1.12.1 \scantextokens
1.12.2 \toksapp, \tokspre, \etoksapp and \etokspre
1.12.3 \csstring, \begincsname and \lastnamedcs
1.12.4 \clearmarks
1.12.5 \letcharcode
1.13 Boxes, rules and leaders
1.13.1 \outputbox
1.13.2 \vpack, \hpack and \tpack
1.13.3 \vsplit
1.13.4 Images and Forms
1.13.5 \nohrule and \novrule
1.13.6 \gleaders
1.14 Languages
1.14.1 \hyphenationmin
1.14.2 \boundary, \noboundary, \protrusionboundary and \wordboundary
1.15 Control and debugging
1.15.1 Tracing
1.15.2 \outputmode and \draftmode
1.16 Files
1.16.1 File syntax
1.16.2 Writing to file

2 Modifications
2.1 The merged engines

2.1.1
2.1.2
2.1.3
214
2.1.5
2.1.6

The need for change

Changes from TgX 3.1415926
Changes from &-TgX 2.2
Changes from PDFTEX 1.40
Changes from ALEPH RC4
Changes from standard WEB2C

2.2 The backend primitives \pdf *
2.3 Directions
2.4 Implementation notes

24.1
2.4.2
2.4.3
24.4
2.4.5
2.4.6

Memory allocation

Sparse arrays

Simple single-character csnames
Compressed format

Binary file reading

Tabs and spaces

3 LUA general
3.1 Initialization

3.1.1
3.1.2
3.1.3

LUATEX as a LUA interpreter
LUATEX as a LUA byte compiler
Other commandline processing

3.2 LUA behaviour
3.3 LUA modules

21
21
21
22
22
22
22
22
23
23
23
23
24
24
24
24
24
24
24
24
25

27
27
27
27
28
28
30
31
32
38
42
42
42
42
43
43
43

45
45
45
45
45
48
51

3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

5.4

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Testing

Languages, characters, fonts and glyphs

Characters and glyphs

The main control loop

Loading patterns and exceptions
Applying hyphenation

Applying ligatures and kerning
Breaking paragraphs into lines
The lang library

Font structure

The font tables

Real fonts

Virtual fonts

5.3.1 The structure

5.3.2 Artificial fonts

5.3.3 Example virtual font
The font library

5.4.1 Loading a TFM file
5.4.2 Loading a VF file

5.4.3 The fonts array

5.4.4 Checking a font’s status
5.4.5 Defining a font directly
5.4.6 Extending a font

5.4.7 Projected next font id
5.4.8 Font id

5.4.9 Currently active font
5.4.10 Maximum font id
5.4.11 Iterating over all fonts

Math

The current math style
6.1.1 \mathstyle
6.1.2 \Ustack
Unicode math characters
Cramped math styles
Math parameter settings
Skips around display math
Font-based Math Parameters
Nolimit correction

Math italic mess

Script boxes

Unscaled fences

Math spacing setting
Math accent handling
Math root extension

52

53
53
58
61
62
64
66
66

69
69
74
76
76
78
78
79
79
79
79
80
80
80
81
81
81
81
81

83
83
83
84
85
86
87
89
89
91
92
92
93
93
94
95

6.14
6.15
6.16
6.17
6.18
6.19

6.20

7.2

7.3

8.1
8.2

Math kerning in super- and subscripts

Scripts on horizontally extensible items like arrows

Extracting values

fractions

Last lines

Other Math changes

6.19.1 Verbose versions of single-character math commands
6.19.2 Script commands \Unosuperscript and \Unosubscript
6.19.3 Allowed math commands in non-math modes

Math surrounding skips

6.20.1 Delimiters: \Uleft, \Umiddle and \Uright

6.20.2 Fixed scripts

6.20.3 Penalties: \mathpenaltiesmode

6.20.4 Tracing

6.20.5 Math options

Nodes

LUA node representation
7.1.1 Attributes

7.1.2 Main text nodes
7.1.3 Math nodes

7.1.4 whatsit nodes

The node library

7.2.1 Node handling functions
7.2.2 Glue handling
7.2.3 Attribute handling
Two access models

LUATEX LUA callbacks

Registering callbacks

File discovery callbacks

8.2.1 find read file and find write file
8.2.2 find font file

8.2.3 find output file

8.2.4 find format file

8.2.5 find vf file

8.2.6 find map file

8.2.7 find _enc file

8.2.8 find sfd file

8.2.9 find pk file

8.2.10 find data file

8.2.11 find opentype file

8.2.12 find _truetype file and find typel file
8.2.13 find_image file

8.2.14 File reading callbacks

8.2.15 open_read file

8.2.16 General file readers

95
96
97
97
98
98
98
99
99
99
100
100
101
101
101

103
103
103
104
110
114
119
119
130
130
132

139
139
139
140
140
140
140
141
141
141
141
141
141
141
141
142
142
142
143

8.3

8.4

8.5

8.6

8.7

Data processing callbacks

8.3.1 process _input buffer
8.3.2 process output buffer
8.3.3 process jobname

Node list processing callbacks
8.4.1 contribute filter
8.4.2 buildpage filter

8.4.3 build page insert
8.4.4 pre_linebreak filter
8.4.5 linebreak filter

8.4.6 append to vlist filter
8.4.7 post linebreak filter
8.4.8 hpack filter

8.4.9 vpack filter

8.4.10 hpack quality

8.4.11 vpack quality

8.4.12 process _rule

8.4.13 pre output filter
8.4.14 hyphenate

8.4.15 ligaturing

8.4.16 kerning

8.4.17 insert local par
8.4.18 mlist to hlist
Information reporting callbacks
8.5.1 pre_dump

8.5.2 start_run

8.5.3 stop _run

8.5.4 start page number
8.5.5 stop_page number

8.5.6 show_error_hook
8.5.7 show error message
8.5.8 show lua_error_hook

8.5.9 start file

8.5.10 stop file

8.5.11 call edit

8.5.12 finish synctex callback
PDF-related callbacks

8.6.1 finish pdffile

8.6.2 finish pdfpage
Font-related callbacks

8.7.1 define font

8.7.2 glyph not found

The TgX related libraries

The lua library

9.1.1 LUA version

9.1.2 LUA bytecode registers

144
144
144
144
144
144
145
145
146
146
147
147
147
148
148
148
149
149
149
149
149
150
150
150
150
150
151
151
151
151
151
152
152
152
152
152
152
152
153
153
153
153

155
155
155
155

9.2
9.3

9.4
9.5

9.6

9.7

10
10.1

9.1.3 LUA chunk name registers
The status library
The tex library

9.3.1 Internal parameter values

9.3.2 Convert commands

9.3.3 Last item commands

9.34 Attribute, count, dimension, skip and token registers
9.3.5 Character code registers

9.3.6 Box registers

9.3.7 Math parameters
9.3.8 Special list heads
9.3.9 Semantic nest levels
9.3.10 Print functions
9.3.11 Helper functions

9.3.12 Functions for dealing with primitives

9.3.13 Core functionality interfaces
9.3.14 Functions related to synctex
The texconfig table

The texio library

9.5.1 texio.write
9.5.2 texio.write nl
9.5.3 texio.setescape
The token library

9.6.1 The scanner

9.6.2 Macros

9.6.3 Pushing back
9.6.4 Nota bene
The kpse library

9.7.1 kpse.set program name and kpse.new

9.7.2 find file
9.7.3 lookup

9.74 init prog
9.7.5 readable file
9.7.6 expand path
9.7.7 expand var
9.7.8 expand braces
9.7.9 show path
9.7.10 var _value
9.7.11 version

The graphic libraries
The img library

10.1.1 new

10.1.2 keys
10.1.3 scan
10.1.4 copy

10.1.5 write

156
156
158
158
161
162
162
163
165
166
167
167
168
170
172
176
177
178
179
179
179
179
180
180
182
183
183
184
184
185
186
186
186
186
187
187
187
187
187

189
189
189
190
191
191
192

10.2

11

11.1
11.2
11.3
114
11.5
11.6

12
12.1

10.1.6 immediatewrite

10.1.7 node

10.1.8 types

10.1.9 boxes

The mplib library

10.2.1 new

10.2.2 mp:statistics

10.2.3 mp:execute

10.2.4 mp:finish

10.2.5 Result table

10.2.6 Subsidiary table formats
10.2.7 Character size information

The fontloader

Getting quick information on a font
Loading an OPENTYPE or TRUETYPE file
Applying a ‘feature file’

Applying an ‘AFM file’

Fontloader font tables

Table types

11.6.1
11.6.2
11.6.3
11.6.4
11.6.5
11.6.6
11.6.7
11.6.8
11.6.9
11.6.10
11.6.11
11.6.12
11.6.13
11.6.14
11.6.15
11.6.16
11.6.17
11.6.18
11.6.19
11.6.20
11.6.21
11.6.22
11.6.23

Top-level

Glyph items

map table

private table

cidinfo table

pfminfo table

names table

anchor classes table

gpos table

gsub table

ttf tables and ttf tab saved tables
mm table

mark classes table

math table

validation state table

horiz base and vert base table
altuni table

vert variants and horiz variants table
mathkern table

kerns table

vkerns table

texdata table

lookups table

The backend libraries
The pdf library

12.1.1

mapfile, mapline

192
192
193
193
193
193
194
194
194
195
197
198

199
199
199
200
201
201
202
202
204
207
208
208
208
209
210
210
211
211
212
212
212
214
214
214
215
215
215
215
215
215

217
217
217

12.1.2

12.1.3

12.1.4

12.1.5

12.1.6

12.1.7

12.1.8

12.1.9

12.1.10
12.1.11
12.1.12
12.1.13
12.1.14
12.1.15
12.1.16
12.1.17
12.1.18
12.1.19
12.1.20
12.1.21
12.1.22
12.1.23
12.1.24
12.1.25
12.1.26
12.1.27
12.1.28
12.1.29
12.1.30

[set|get][catalog|info|names|trailer]
[set|get][pageattributes|pageresources|pagesattributes]
[set|get][xformattributes|xformresources]
getversion and [set|get]minorversion

getcreationdate

[set|getlinclusionerrorlevel, [set|get]lignoreunknownimages
[set|get]suppressoptionalinfo

[set|get]ltrailerid

[set|get]compresslevel

[set|get]lobjcompresslevel

[set|get]lgentounicode

[set|get]lomitcidset

[set|get]ldecimaldigits

[set|get]lpkresolution
getlast[obj|link|annot] and getretval

maxobjnum and objtype, fontname, fontobjnum, fontsize, xformname
[set|getlorigin

[set|get]limageresolution
[set|get][link|dest|thread|xform]margin
get[pos|hpos|vpos]

[has|get]lmatrix

print

immediateobj

obj

refobj

reserveobj

registerannot

newcolorstack

setfontattributes

12.2 The pdfscanner library
12.3 The epdf library

217
217
217
217
217
218
218
218
218
218
218
218
218
218
218
219
219
219
219
219
219
220
220
221
222
222
222
222
222
222
225

Introduction

This is the reference manual of LuaTgX. We don’t claim it is complete and we assume that the
reader knows about TgX as described in “The TgX Book”, the “e-TgX manual”, the “pdfTEX man-
ual”, etc. Additional reference material is published in journals of user groups and ConTgXt
related documentation.

It took about a decade to reach stable version 1.0, but for good reason. Successive versions
brought new functionality, more control, some cleanup of internals and experimental features
evolved into stable ones or were dropped. Already quite early LuaTgX could be used for produc-
tion and it was used on a daily basis by the authors. Successive versions sometimes demanded
a adaption to the Lua interfacing, but the concepts were unchanged. The current version can
be considered stable in functionality and there will be no fundamental changes. Of course we
then can decide to move towards version 2.00 with different properties.

Don’t expect LuaTgX to behave the same as pdfIgX! Although the core functionality of that 8 bit
engine was starting point, it has been combined with the directional support of Omega (Aleph).
But, LuaTgX can behave different due to its wide (32 bit) characters, many registers and large
memory support. There is native utf input, support for large (more that 8 bit) fonts, and the math
machinery is tuned for OpenType math. There is support for directional typesetting too. The
log output can differ from other engines and will likely differ more as we move forward. When
you run plain TgX for sure LuaTgX runs slower than pdfTEX but when you run for instance Con-
TEXt MkKIV in many cases it runs faster, especially when you have a bit more complex documents
or input. Anyway, 32 bit all-over combined with more features has a price, but on a modern
machine this is no real problem.

Testing is done with ConTgXt, but LuaTgX should work fine with other macro packages too. For
that purpose we provide generic font handlers that are mostly the same as used in ConTgXt.
Discussing specific implementations is beyond this manual. Even when we keep LuaTgX lean
and mean, we already have enough to discuss here.

LuaTgX consists of a number of interrelated but (still) distinguishable parts. The organization
of the source code is adapted so that it can glue all these components together. We continue
cleaning up side effects of the accumulated code in TgX engines (especially code that is not
needed any longer).

« Most of pdfTEX version 1.40.9, converted to C. Some experimental features have been re-
moved and some utility macros are not inherited as their functionality can be done in Lua.
The number of backend interface commands has been reduced to a few. The extensions are
separated from the core (which we keep close to the original TgX core). Some mechanisms
like expansion and protrusion can behave different from the original due to some cleanup and
optimization. Some whatsit based functionality (image support and reusable content) is now
core functionality.

« The direction model and some other bits from Aleph RC4 (derived from Omega) is included.
The related primitives are part of core LuaTgX but at the node level directional support is no
longer based on so called whatsits but on real nodes. In fact, whatsits are now only used for
backend specific extensions.

Introduction 9] 0

Neither Aleph’s I/O translation processes, nor tcx files, nor encTgX can be used, these encod-
ing-related functions are superseded by a Lua-based solution (reader callbacks). In a similar
fashion all file io can be intercepted.

We currently use Lua 5.2.*%. At some point we might decide to move to 5.3.* but that is yet to
be decided. There are few Lua libraries that we consider part of the core Lua machinery, for
instance lpeg. There are additional Lua libraries that interface to the internals of TgX.
There are various TEX extensions but only those that cannot be done using the Lua interfaces.
The math machinery often has two code paths: one traditional and the other more suitable
for wide OpenType fonts.

The fontloader uses parts of FontForge 2008.11.17 combined with additional code specific for
usage in a TgX engine. We try to minimize specific font support to what TgX needs: character
references and dimensions and delegate everything else to Lua. That way we keep TgX open
for extensions without touching the core.

The MetaPost library is integral part of LuaTgX. This gives TgX some graphical capabilities
using a relative high speed graphical subsystem. Again Lua is used as glue between the
frontend and backend. Further development of MetaPost is closely related to LuaTgX.

We try to keep upcoming versions compatible but intermediate releases can contain experimen-
tal features. A general rule is that versions that end up on TgXlive and/or are released around

ConTEXt meetings are stable. Future versions will probably become a bit leaner and meaner.
Some libraries might become external as we don’t want to bloat the binary and also don’t want

to add more hard coded solutions. After all, with Lua you can extend the core functionality. The
less dependencies, the better.

The TgXLive version is to be considered the current stable version. Any version between the
yearly TgXLive releases are to be considered beta. The beta releases are normally available via
the ConTgXt distribution channels (the garden and so called minimals).

Hans Hagen, Harmut Henkel,
Taco Hoekwater & Luigi Scarso

Version : November 27, 2017
LuaTgX : version 1.06, revision 2, number 1.062

ConTgXt : MkIV 2017.11.07 11:37

10 Introduction

1 Basic TgX enhancements

1.1 Introduction

From day one, LuaTgX has offered extra features compared to the superset of pdfTEX and Aleph.
This has not been limited to the possibility to execute Lua code via \directlua, but LuaTgX also
adds functionality via new TgX-side primitives or extensions to existing ones.

When LuaTgX starts up in ‘iniluatex’ mode (Luatex -1ini), it defines only the primitive commands
known by TgX82 and the one extra command \directlua. As is fitting, a Lua function has to be
called to add the extra primitives to the user environment. The simplest method to get access
to all of the new primitive commands is by adding this line to the format generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this
early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before
the above line:

\catcode *\{=1
\catcode "\}=2

More fine-grained primitives control is possible and you can look up the details in section 9.3.12.
For simplicity’s sake, this manual assumes that you have executed the \directlua command as
given above.

The startup behaviour documented above is considered stable in the sense that there will not
be backward-incompatible changes any more. We have promoted some rather generic pdfTgX
primitives to core LuaTgX ones, and the ones inherited frome Aleph (Omega) are also promoted.
Effectively this means that we now only have the tex, etex and luatex sets left.

In Chapter 2 we discuss several primitives that are derived from pdfIgX and Aleph (Omega).
Here we stick to real new ones. In the chapters on fonts and math we discuss a few more new
ones.

1.2 Version information

1.2.1 \luatexbanner, \luatexversion and \luatexrevision

There are three new primitives to test the version of LuaTgX:

primitive explanation value

\luatexbanner the banner reported on the com- This is LuaTeX, Version 1.06.2 (TeX
mand line Live 2018/dev)

\luatexversion a combination of major and minor 106
number

Basic TgX enhancements 11 |

\luatexrevision the revision number, the current 2
value is

The official LuaTgX version is defined as follows:

« The major version is the integer result of \luatexversion divided by 100. The primitive is
an ‘internal variable’, so you may need to prefix its use with \the depending on the context.

« The minor version is the two-digit result of \luatexversion modulo 100.

« The revision is the given by \ luatexrevision. This primitive expands to a positive integer.

« The full version number consists of the major version, minor version and revision, separated
by dots.

1.2.2 \formatname

The \formatname syntax is identical to \ jobname. In iniTEX, the expansion is empty. Otherwise,
the expansion is the value that \ jobname had during the iniTgX run that dumped the currently
loaded format. You can use this token list to provide your own version info.

1.3 UNICODE text support

1.3.1 Extended ranges

Text input and output is now considered to be Unicode text, so input characters can use the
full range of Unicode (220 + 216 — 1 = 0x10FFFF). Later chapters will talk of characters and
glyphs. Although these are not interchangeable, they are closely related. During typesetting, a
character is always converted to a suitable graphic representation of that character in a specific
font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as a
character. Inside LuaTgX there is no clear separation between the two concepts. Because the
subtype of a glyph node can be changed in Lua it is up to the user: subtypes larger than 255
indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate
for a larger range of acceptable numbers. Forinstance, \char now accepts values between 0 and
1,114,111. This should not be a problem for well-behaved input files, but it could create incom-
patibilities for input that would have generated an error when processed by older TgX-based
engines. The affected commands with an altered initial (left of the equals sign) or secondary
(right of the equals sign) value are: \char, \lccode, \uccode, \catcode, \sfcode, \efcode,
\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input
files can be pre-processed using the reader callback. This will be explained in a later chapter.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode
range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
c=1,114,112, LuaTgX will actually print the single byte corresponding to ¢ minus 1,114,112.

Output to the terminal uses *” notation for the lower control range (¢ < 32), with the exception
of ~I, ~J and ~"M. These are considered ‘safe’ and therefore printed as-is. You can disable

0,‘ 12 Basic TgX enhancements

escaping with texio.setescape(false) in which case you get the normal characters on the
console.

Normalization of the Unicode input can be handled by a macro package during callback pro-
cessing (this will be explained in section 8.2.14).

1.3.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

1.4 Extended tables

All traditional TgX and e-TgX registers can be 16-bit numbers. The affected commands are:

\count \countdef \box \wd
\dimen \dimendef \unhbox \ht
\skip \skipdef \unvbox \dp
\muskip \muskipdef \copy \setbox
\marks \toksdef \unhcopy \vsplit
\toks \insert \unvcopy

Because font memory management has been rewritten, character properties in fonts are no
longer shared among fonts instances that originate from the same metric file.

1.5 Attributes

1.5.1 Attribute registers

Attributes are a completely new concept in LuaTgX. Syntactically, they behave a lot like counters:
attributes obey TEX’s nesting stack and can be used after \the etc. just like the normal \count
registers.

\attribute (16-bit number) (optional equals) (32-bit number)
\attributedef (csname) (optional equals) (16-bit number)

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value
to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,
a.k.a. —2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in
this ‘unset’ state in iniTgX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact
that the numbers and values of all ‘set’ attributes are attached to all nodes created in their
scope. These can then be queried from any Lua code that deals with node processing. Further
information about how to use attributes for node list processing from Lua is given in chapter 7.

Basic TgX enhancements 13 | 0

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits
efficient testing and updating.

1.5.2 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment
can be quite asynchronous. For example: in paragraph building, the individual line boxes are
created after the \par command has been processed, so they will receive the list of attributes
that is in effect then, not the attributes that were in effect in, say, the first or third line of the
paragraph.

Similar situations happen in LuaTgX regularly. A few of the more obvious problematic cases are
dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur-
ing borrow their attributes from their surrounding glyphs, and it is possible to influence box
attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are
unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the
same as characters that have been converted to references to glyphs in fonts. For instance,
when you use attributes to implement color support, each node carries information about its
eventual color. In that case, unless you implement mechanisms that deal with it, applying a color
to already boxed material will have no effect. Keep in mind that this incompatibility is mostly
due to the fact that separate specials and literals are a more unnatural approach to colors than
attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the use
of the keyword attr. An example:

\attribute2=5
\setbox0=\hbox {Hello}
\setbox2=\hbox attrl=12 attr2=-"7FFFFFFF{Hello}

This will set the attribute list of box 2 to 1 = 12, and the attributes of box 0 will be 2 = 5. As you
can see, assigning the maximum negative value causes an attribute to be ignored.

The attr keyword(s) should come before a to or spread, if that is also specified.

1.6 LUA related primitives

1.6.1 \directlua
In order to merge Lua code with TgX input, a few new primitives are needed. The primitive
\directlua is used to execute Lua code immediately. The syntax is

\directlua (general text)
\directlua (16-bit number) (general text)

The (general text) is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the (general text), the resulting token list is converted to a string

0,. 14 Basic TgX enhancements

as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a
separate chunk. In such a chunk you can use the local directive to keep your variables from
interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments
(starting with - -) within the argument. As there typically will be only one ‘line’ the first line com-
ment will run on until the end of the input. You will either need to use TgX-style line comments
(starting with %), or change the TgX category codes locally. Another possibility is to say:

\begingroup
\endlinechar=10
\directlua ...
\endgroup

Then Lua line comments can be used, since TgX does not replace line endings with spaces.

Likewise, the (16-bit number) designates a name of a Lua chunk and is taken from the lLua.name
array (see the documentation of the lua table further in this manual). When a chunk name starts
with a @ it will be displayed as a file name. This is a side effect of the way Lua implements error
handling.

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its
expansion from the TgX viewpoint is usually empty. However, there are some Lua functions that
produce material to be read by TgX, the so called print functions. The most simple use of these
is tex.print(<string> s). The characters of the string s will be placed on the TgX input buffer,
that is, ‘before TgX's eyes’ to be read by TgX immediately. For example:

\count10=20
a\directlua{tex.print(tex.count[10]+5)}b

expands to

a25b

Here is another example:
$\pi = \directlua{tex.print(math.pi)}$

will result in
o =3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all
TeX commands. So formally speaking its expansion is null, but it places material on a pseudo-file
to be immediately read by TgX, as €-TgX’'s \scantokens. For a description of print functions look
at section 9.3.10.

Because the (general text) is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the contex-
tual information is still pretty bad. Often, you will only see the line number of the right brace at
the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up
LuaTgX pretty bad. If you are not careful while working with the node list interface, you may
even end up with assertion errors from within the TgX portion of the executable.

Basic TgX enhancements 15 | 0

The behaviour documented in the above subsection is considered stable in the sense that there
will not be backward-incompatible changes any more.

1.6.2 \latelua

Contrary to \directlua, \latelua stores Lua code in a whatsit that will be processed at the time
of shipping out. Its intended use is a cross between pdf literals (often available as \pdfliteral)
and the traditional TgX extension \write. Within the Lua code you can print pdf statements
directly to the pdf file via pdf.print, or you can write to other output streams via texio.write
or simply using Lua io routines.

\latelua (general text)
\latelua (16-bit number) (general text)

Expansion of macros in the final <general text> is delayed until just before the whatsit is exe-
cuted (like in \write). With regard to pdf output stream \latelua behaves as pdf page literals.
The name (general text) and (16-bit number) behave in the same way as they do for \directlua

1.6.3 \luaescapestring

This primitive converts a TgX token sequence so that it can be safely used as the contents of a
Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns
are escaped. This is done by prepending an extra token consisting of a backslash with category
code 12, and for the line endings, converting them to n and r respectively. The token sequence
is fully expanded.

\luaescapestring (general text)

Most often, this command is not actually the best way to deal with the differences between the
TgX and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of
Lua code it is easier to keep the code in a separate file and load it using Lua’s dofile:

\directlua { dofile('mysetups.lua') }

1.6.4 \luafunction

The \directlua commands involves tokenization of its argument (after picking up an optional
name or number specification). The tokenlist is then converted into a string and given to Lua to
turn into a function that is called. The overhead is rather small but when you use this primitive
hundreds of thousands of times, it can become noticeable. For this reason there is a variant call
available: \luafunction. This command is used as follows:

\directlua {
local t = lua.get functions table()
t[1] = function() tex.print("!") end
t[2] = function() tex.print("?") end

\luafunctionl

OP 16 Basic TgX enhancements

\luafunction?2

Of course the functions can also be defined in a separate file. There is no limit on the number of
functions apart from normal Lua limitations. Of course there is the limitation of no arguments
but that would involve parsing and thereby give no gain. The function, when called in fact gets
one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {
local t = lua.get functions table()
t[8] = function(slot) tex.print(slot) end

1.7 Alignments

1.7.1 \alignmark

This primitive duplicates the functionality of # inside alignment preambles.

1.7.2 \aligntab

This primitive duplicates the functionality of & inside alignments and preambles.

1.8 Catcode tables

Catcode tables are a new feature that allows you to switch to a predefined catcode regime
in a single statement. You can have a practically unlimited number of different tables. This
subsystem is backward compatible: if you never use the following commands, your document
will not notice any difference in behaviour compared to traditional TgX. The contents of each
catcode table is independent from any other catcode tables, and their contents is stored and
retrieved from the format file.

1.8.1 \catcodetable

\catcodetable (15-bit number)

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ-
ously created using one of the two primitives below, or it has to be zero. Table zero is initialized
by iniTgX.

1.8.2 \initcatcodetable

\initcatcodetable (15-bit number)

The primitive \initcatcodetable creates a new table with catcodes identical to those defined
by iniTEX:

// \\
Basic TgX enhancements 17 | 0,.
\ /

0 \ escape

5 "M return car_ret
9 7@ null ignore
10 <space> space spacer
11 a-z letter
11 A-Z letter
12 everything else other
14 % comment
15 ~7? delete invalid char

The new catcode table is allocated globally: it will not go away after the current group has
ended. If the supplied number is identical to the currently active table, an error is raised.

1.8.3 \savecatcodetable

\savecatcodetable (15-bit number)

\savecatcodetable copies the current set of catcodes to a new table with the requested number.
The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the
supplied number is the currently active table, an error is raised.

1.9 Suppressing errors

1.9.1 \suppressfontnotfounderror

\suppressfontnotfounderror =1

If this integer parameter is non-zero, then LuaTgX will not complain about font metrics that are
not found. Instead it will silently skip the font assignment, making the requested csname for the
font \ifx equal to \nullfont, so that it can be tested against that without bothering the user.

1.9.2 \suppresslongerror

\suppresslongerror = 1

If this integer parameter is non-zero, then LuaTgX will not complain about \par commands en-
countered in contexts where that is normally prohibited (most prominently in the arguments of
non-long macros).

1.9.3 \suppressifcsnameerror

\suppressifcsnameerror = 1

If this integer parameter is non-zero, then LuaTgX will not complain about non-expandable com-
mands appearing in the middle of a \ifcsname expansion. Instead, it will keep getting expanded

\\0,‘ 18 Basic TgX enhancements

tokens from the input until it encounters an \endcsname command. If the input expansion is un-
balanced with respect to \csname ...\endcsname pairs, the LuaTgX process may hang indefinitely.

1.9.4 \suppressoutererror

\suppressoutererror =1

If this new integer parameter is non-zero, then LuaTgX will not complain about \outer commands
encountered in contexts where that is normally prohibited.

1.9.5 \suppressmathparerror

The following setting will permit \par tokens in a math formula:
\suppressmathparerror =1

So, the next code is valid then:

$x+ 1=

as

1.9.6 \suppressprimitiveerror
When set to a non-zero value the following command will not issue an error:

\suppressprimitiveerror =1

\primitive\notaprimitive

1.10 Math

1.10.1 Extensions

We will cover math in its own chapter because not only the font subsystem and spacing model
have been enhanced (thereby introducing many new primitives) but also because some more
control has been added to existing functionality.

1.10.2 \matheqnogapstep
By default TEX will add one quad between the equation and the number. This is hard coded. A
new primitive can control this:

\mathegnogapstep = 1000

Because a math quad from the math text font is used instead of a dimension, we use a step to
control the size. A value of zero will suppress the gap. The step is divided by 1000 which is the
usual way to mimmick floating point factors in TgX.

// \\
Basic TgX enhancements 19 | 0,.
\ /

1.11 Fonts

1.11.1 Font syntax

LuaTgX will accept a braced argument as a font name:

\font\myfont = {cmrl0}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

1.11.2 \fontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix with
\number (and using \the gives an error). The currently used font id is 4. Here are some more:

\bf 13
\it 18
\bi 19

These numbers depend on the macro package used because each one has its own way of dealing
with fonts. They can also differ per run, as they can depend on the order of loading fonts. For
instance, when in ConTgXt virtual math Unicode fonts are used, we can easily get over a hundred
ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

1.11.3 \setfontid

The primitive \setfontid can be used to enable a font with the given id (which of course needs
to be a valid one).

1.11.4 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is
built by LuaTgX'’s main control loop. You can enable these primitives when you want to do node
list processing of ‘characters’, where TgX’s normal processing would get in the way.

\noligs (integer)
\nokerns (integer)

These primitives can also be implemented by overloading the ligature building and kerning func-
tions, i.e. by assigning dummy functions to their associated callbacks. Keep in mind that when
you define a font (using Lua) you can also omit the kern and ligature tables, which has the same
effect as the above.

] 09 20 Basic TgX enhancements

1.11.5 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space
character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a
zero skip. Below we see the results for four characters separated by a space.

X XXX | XXXX | XXXX
0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm
XXXX I X
X X
X X
X
0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

1.12 Tokens, commands and strings

1.12.1 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted
version of e-TgX’s \scantokens. The differences are:

« The last (and usually only) line does not have a \endlinechar appended.

» \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

« There are no ... while end of file ...’ error tests executed. This allows the expansion to end
on a different grouping level or while a conditional is still incomplete.

1.12.2 \toksapp, \tokspre, \etoksapp and \etokspre

Instead of:

\toksO\expandafter{\the\toksO foo}

you can use:

\etoksappO{foo}

The pre variants prepend instead of append, and the e variants expand the passed general text.

1.12.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading
escape character. This can be somewhat more efficient that stripping it of afterwards.

The \begincsname primitive is like \csname but doesn’t create a relaxed equivalent when there
is no such name. It is equivalent to

\ifcsname foo\endcsname

Basic TgX enhancements 21 |

\csname foo\endcsname
\fi

The advantage is that it saves a lookup (don’t expect much speedup) but more important is that
it avoids using the \if.

The \lastnamedcs is one that should be used with care. The above example could be written as:

\ifcsname foo\endcsname
\lastnamedcs
\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTgX this also
involves some utf8 juggling), but probably more relevant is that it saves a few tokens and can
make code a bit more more readable.

1.12.4 \clearmarks

This primitive complements the e-TEX mark primitives and clears a mark class completely, re-
setting all three connected mark texts to empty. It is an immediate command.

\clearmarks (16-bit number)

1.12.5 \letcharcode

This primitive is still experimental but can be used to assign a meaning to an active character,
as in:

\def\foo{bar} \letcharcodel23=\foo

This can be a bit nicer that using the uppercase tricks (using the property of \uppercase that it
treats active characters special).

1.13 Boxes, rules and leaders

1.13.1 \outputbox

\outputbox = 65535

This new integer parameter allows you to alter the number of the box that will be used to store
the page sent to the output routine. Its default value is 255, and the acceptable range is from 0
to 65535.

1.13.2 \vpack, \hpack and \tpack

These three primitives are like \vbox, \hbox and \vtop but don’t apply the related callbacks.

] 09 22 Basic TgX enhancements

Ny -

1.13.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternative
for the to keyword you can use upto to get a split of the given size but result has the natural
dimensions then.

1.13.4 Images and Forms

These two concepts are now core concepts and no longer whatsits. They are in fact now im-
plemented as rules with special properties. Normal rules have subtype 0, saved boxes have
subtype 1 and images have subtype 2. This has the positive side effect that whenever we need
to take content with dimensions into account, when we look at rule nodes, we automatically also
deal with these two types.

The syntax of the \save...resource is the same as in pdfIgX but you should consider them to
be backend specific. This means that a macro package should treat them as such and check for
the current output mode if applicable. Here are the equivalents:

\saveboxresource : \pdfxform
\saveimageresource : \pdfximage
\useboxresource : \pdfrefxform
\useimageresource : \pdfrefximage
\lastsavedboxresourceindex : \pdflastxform

\lastsavedimageresourceindex : \pdflastximage
\lastsavedimageresourcepages : \pdflastximagepages

LuaTgX accepts optional dimension parameters for \use. ..resource in the same format as for
rules. With images, these dimensions are then used instead of the ones given to \useimagere-
source but the original dimensions are not overwritten, so that a \useimageresource without
dimensions still provides the image with dimensions defined by \saveimageresource. These
optional parameters are not implemented for \saveboxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceindex
\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

The box resources are of course implemented in the backend and therefore we do support the
attr and resources keys that accept a token list. New is the type key. When set to non-zero the
/Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or 3 will write a /Matrix.

1.13.5 \nohrule and \novrule

Because introducing a new keyword can cause incompatibilities, two new primitives were intro-
duced: \nohrule and \novrule. These can be used to reserve space. This is often more efficient
than creating an empty box with fake dimensions).

1.13.6 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal
\leaders in that they align nicely, except that the alignment is based on the largest enclosing
box instead of the smallest. The g stresses this global nature.

Basic TgX enhancements 23 | 0

!
|

-

1.14 Languages

1.14.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of
the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive
accepts a number and stores the value with the language.

1.14.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

The \noboundary commands used to inject a whatsit node but now injects a normal node with
type boundary and subtype 0. In addition you can say:

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig-
ature builder still sees this as a cancel boundary directive but at the Lua end you can implement
different behaviour. The added benefit of passing this value is a side effect of the generalization.
The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation.

1.15 Control and debugging

1.15.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of the
nodes.

1.15.2 \outputmode and \draftmode

The \outputmode variable tells LuaTgX what it has to produce:

0 dvicode
1 pdfcode

The value of the \draftmode counter signals the backend if it should output less. The pdf back-
end accepts a value of 1, while the dvi backend ignores the value.

1.16 Files

1.16.1 File syntax

LuaTgX will accept a braced argument as a file name:

\0. 24 Basic TeX enhancements

\input {plain}
\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

The \tracingfonts primitive that has been inherited from pdfTgX has been adapted to support
variants in reporting the font. The reason for this extension is that a csname not always makes
sense. The zero case is the default.

: \foo xyz

: \foo (bar)

: <bar> xyz

: <bar @ ..pt> xyz

: <id>

: <id: bar>

: <id: bar @ ..pt> xyz

SO Ul kA WNBEPR O

1.16.2 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the console
and log. As a consequence a system command is no longer possible but one can use 0s.execute
to do the same.

Basic TgX enhancements 25 |

Basic TgX enhancements

2 Modifications

2.1 The merged engines

2.1.1 The need for change

The first version of LuaTgX only had a few extra primitives and it was largely the same as pdfTgX.
Then we merged substantial parts of Aleph into the code and got more primitives. When we got
more stable the decision was made to clean up the rather hybrid nature of the program. This
means that some primitives have been promoted to core primitives, often with a different name,
and that others were removed. This made it possible to start cleaning up the code base. In
chapter 1 we discussed some new primitives, here we will cover most of the adapted ones.

Besides the expected changes caused by new functionality, there are a number of not-so-ex-
pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often
than not, a change neccessary to clean up the internal interfaces. These will also be mentioned.

2.1.2 Changes from TgX 3.1415926

Of course it all starts with traditional TgX. Even if we started with pdfTgX, most still comes from
the original. But we divert a bit.

» The current code base is written in C, not Pascal. We use cweb when possible. As a conse-
quence instead of one large file plus change files, we now have multiple files organized in
categories like tex, pdf, lang, font, lua, etc. There are some artefacts of the conversion to
C, but in due time we will clean up the source code and make sure that the documentation is
done right. Many files are in the cweb format, but others, like those interfacing to Lua, are C
files. Of course we want to stay as close as possible to the original so that the documentation
of the fundamentals behind TgX by Don Knuth still applies.

« See chapter 4 for many small changes related to paragraph building, language handling and
hyphenation. The most important change is that adding a brace group in the middle of a word
(like in of{}fice) does not prevent ligature creation.

« There is no pool file, all strings are embedded during compilation.

« The specifier plus 1 fillll does not generate an error. The extra ‘1’ is simply typeset.

« The upper limit to \endlinechar and \newlinechar is 127.

« Magnification (\mag) is only supported in dvi output mode. You can set this parameter and it
even works with true units till you switch to pdf output mode. When you use pdf output you
can best not touch the \mag variable. This fuzzy behaviour is not much different from using
pdf backend related functionality while eventually dvi output is required.

After the output mode has been frozen (normally that happens when the first page is shipped
out) or when pdf output is enabled, the true specification is ignored. When you preload a
plain format adapted to LuaTgX it can be that the \mag parameter already has been set.

Modifications 27 x\

2.1.3 Changes from &-IgX 2.2

Being the de factor standard extension of course we provide the £-TgX functionality, but with a
few small adaptations.

« The e-TEX functionality is always present and enabled so the prepended asterisk or -etex
switch for iniTgX is not needed.

« The TEXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,
\endR and \endL are missing. Instead we use the Omega approach to directionality.

« Some of the tracing information that is output by €-TgX’s \tracingassigns and \tracingre-
stores is not there.

+ Register management in LuaTgX uses the Aleph model, so the maximum value is 65535 and
the implementation uses a flat array instead of the mixed flat&sparse model from e-TgX.

« When kpathsea is used to find files, LuaTgX uses the ofm file format to search for font metrics.
In turn, this means that LuaTgX looks at the OFMFONTS configuration variable (like Omega and
Aleph) instead of TFMFONTS (like TgX and pdfIgX). Likewise for virtual fonts (LuaTgX uses the
variable OVFFONTS instead of VFFONTS).

2.1.4 Changes from PDFTgX 1.40

Because we want to produce pdf the most natural starting point was the popular pdfTgX pro-
gram. We inherit the stable features, dropped most of the experimental code and promoted
some functionality to core LuaTgX functionality which in turn triggered renaming primitives.

For compatibility reasons we still refer to \pdf... commands but LuaTgX has a different backend
interface. Instead of these primitives there are three interfacing primitives: \pdfextension,
\pdfvariable and \pdffeedback that take keywords and optional further arguments. This way
we can extend the features when needed but don’t need to adapt the core engine. The front-
and backend are decoupled as much as possible.

» The (experimental) support for snap nodes has been removed, because it is much more natural
to build this functionality on top of node processing and attributes. The associated primitives
that are now gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

« The (experimental) support for specialized spacing around nodes has also been removed.
The associated primitives that are now gone are: \pdfadjustinterwordglue, \pdfprepend-
kern, and \pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode,
\shbscode, \knbccode, and \knaccode.

« A number of ‘pdfTEX primitives’ have been removed as they can be implemented using Lua:
\pdfelapsedtime, \pdfescapehex, \pdfescapename, \pdfescapestring, \pdffiledump,
\pdffilemoddate, \pdffilesize, \pdfforcepagebox, \pdflastmatch, \pdfmatch, \pdfmd-
fivesum, \pdfmovechars, \pdfoptionalwaysusepdfpagebox, \pdfoptionpdfinclusion-
errorlevel, \pdfresettimer, \pdfshellescape, \pdfstrcmp and \pdfunescapehex

« The version related primitives \pdftexbanner, \pdftexversion and \pdftexrevision are
no longer present as there is no longer a relationship with pdfTgX development.

« The experimental snapper mechanism has been removed and therefore also the primitives:
\pdfignoreddimen, \pdffirstlineheight, \pdfeachlineheight, \pdfeachlinedepth and
\pdflastlinedepth

] O’b 28 Modifications

o The experimental primitives \primitive, \ifprimitive, \ifabsnum and \ifabsdim are pro-
moted to core primitives. The \pdf* prefixed originals are not available.

« The png transparency fix from 1.40.6 is not applied as high-level support is pending. Because
LuaTgX has a different subsystem for managing images, more diversion from its ancestor
happened in the meantime.

» Two extra token lists are provides, \pdfxformresources and \pdfxformattr, as an alterna-
tive to \pdfxform keywords.

« The current version of LuaTEX no longer replaces and/or merges fonts in embedded pdf files
with fonts of the enveloping pdf document. This regression may be temporary, depending on
how the rewritten font backend will look like.

« The primitives \pdfpagewidth and \pdfpageheight have been removed because \pagewidth
and \pageheight have that purpose.

o The primitives \pdfnormaldeviate, \pdfuniformdeviate, \pdfsetrandomseed and
\pdfrandomseed have been promoted to core primitives without pdf prefix so the original
commands are no longer recognized.

o The primitives \ifincsname, \expanded and \quitvmode are now core primitives.

« As the hz and protrusion mechanism are part of the core the related primitives \1lpcode,
\rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to core primitives.
The two commands \protrudechars and \adjustspacing replace their prefixed with \pdf
originals.

« The hz optimization code has been partially redone so that we no longer need to create extra
font instances. The front- and backend have been decoupled and more efficient (pdf) code is
generated.

« When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When
the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.

« The \tagcode primitive is promoted to core primitive.

« The \letterspacefont feature is now part of the core but will not be changed (improved).
We just provide it for legacy use.

« The \pdfnoligatures primitive is now \ignoreligaturesinfont.

« The \pdfcopyfont primitive is now \copyfont.

« The \pdffontexpand primitive is now \expandglyphsinfont.

« Because position tracking is also available in dvi mode the \savepos, \lastxpos and \lasty-
pos commands now replace their pdf prefixed originals.

« The introspective primitives \pdflastximagecolordepth and \pdfximagebbox have been re-
moved. One can use external applications to determine these properties or use the built-in
img library.

« The initializers \pdfoutput has been replaced by \outputmode and \pdfdraftmode is now
\draftmode.

« The pixel multiplier dimension \pdfpxdimen lots its prefix and is now calles \pxdimen.

« An extra \pdfimageaddfilename option has been added that can be used to block writing the
filename to the pdf file.

« The primitive \pdftracingfonts is now \tracingfonts as it doesn’t relate to the backend.

« The experimental primitive \pdfinsertht is kept as \insertht.

« The promotion of primitives to core primitives as well as the separation of font- and backend
means that the initialization namespace pdftex is gone.

One change involves the so called xforms and ximages. In pdfIgX these are implemented as so

// \\
Modifications 29 | 0/‘.

called whatsits. But contrary to other whatsits they have dimensions that need to be taken into
account when for instance calculating optimal line breaks. In LuaTgX these are now promoted
to normal nodes, which simplifies code that needs those dimensions.

Another reason for promotion is that these are useful concepts. Backends can provide the ability
to use content that has been rendered in several places, and images are also common. For that
reason we also changed the names:

new name old name
\saveboxresource \pdfxform
\saveimageresource \pdfximage
\useboxresource \pdfrefxform
\useimageresource \pdfrefximage

\lastsavedboxresourceindex \pdflastxform
\lastsavedimageresourceindex \pdflastximage
\lastsavedimageresourcepages \pdflastximagepages

There are a few \pdffeedback features that relate to this but these are typical backend specific
ones. The index that gets returned is to be considered as ‘just a number’ and although it still
has the same meaning (object related) as before, you should not depend on that.

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.
When protrusion characters are identified some nodes are skipped:

» zero glue

o penalties

« empty discretionaries

« normal zero kerns

» rules with zero dimensions
o math nodes with a surround of zero
» dir nodes

« empty horizontal lists

« local par nodes

« inserts, marks and adjusts
» boundaries

» whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next
node being ignored. When the value is 1 or 3, the next node will be ignored in the test when
locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored
when locating a right boundary condition (the search goes from right to left). This permits
protrusion combined with for instance content moved into the margin:

\protrusionboundaryl\1lap{!\quad}«Who needs protrusion?»

2.1.5 Changes from ALEPH RC4

Because we wanted proper directional typesetting the Aleph mechanisms looked most attractive.
These are rather close to the ones provided by Omega, so what we say next applies to both these
programs.

// \\
] 0/‘. 30 Modifications

Ny -

o The extended 16-bit math primitives (\omathcode etc.) have been removed.

« The OCP processing has been removed completely and as a consequence, the following prim-
itives have been removed:

\ocp, \externalocp, \ocplist, \pushocplist, \popocplist, \clearocplists, \addbe-
foreocplist, \addafterocplist, \removebeforeocplist, \removeafterocplist and
\ocptracelevel

« LuaTgX only understands 4 of the 16 direction specifiers of Aleph: TLT (latin), TRT (arabic),
RTT (cjk), LTL (mongolian). All other direction specifiers generate an error.

« The input translations from Aleph are not implemented, the related primitives are not avail-
able:

\DefaultInputMode, \noDefaultInputMode, \noInputMode, \InputMode, \DefaultOutput-
Mode, \noDefaultOutputMode, \noOutputMode, \OutputMode, \DefaultInputTranslation,
\noDefaultInputTranslation, \noInputTranslation, \InputTranslation, \DefaultOut-
putTranslation, \noDefaultQutputTranslation, \noOutputTranslation and \Qutput-
Translation

« Several bugs have been fixed an confusing implementation details have been sorted out.

« The scanner for direction specifications now allows an optional space after the direction is
completely parsed.

o The ™" notation has been extended: after ~*~" four hexadecimal characters are expected and
after ~*~~"" six hexadecimal characters have to be given. The original TgX interpretation is
still valid for the ~" case but the four and six variants do no backtracking, i.e. when they are
not followed by the right number of hexadecimal digits they issue an error message. Because
~~* is a normal TgX case, we don’t support the odd number o either.

« Glues immediately after direction change commands are not legal breakpoints.

« Several mechanisms that need to be right-to-left aware have been improved. For instance
placement of formula numbers.

« The page dimension related primitives \pagewidth and \pageheight have been promoted to
core primitives. The \hoffset and \voffset primitives have been fixed.

« The primitives \charwd, \charht, \chardp and \charit have been removed as we have the
e-TgX variants \fontchar*.

« The two dimension registers \pagerightoffset and \pagebottomoffset are now core prim-
itives.

o The direction related primitives \pagedir, \bodydir, \pardir, \textdir, \mathdir and
\boxdir are now core primitives.

« The promotion of primitives to core primitives as well as the removed of all others means that
the initialization namespace aleph is gone.

f AANANAN

The above let’s itself summarize as: we took the 32 bit aspects and much of the directional
mechanisms.

2.1.6 Changes from standard WEB2C

The compilation framework is web2c and we keep using that but without the Pascal to C step.
This framework also provides some common features that deal with reading bytes from files and
locating files in tds. This is what we do different:

« There is no mltex support.

Modifications 31 ! 0

o There is no enctex support.

« The following encoding related command line switches are silently ignored, even in non-Lua
mode: -8bit, -translate-file, -mltex, -enc and -etex.

« The \openout whatsits are not written to the log file.

« Some of the so-called web2c extensions are hard to set up in non-kpse mode because
texmf.cnf isnot read: shell-escape is off (but that is not a problem because of Lua’s 0s.ex-
ecute), and the paranoia checks on openin and openout do not happen. However, it is easy
for a Lua script to do this itself by overloading io.open.

« The ‘E’ option does not do anything useful.

2.2 The backend primitives \pdf *

In a previous section we mentioned that some pdfIgX primitives were removed and others pro-
moted to core LuaTgX primitives. That is only part of the story. In order to separate the backend
specific primitives in de code these commands are now replaced by only a few. In traditional
TgX we only had the dvi backend but now we have two: dvi and pdf. Additional functionality is
implemented as ‘extensions’ in TgXspeak. By separating more strickly we are able to keep the
core (fontend) clean and stable. If for some reason an extra backend option is needed, it can be
implemented without touching the core. The three pdf backend related primitives are

\pdfextension command [specification]
\pdfvariable name
\pdffeedback name

An extension triggers further parsing, depending on the command given. A variable is a (kind
of) register and can be read and written, while a feedback is reporting something (as it comes
from the backend it’s normally a sequence of tokens).

In order for LuaTgX to be more than just TEX you need to enable primitives. That has already
be the case right from the start. If you want the traditional pdfIgX primitives (for as far their
functionality is still around) you now can do this:

\protected\def\pdfliteral {\pdfextension literal}
\protected\def\pdfcolorstack {\pdfextension colorstack}
\protected\def\pdfsetmatrix {\pdfextension setmatrix}
\protected\def\pdfsave {\pdfextension save\relax}
\protected\def\pdfrestore {\pdfextension restore\relax}
\protected\def\pdfobj {\pdfextension obj }
\protected\def\pdfrefobj {\pdfextension refobj }
\protected\def\pdfannot {\pdfextension annot }
\protected\def\pdfstartlink {\pdfextension startlink }
\protected\def\pdfendlink {\pdfextension endlink\relax}
\protected\def\pdfoutline {\pdfextension outline }
\protected\def\pdfdest {\pdfextension dest }
\protected\def\pdfthread {\pdfextension thread }
\protected\def\pdfstartthread {\pdfextension startthread }
\protected\def\pdfendthread {\pdfextension endthread\relax}

] 0‘, 32 Modifications

Ny -

\protected\def\pdfinfo {\pdfextension info }
\protected\def\pdfcatalog {\pdfextension catalog }
\protected\def\pdfnames {\pdfextension names }
\protected\def\pdfincludechars {\pdfextension includechars }
\protected\def\pdffontattr {\pdfextension fontattr }
\protected\def\pdfmapfile {\pdfextension mapfile }
\protected\def\pdfmapline {\pdfextension mapline }
\protected\def\pdftrailer {\pdfextension trailer }
\protected\def\pdfglyphtounicode {\pdfextension glyphtounicode }

The introspective primitives can be defined as:

\def\pdftexversion {\numexpr\pdffeedback version\relax}
\def\pdftexrevision {\pdffeedback revision}
\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}
\def\pdfretval {\numexpr\pdffeedback retvallrelax}
\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}
\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}
\def\pdfxformname {\numexpr\pdffeedback xformname\relax}
\def\pdfcreationdate {\pdffeedback creationdate}
\def\pdffontname {\numexpr\pdffeedback fontname\relax}
\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}
\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}
\def\pdfpageref {\numexpr\pdffeedback pageref\relax}
\def\pdfcolorstackinit {\pdffeedback colorstackinit}

The configuration related registers have become:

\edef\pdfcompresslevel {\pdfvariable compresslevel}
\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}
\edef\pdfdecimaldigits {\pdfvariable decimaldigits}
\edef\pdfgamma {\pdfvariable gamma}
\edef\pdfimageresolution {\pdfvariable imageresolution}
\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}
\edef\pdfimagegamma {\pdfvariable imagegamma}
\edef\pdfimagehicolor {\pdfvariable imagehicolor}
\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}
\edef\pdfpkresolution {\pdfvariable pkresolution}
\edef\pdfpkfixeddpi {\pdfvariable pkfixeddpi}
\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}
\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}
\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}
\edef\pdfgentounicode {\pdfvariable gentounicode}
\edef\pdfomitcidset {\pdfvariable omitcidset}
\edef\pdfpagebox {\pdfvariable pagebox}
\edef\pdfminorversion {\pdfvariable minorversion}
\edef\pdfuniqueresname {\pdfvariable uniqueresname}

Modifications 33 ! 0‘,

\edef\pdfhorigin
\edef\pdfvorigin
\edef\pdflinkmargin
\edef\pdfdestmargin
\edef\pdfthreadmargin
\edef\pdfxformmargin

\edef\pdfpagesattr
\edef\pdfpageattr
\edef\pdfpageresources
\edef\pdfxformattr
\edef\pdfxformresources
\edef\pdfpkmode

\edef\pdfsuppressoptionalinfo

\edef\pdftrailerid

{\pdfvariable
{\pdfvariable
{\pdfvariable
{\pdfvariable
{\pdfvariable
{\pdfvariable

{\pdfvariable
{\pdfvariable
{\pdfvariable
{\pdfvariable
{\pdfvariable
{\pdfvariable

{\pdfvariable
{\pdfvariable

horigin}
vorigin}
linkmargin}
destmargin}
threadmargin}
xformmargin}

pagesattr}
pageattr}
pageresources}
xformattr}
xformresources}
pkmode}

suppressoptionalinfo }
trailerid }

The variables are internal ones, so they are anonymous. When you ask for the meaning of a few

previously defined ones:

\meaning\pdfhorigin

\meaning\pdfcompresslevel

\meaning\pdfpageattr

you will get:

macro:->[internal backend dimension]

macro:->[internal backend integer]

macro:->[internal backend tokenlist]

The \edef can also be an \def but it’s a bit more efficient to expand the lookup related register
beforehand. After that you can adapt the defaults; these are:

\pdfcompresslevel
\pdfobjcompresslevel
\pdfdecimaldigits
\pdfgamma
\pdfimageresolution
\pdfimageapplygamma
\pdfimagegamma
\pdfimagehicolor
\pdfimageaddfilename
\pdfpkresolution
\pdfpkfixeddpi
\pdfinclusioncopyfonts
\pdfinclusionerrorlevel
\pdfignoreunknownimages
\pdfgentounicode

// \\
] O" 34 Modifications

Ny -

9
1
4

1000

71
0

2200

1
1
72

[clol ol ool

used: (0
used: (3,

»9)
6)

\pdfomitcidset
\pdfpagebox
\pdfminorversion
\pdfuniqueresname

\pdfhorigin
\pdfvorigin
\pdflinkmargin
\pdfdestmargin
\pdfthreadmargin
\pdfxformmargin

If you also want some backward compatibility, you can add:

\let\pdfpagewidth
\let\pdfpageheight

\let\pdfadjustspacing
\let\pdfprotrudechars
\let\pdfnoligatures
\let\pdffontexpand
\let\pdfcopyfont

\let\pdfxform
\let\pdflastxform
\let\pdfrefxform

\let\pdfximage
\let\pdflastximage

\let\pdfrefximage
\let\pdfsavepos
\let\pdflastxpos
\let\pdflastypos

\let\pdfoutput
\let\pdfdraftmode

\let\pdfpxdimen
\let\pdfinsertht

\let\pdfnormaldeviate

\let\pdfuniformdeviate

\let\pdfsetrandomseed
\let\pdfrandomseed

o b~ OO

lin
lin
Opt
Opt
Opt
Opt

\pagewidth
\pageheight

\adjustspacing
\protrudechars

\ignoreligaturesinfont
\expandglyphsinfont

\copyfont

\saveboxresource

\lastsavedboxresourceindex

\useboxresource

\saveimageresource
\lastsavedimageresourceindex
\let\pdflastximagepages\lastsavedimageresourcepages
\useimageresource

\savepos
\lastxpos
\lastypos

\outputmode
\draftmode

\pxdimen
\insertht
\normaldeviate
\uniformdeviate

\setrandomseed
\randomseed

Modifications 35

\let\pdfprimitive \primitive
\let\ifpdfprimitive \ifprimitive

\let\ifpdfabsnum \ifabsnum
\let\ifpdfabsdim \ifabsdim
And even:

\newdimen\pdfeachlineheight
\newdimen\pdfeachlinedepth
\newdimen\pdflastlinedepth
\newdimen\pdffirstlineheight
\newdimen\pdfignoreddimen

The backend is derived from pdfTEX so the same syntax applies. However, the outline command
accepts a objnum followed by a number. No checking takes place so when this is used it had
better be a valid (flushed) object.

In order to be (more or less) compatible with pdfIgX we also support the option to suppress
some info:

\pdfvariable suppressoptionalinfo \numexpr

0
+ 1 % PTEX.FullBanner
+ 2 % PTEX.FileName
+ 4 % PTEX.PageNumber
+ 8 % PTEX.InfoDict
+ 16 % Creator
+ 32 % CreationDate
+ 64 % ModDate
+ 128 % Producer
+ 256 % Trapped
+ 512 % ID
\relax

In addition you can overload the trailer id, but we don’t do any checking on validity, so you have
to pass a valid array. The following is like the ones normally generated by the engine:

\pdfvariable trailerid {[
<FA052949448907805BA83C1E78896398>
<FA052949448907805BA83C1E78896398>

1}

So, you even need to include the brackets!

Although we started from a merge of pdfIgX and Aleph, by now the code base as well as func-
tionality has diverted from those parents. Here we show the options that can be passed to the
extensions.

\pdfextension literal

] 0‘. 36 Modifications

Ny -

[direct | page | raw] { tokens }

\pdfextension dest
num integer | name { tokens }!crlf
[fitbh | fitbv | fitb | fith| fitv | fit |
fitr <rule spec> | xyz [zoom <integer>]

\pdfextension annot
reserveobjnum | useobjnum <integer>
{ tokens }

\pdfextension save
\pdfextension restore

\pdfextension setmatrix
{ tokens }

[\immediate] \pdfextension obj
reserveobjnum

[\immediate] \pdfextension obj
[useobjnum <integer>]

[uncompressed]

[stream [attr { tokens }] 1

[file]

{ tokens }

\pdfextension refobj
<integer>

\pdfextension colorstack
<integer>
set { tokens } | push { tokens } | pop | current

\pdfextension startlink
[attr { tokens } 1]
user { tokens } | goto | thread
[file { tokens }]
[page <integer> { tokens } | name { tokens } | num
[newwindow | nonewwindow]

\pdfextension endlink

\pdfextension startthread
num <integer> | name { tokens }

\pdfextension endthread

\pdfextension thread

integer]

Modifications 37 ! 0“

num <integer> | name { tokens }

\pdfextension outline
[attr { tokens }]
[useobjnum <integer>]
[count <integer>]

{ tokens }

\pdfextension glyphtounicode
{ tokens }
{ tokens }

\pdfextension catalog
{ tokens }
[openaction
user { tokens } | goto | thread
[file { tokens } 1]
[page <integer> { tokens } | name { tokens } | num <integer>]
[newwindow | nonewwindow]]

\pdfextension fontattr
<integer>
{tokens}

\pdfextension mapfile
{tokens}

\pdfextension mapline
{tokens}

\pdfextension includechars
{tokens}

\pdfextension info
{tokens}

\pdfextension names
{tokens}

\pdfextension trailer
{tokens}

2.3 Directions

The directional model in LuaTgX is inherited from Omega/Aleph but we tried to improve it a bit.
At some point we played with recovery of modes but that was disabled later on when we found
that it interfered with nested directions. That itself had as side effect that the node list was no
longer balanced with respect to directional nodes which in turn can give side effects when a
series of dir changes happens without grouping.

' O‘b 38 Modifications

The current (0.97 onward) approach is that we again make the list balanced but try to avoid
some side effects. What happens is quite intuitive if we forget about spaces (turned into glue)
but even there what happens makes sense if you look at it in detail. However that logic makes in-
group switching kind of useless when no proper nested grouping is used: switching from right to
left several times nested, results in spacing ending up after each other due to nested mirroring.
Of course a sane macro package will manage this for the user but here we are discussing the
low level dir injection.

This is what happens:
\textdir TRT nur {\textdir TLT run \textdir TRT NUR} nur
This becomes stepwise:

injected: [+TRT]nur {[+TLT]run [+TRT]INUR} nur
balanced: [+TRTInur {[+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {RUNrun } run

And this:
\textdir TRT nur {nur \textdir TLT run \textdir TRT NUR} nur
becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]INUR} nur
balanced: [+TRTInur {nur [+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:
\textdir TRT nur {{\textdir TLT run} {\textdir TRT NUR}} nur

This becomes:
run RUN run run

Compare this to:
\textdir TRT nur {{\textdir TLT run }{\textdir TRT NUR}} nur

Which renders as:
run RUNrun run

So how do we deal with the next?

\def\ltr{\textdir TLT\relax}
\def\rtl{\textdir TRT\relax}

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

Modifications 39 ! 0‘

run run RUNrun RUNrun run
run run runRUN runRUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir
node. But that way we loose the subtype information that for some applications can be handy to
be kept as-is. This is why we now have a variant of \textdir which injects the balanced node
before the skip. Instead of the previous definition we can use:

\def\ltr{\linedir TLT\relax}
\def\rt1{\linedir TRT\relax}

and this time:

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \l1tr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run run RUN run RUN run run
run run run RUN run RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be
handled in the input or macro package because there is no way we can predict the expected
behaviour. In fact, the \linedir is just a convenience extra which could also have been imple-
mented using node list parsing.

Glue after a dir node is ignored in the linebreak decision but you can bypass that by setting
\breakafterdirmode to 1. The following table shows the difference. Watch your spaces.

\breakafterdirmode 0 1
pre {\textdir TLT xxx} post pre pre
XXX post XXX
post
pre {\textdir TLT xxx }post pre pre
XXX XXX
post post
pre{ \textdir TLT xxx} post pre pre
XXX post XXX
post
pre{ \textdir TLT xxx }post pre pre
XXX XXX
post post
pre { \textdir TLT xxx } post pre pre
XXX XXX
post
post
pre {\textdir TLT\relax \space xxx} post pre pre
XXX post

| 40 Modifications

XXX
post

Another adaptation to the Aleph directional model is control over shapes driven by \hangindent

and \parshape. This is controlled by a new parameter \shapemode:

0
1
2
3

The value is reset to zero (like \hangindent and \parshape) after the paragraph is done with.

\hangindent \parshape

normal normal
mirrored normal

normal mirrored
mirrored mirrored

You can use negative values to prevent this.

In figure 2.1 a few examples are given.

We thrive in information-thick worlds because of our

marvelous and everyday capacity to select, edit, sin-

gle out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, summarize, item-
ize, review, dip into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow the wheat from

TLT: hangindent

e thrive in information-thick worlds because of our mar-

velous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, syn-
thesize, focus, organize, condense, reduce, boil down, choose, catego-
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, review, dip into, flip
through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats

TLT: parshape

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

-nis ,tide ,tceles ot yticapac yadyreve dna suolevram

-rah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg

nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom
otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc
kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi
knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo
rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva
hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi
morf taechw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks
staog eht morf peehs eht etarapes dna ffahc eht

fram ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev
-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts
rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht
etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin
etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid
etamixorppa ,egareva knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb
pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc
etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht
eht etarapes dna ffahc eht morf taehw eht wonniw ,ezisponys ,naelg
staog eht morf peeh

TRT: hangindent mode 0

TRT: parshape mode 0

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

rnis ,tide ,tceles ot yticapac yadyreve dna suolevram

rrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg

nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom

otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc

kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi

,knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo

rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva

hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi

morf tachw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks
staog eht morf peehs eht etarapes dna ffahc eht

fram ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev
-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts

rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht

etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin

etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid

etamixorppa ,egareva knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb

pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc

etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht

eht etarapes dna ffahc eht morf taechw eht wonniw ,ezisponys ,naelg
staog eht morf peehs

TRT: hangindent mode 1 & 3

TRT: parshape mode 2 & 3

Figure 2.1 The effect of shapemode.

Modifications 41

2.4 Implementation notes

2.4.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two
separate arrays. Each of these will grow dynamically when needed.

The texmf.cnf settings related to main memory are no longer used (these are: main_memory,
mem_bot, extra mem top and extra mem bot). ‘Out of main memory’ errors can still occur, but
the limiting factor is now the amount of RAM in your system, not a predefined limit.

Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant code
now lives in the C file texnode. ¢, and basically uses a dozen or so ‘avail’ lists instead of a doubly-
linked model. An extra function layer is added so that the code can ask for nodes by type instead
of directly requisitioning a certain amount of memory words.

Because of the split into two arrays and the resulting differences in the data structures, some
of the macros have been duplicated. For instance, there are now vlink and vinfo as well as
token_link and token_info. All access to the variable memory array is now hidden behind a
macro called vmem. We mention this because using the TgXbook as reference is still quite valid
but not for memory related details. Another significate detail is that we have double linked node
lists and that some nodes carry more data.

The implementation of the growth of two arrays (via reallocation) introduces a potential pitfall:
the memory arrays should never be used as the left hand side of a statement that can modify
the array in question. Details like this are of no concern to users.

The input line buffer and pool size are now also reallocated when needed, and the texmf.cnf
settings buf size and pool size are silently ignored.

2.4.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjcode)
tables are now sparse arrays that are implemented in C. They are no longer part of the TgX
‘equivalence table’ and because each had 1.1 million entries with a few memory words each,
this makes a major difference in memory usage.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments do not yet show up when
using the e-TgX tracing routines \tracingassigns and \tracingrestores.

A side-effect of the current implementation is that \global is now more expensive in terms of
processing than non-global assignments.

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go up
to index 221 — 1.

2.4.3 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in
the hash just like the multiletter csnames.

0“ 42 Modifications

The code that displays control sequences explicitly checks if the length is one when it has to
decide whether or not to add a trailing space.

Active characters are internally implemented as a special type of multi-letter control sequences
that uses a prefix that is otherwise impossible to obtain.

2.4.4 Compressed format

The format is passed through z1lib, allowing it to shrink to roughly half of the size it would have
had in uncompressed form. This takes a bit more cpu cycles but much less disk io, so it should
still be faster.

2.4.5 Binary file reading

All of the internal code is changed in such a way that if one of the read xxx_file callbacks is not
set, then the file is read by a C function using basically the same convention as the callback: a
single read into a buffer big enough to hold the entire file contents. While this uses more memory
than the previous code (that mostly used getc calls), it can be quite a bit faster (depending on
your io subsystem).

2.4.6 Tabs and spaces

We conform to the way other TgX engines handle trailing tabs and spaces. For decades trailing
tabs and spaces (before a newline) were removed from the input but this behaviour was changed
in September 2017 to only handle spaces. We are aware that this can introduce compatibility
issues in existing workflows but because we don’t want too many differences with upstream
TEXLive we just follow up on that patch (which is a functional one and not really a fix). It is up to
macro packages maintainers to deal with possible compatibility issues and in LuaTgX they can
do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes from
generated sources) it was normally dealt with by adding a comment token to the line in case the
spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradicts
some of our other choices but consistency with other engines and the fact that in kpse mode a
common file io layer is used can have a side effect of breaking compatibility. We still stick to our
view that at the log level we can (and might be) more incompatible.

Modifications 43 ! 0’

44 Modifications

3 LUA general

3.1 Initialization

3.1.1 LUATEX as a LUA interpreter
There are some situations that make LuaTgX behave like a standalone Lua interpreter:

« ifa --luaonly option is given on the commandline, or
« if the executable is named texlua or luatexlua, or
« if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options in
negative values and the rest of the command line in the positive values, just like the Lua inter-
preter.

LuaTgX will exit immediately after executing the specified Lua script and is, in effect, a somewhat
bulky stand alone Lua interpreter with a bunch of extra preloaded libraries.

3.1.2 LUATgX as a LUA byte compiler

There are two situations that make LuaTgX behave like the Lua byte compiler:

« ifa --luaconly option is given on the command line, or
« if the executable is named texluac

In this mode, LuaTgX is exactly like luac from the stand alone Lua distribution, except that it
does not have the -1 switch, and that it accepts (but ignores) the --luaconly switch.

3.1.3 Other commandline processing

When the LuaTgX executable starts, it looks for the - -lua command line option. If there is no
- -lua option, the command line is interpreted in a similar fashion as the other TgX engines.
Some options are accepted but have no consequence. The following command-line options are
understood:

--credits display credits and exit

- -debug-format enable format debugging

--draftmode switch on draft mode i.e. generate no output in pdf mode
--[no-]file-line-error disable/enable file:line:error style messages
--[no-]file-line-error-style aliasesof --[no-]file-line-error

- - Tmt=FORMAT load the format file FORMAT

--halt-on-error stop processing at the first error

--help display help and exit

--ini be iniluatex, for dumping formats

// \\
Lua general 45 | 0 i

\

N {

--interaction=STRING

- - jobname=STRING
- -kpathsea-debug=NUMBER

--lua=FILE
--[no-]Imktex=FMT
--nosocket
--output-comment=STRING

--output-directory=DIR
--output-format=FORMAT
- -progname=STRING
--recorder

--safer
--[no-]shell-escape
--shell-restricted

- -synctex=NUMBER

set interaction mode: batchmode, nonstopmode, scrollmode
or errorstopmode

set the job name to STRING

set path searching debugging flags according to the bits of
NUMBER

load and execute a Lua initialization script

disable/enable mktexFMT generation with FMT is tex or tfm
disable the Lua socket library

use STRING for dvi file comment instead of date (no effect for
pdf)

use DIR as the directory to write files to

use FORMAT for job output; FORMAT is dvi or pdf

set the program name to STRING

enable filename recorder

disable easily exploitable Lua commands

disable/enable system calls

restrict system calls to a list of commands given in texmf.cnf
enable synctex

--utc use utc times when applicable
--version display version and exit
Some of the traditional flags are just ignored: --etex, --translate-file, --8bit.

--[no-]parse-first-line, --default-translate-file. Also, we no longer support writel8
because os.execute can do the same.

The value to use for \ jobname is decided as follows:

o If --jobname is given on the command line, its argument will be the value for \jobname,
without any changes. The argument will not be used for actual input so it need not exist. The
- - jobname switch only controls the \ jobname setting.

« Otherwise, \jobname will be the name of the first file that is read from the file system, with
any path components and the last extension (the part following the last .) stripped off.

« Anexception to the previous point: if the command line goes into interactive mode (by starting
with a command) and there are no files input via \everyjob either, then the \ jobname is set

to texput as a last resort.

The file names for output files that are generated automatically are created by attaching the
proper extension (log, pdf, etc.) to the found \ jobname. These files are created in the directory
pointed to by --output-directory, or in the current directory, if that switch is not present.

Without the - - lua option, command line processing works like it does in any other web2c-based
typesetting engine, except that LuaTgX has a few extra switches.

If the - - Lua option is present, LuaTgX will enter an alternative mode of command line processing
in comparison to the standard web2c programs.

In this mode, a small series of actions is taken in order. First, it will parse the command line as
usual, but it will only interpret a small subset of the options immediately: --safer, - -nosocket,
--[no-]shell-escape, --enable-writel8, --disable-writel8, --shell-restricted, --help,
--version, and --credits.

0\‘, 46 Lua general
A\ ®

Next LuaTgX searches for the requested Lua initialization script. If it cannot be found using the
actual name given on the command line, a second attempt is made by prepending the value of
the environment variable LUATEXDIR, if that variable is defined in the environment.

Then it checks the various safety switches. You can use those to disable some Lua commands
that can easily be abused by a malicious document. At the moment, - -safer nils the following
functions:

library functions

0s execute exec spawn setenv rename remove tmpdir
io popen output tmpfile
1fs rmdir mkdir chdir lock touch

Furthermore, it disables loading of compiled Lua libraries and it makes io.open() fail on files
that are opened for anything besides reading.

When LuaTgX starts it set the locale to a neutral value. If for some reason you use os.locale,
you need to make sure you nil it afterwards because otherwise it can interfere with code that
for instance generates dates. You can nil the locale with

os.setlocale(nil.nil)

The - -nosocket option makes the socket library unavailable, so that Lua cannot use networking.

The switches --[no-]shell-escape, --[enable|disable]-writel8, and --shell-restricted
have the same effects as in pdfTgX, and additionally make io.popen(), os.execute, os.exec
and os.spawn adhere to the requested option.

Next the initialization script is loaded and executed. From within the script, the entire com-
mand line is available in the Lua table arg, beginning with arg[0], containing the name of the
executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TEX’s initializa-
tions have taken place yet. For that reason, the tables that deal with typesetting, like tex, token,
node and pdf, are off-limits during the execution of the startup file (they are nil’d). Special care
is taken that texio.write and texio.write n1l function properly, so that you can at least report
your actions to the log file when (and if) it eventually becomes opened (note that TgX does not
even know its \ jobname yet at this point).

Everything you do in the Lua initialization script will remain visible during the rest of the run,
with the exception of the TEX specific libraries like tex, token, node and pdf tables. These will
be initialized to their documented state after the execution of the script. You should not store
anything in variables or within tables with these four global names, as they will be overwritten
completely.

We recommend you use the startup file only for your own TgX-independent initializations (if
you need any), to parse the command line, set values in the texconfig table, and register the
callbacks you need.

LuaTgX allows some of the command line options to be overridden by reading values from the
texconfig table at the end of script execution (see the description of the texconfig table later
on in this document for more details on which ones exactly).

Lua general 47 | 0
\\\ .

Unless the texconfig table tells LuaTgX not to initialize kpathsea at all (set texcon-
fig.kpse_init to false for that), LuaTgX acts on some more command line options after the
initialization script is finished: in order to initialize the built-in kpathsea library properly, LuaTgX
needs to know the correct program name to use, and for that it needs to check - -progname, or
--1ini and - - fmt, if - -progname is missing.

3.2 LUA behaviour

Luas tostring function (and string.format may return values in scientific notation, thereby
confusing the TEX end of things when it is used as the right-hand side of an assignment to a
\dimen or \count.

Loading dynamic Lua libraries will fail if there are two Lua libraries loaded at the same time
(which will typically happen on win32, because there is one Lua 5.2 inside LuaTgX, and another
will likely be linked to the dll file of the module itself).

LuaTgX is able to use the kpathsea library to find require()d modules. For this purpose, pack-
age.searchers[2] is replaced by a different loader function, that decides at runtime whether to
use kpathsea or the built-in core Lua function. It uses kpathsea when that is already initialized
at that point in time, otherwise it reverts to using the normal package.path loader.

Initialization of kpathsea can happen either implicitly (when LuaTgX starts up and the startup
script has not set texconfig.kpse init to false), or explicitly by calling the Lua function
kpse.set program name().

LuaTgX is able to use dynamically loadable Lua libraries, unless - -safer was given as an option
on the command line. For this purpose, package.searchers[3] is replaced by a different loader
function, that decides at runtime whether to use kpathsea or the built-in core Lua function. It
uses kpathsea when that is already initialized at that point in time, otherwise it reverts to using
the normal package.cpath loader.

This functionality required an extension to kpathsea:

There is a new kpathsea file format: kpse clua format that searches for files with exten-
sion .dl1l and .so. The texmf.cnf setting for this variable is CLUAINPUTS, and by default
it has this value:

CLUAINPUTS=. : $SELFAUTOLOC/lib/{$progname, $engine, }/lua//

This path is imperfect (it requires a tds subtree below the binaries directory), but the
architecture has to be in the path somewhere, and the currently simplest way to do that is
to search below the binaries directory only. Of course it no big deal to write an alternative
loader and use that in a macro package.

One level up (a lib directory parallel to bin) would have been nicer, but that is not doable
because TgXLive uses a bin/<arch> structure.

In keeping with the other TgX-like programs in TgXLive, the two Lua functions os.execute and
io.popen, as well as the two new functions os.exec and os.spawn that are explained below,
take the value of shell escape and/or shell escape commands in account. Whenever LuaTgX
is run with the assumed intention to typeset a document (and by that we mean that it is called as
luatex, as opposed to texlua, and that the command line option --luaonly was not given), it

\0\‘, 48 Lua general
N A]

will only run the four functions above if the matching texmf.cnf variable(s) or their texconfig
(see section 9.4) counterparts allow execution of the requested system command. In ‘script
interpreter’ runs of LuaTgX, these settings have no effect, and all four functions function as
normal.

The f:read("*line") and f:lines() functions from the io library have been adjusted so that
they are line-ending neutral: any of LF, CR or CR+LF are acceptable line endings.

luafilesystem has been extended: there are two extra boolean functions (1fs.isdir(file-
name) and lfs.isfile(filename)) and one extra string field in its attributes table (permis-
sions). There is an additional function 1fs.shortname() which takes a file name and returns
its short name on win32 platforms. On other platforms, it just returns the given argument. The
file name is not tested for existence. Finally, for non-win32 platforms only, there is the new func-
tion Lfs.readlink() hat takes an existing symbolic link as argument and returns its content. It
returns an error on win32.

The string library has an extra function: string.explode(s[,m]). This function returns an
array containing the string argument s split into sub-strings based on the value of the string
argument m. The second argument is a string that is either empty (this splits the string into
characters), a single character (this splits on each occurrence of that character, possibly intro-
ducing empty strings), or a single character followed by the plus sign + (this special version does
not create empty sub-strings). The default value for mis * +’ (multiple spaces). Note: m is not
hidden by surrounding braces as it would be if this function was written in TgX macros.

The string library also has six extra iterators that return strings piecemeal:

« string.utfvalues(s): an integer value in the Unicode range

« string.utfcharacters(s): a string with a single utf-8 token in it

« string.characters(s): a string containing one byte

« string.characterpairs(s): two strings each containing one byte or an empty second string
if the string length was odd

« string.bytes(s): a single byte value

« string.bytepairs(s): two byte values or nil instead of a number as its second return value
if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the
conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,
if true, strips the symbols from the dumped data. This matches an extension made in luajit.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the
utf8 encoding, i.e., strings containing characters above code point 127, the corresponding func-
tions from the slnunicode library can be used, e.g., unicode.utf8.1len, unicode.utf8.lower
etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and
unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are
Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capture
() but other captures work as expected. For the interpretation of character classes in uni-
code.utf8 functions refer to the library sources at http://luaforge.net/projects/sin.

Version 5.3 of Lua provides some native utf8 support but we have added a few similar helpers
too:

Lua general 49 {0
e

string.utfvalue(s): returns the codepoints of the characters in the given string
string.utfcharacter(c,...): returns a string with the characters of the given code points
string.utflength(s): returns the length oif the given string

These three functions are relative fast and don’t do much checking. They can be used as building
blocks for other helpers.

The os library has a few extra functions and variables:

0os.selfdir is a variable that holds the directory path of the actual executable. For example:
\directlua{tex.sprint(os.selfdir)}.

os.exec(commandline) is a variation on os.execute. Here commandline can be either a
single string or a single table.

If the argument is a table LuaTgX first checks if there is a value at integer index zero. If there
is, this is the command to be executed. Otherwise, it will use the value at integer index one.
If neither are present, nothing at all happens.

The set of consecutive values starting at integer 1 in the table are the arguments that are
passed on to the command (the value at index 1 becomes arg[0]). The command is searched
for in the execution path, so there is normally no need to pass on a fully qualified path name.
If the argument is a string, then it is automatically converted into a table by splitting on
whitespace. In this case, it is impossible for the command and first argument to differ from
each other.

In the string argument format, whitespace can be protected by putting (part of) an argument
inside single or double quotes. One layer of quotes is interpreted by LuaTgX, and all occur-
rences of \", \' or \\ within the quoted text are unescaped. In the table format, there is no
string handling taking place.

This function normally does not return control back to the Lua script: the command will
replace the current process. However, it will return the two values nil and error if there
was a problem while attempting to execute the command.

On MS Windows, the current process is actually kept in memory until after the execution of
the command has finished. This prevents crashes in situations where TgXLua scripts are run
inside integrated TgX environments.

The original reason for this command is that it cleans out the current process before starting
the new one, making it especially useful for use in TgXLua.

0s.spawn(commandline) is a returning version of os.exec, with otherwise identical calling
conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwise,
it will return the two values nil and error.

os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value
string will remove the variable.

0s.env is a hash table containing a dump of the variables and values in the process envi-
ronment at the start of the run. It is writeable, but the actual environment is not updated
automatically.

os.gettimeofday() returns the current ‘Unix time’, but as a float. This function is not avail-
able on the SunOS platforms, so do not use this function for portable documents.

0s.times ()returns the current process times according to the Unix C library function ‘times’.
This function is not available on the MS Windows and SunOS platforms, so do not use this

50 Lua general

function for portable documents.

o os.tmpdir() creates a directory in the ‘current directory’ with the name luatex.XXXXXX
where the X-es are replaced by a unique string. The function also returns this string, so you
can Lfs.chdir() into it, or nil if it failed to create the directory. The user is responsible for
cleaning up at the end of the run, it does not happen automatically.

« 0s.typeisastring that gives a global indication of the class of operating system. The possible
values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

« 0S.name is a string that gives a more precise indication of the operating system. These pos-
sible values are not yet fixed, and for os.type values windows and msdos, the os.name values
are simply windows and msdos
The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so-
laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv
(unknown, but sysv-like), generic (unknown).

« o0s.uname() returns a table with specific operating system information acquired at runtime.
The keys in the returned table are all string valued, and their names are: sysname, machine,
release, version, and nodename.

In stock Lua, many things depend on the current locale. In LuaTgX, we can’t do that, because it
makes documents unportable. While LuaTgX is running if forces the following locale settings:

LC_CTYPE=C
LC COLLATE=C
LC_NUMERIC=C

3.3 LUA modules

Some modules that are normally external to Lua are statically linked in with LuaTgX, because
they offer useful functionality:

« slnunicode, from the selene libraries, http://luaforge.net/projects/sln. This library has
been slightly extended so that the unicode.utf8.* functions also accept the first 256 values
of plane 18. This is the range LuaTgX uses for raw binary output, as explained above.

« luazip, from the kepler project, http://www . keplerproject.org/luazip/.

« luafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/.

« 1peg, by Roberto Ierusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html. This
library is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mainly
means that lpeg.S cannot be used with utf8 characters encoded in more than two bytes, and
thus lpeg.S will look for one of those two bytes when matching, not the combination of the
two. The same is true for lpeg.R, although the latter will display an error message if used
with multibyte characters. Therefore lpeg.R('ad"') results in the message bad argument #1
to 'R' (range must have two characters), since to lpeg, a is two ‘characters’ (bytes), so
aa totals three. In practice this is no real issue.

« 1lzlib, by Tiago Dionizio, http://luaforge.net/projects/1zlib/.

« md5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.

« luasocket, by Diego Nehab http://w3.impa.br/~diego/software/luasocket/. The .lua support
modules from luasocket are also preloaded inside the executable, there are no external file

dependencies.
Lua general 51 | 0
\\\ ‘

At some point (this also depends on distributions) LuaTgX might have these libraries loaded on
demand. For this reason you can best use require to make sure they are loaded.

3.4 Testing

For development reasons you can influence the used startup date and time. This can be done in
two ways.

1. By setting the environmment variable SOURCE_DATE_EPOCH. This will influence the TgX para-
meters time and date, the random seed, the pdf timestamp and the pdf id that is derived
from the time as well. This variable is consulted when the kpse library is enabled. Resolving
is delegated to this library.

2. By setting the start_time variable in the texconfig table; as with other variables we use the
internal name there. For compatibility reasons we also honour a SOURCE_DATE EPOCH entry.
It should be noted that there are no such variables in other engines and this method is only
relevant in case the while setup happens in Lua.

When Universal Time is needed, you can pass the flag utc to the engine. This property also works
when the date and time are set by LuaTgX itself. It has a complementary entry use_utc_time in
the texconfig table.

To some extend a cleaner solution would be to have a flag that disables all variable data in one
go (like filenames and so) but we just follow the method implemented in pdfTgX where primitives
are used to influence other properties.

In ConIgXt we provide the command line argument - -nodates that does bit more disabling of
dates.

. 52 Lua general

4 Languages, characters, fonts and
glyphs

LuaTgX’s internal handling of the characters and glyphs that eventually become typeset is quite
different from the way TgX82 handles those same objects. The easiest way to explain the differ-
ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later
on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char_node records when they are encoun-
tered by the main control loop. TgX attaches and processes the font information while creating
those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im-
plicit kerning. This packaging is needed because we may want to get the effective width of for
instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TgX converts (one word at time)
the char node records into a string by replacing ligatures with their components and ignoring
the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated
result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.
Keep in mind that the paragraph may contain unboxed horizontal material, which then already
contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts,
and therefore not really ‘characters’ in the linguistic sense. There is no language information in-
side the char node records at all. Instead, language information is passed along using language
whatsit records inside the horizontal list.

In LuaTgX, the situation is quite different. The characters you type are always converted into
glyph node records with a special subtype to identify them as being intended as linguistic char-
acters. LuaTgX stores the needed language information in those records, but does not do any
font-related processing at the time of node creation. It only stores the index of the current font
and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTgX first inserts all hyphenation points
right into the whole node list. Next, it processes all the font information in the whole list (creating
ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the
records are ‘glyph nodes’ from now on.

4.1 Characters and glyphs

TEX82 (including pdfIgX) differentiates between char_nodes and lig nodes. The former are
simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the
same memory as tokens did. The latter also contained a list of components, and a subtype
indicating whether this ligature was the result of a word boundary, and it was stored in the
same place as other nodes like boxes and kerns and glues.

In LuaTgX, these two types are merged into one, somewhat larger structure called a glyph_node.
Besides having the old character, font, and component fields, and the new special fields like ‘attr’
(see section 7.1.2.12), these nodes also contain:

Languages, characters, fonts and glyphs 53 (\ 0

« A subtype, split into four main types:
— character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.
— glyph, for specific font glyphs: the lowest bit (bit 0) is not set.
— ligature, for ligatures (bit 1 is set)
— ghost, for ‘ghost objects’ (bit 2 is set)
The latter two make further use of two extra fields (bits 3 and 4):
— left, for ligatures created from a left word boundary and for ghosts created from \left-
ghost
— right, for ligatures created from a right word boundary and for ghosts created from
\rightghost
For ligatures, both bits can be set at the same time (in case of a single-glyph word).
« glyph _nodes of type ‘character’ also contain language data, split into four items that were
current when the node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits),
\righthyphenmin (8 bits), and \uchyph (1 bit).

Incidentally, LuaTgX allows 16383 separate languages, and words can be 256 characters long.
The language is stored with each character. You can set \firstvalidlanguage to for instance 1
and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This
value stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from
TEX82: changes to \uchyph become effective immediately, not at the end of the current partial
paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,
so there is no longer a possible dependency on the surrounding language settings. In TgX82, a
mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan-
guage unless there was a \setlanguage issued inside the box. In LuaTgX, all language variables
are already frozen.

In traditional TgX the process of hyphenation is driven by lccodes. In LuaTgX we made this de-
pendency less strong. There are several strategies possible. When you do nothing, the currently
used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value larger than zero the current set of lccodes will be
saved with the language. In that case changing a lccode afterwards has no effect. However,
you can adapt the set with:

\hjcode a="a

This change is global which makes sense if you keep in mind that the moment that hyphenation
happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy-
phcodes was zero when the language got initialized you start out with nothing, otherwise you
already have a set.

When a \hjcode is larger than 0 but smaller than 32 is indicates the to be used length. In
the following example we map a character (x) onto another one in the patterns and tell the
engine that & counts as one character. Because traditionally zero itself is reserved for inhibiting
hyphenation, a value of 32 counts as zero.

0\‘, 54 Languages, characters, fonts and glyphs

% assuming french patterns:
foobar % foo-bar

\hjcode x="0
fxxbar % fxx-bar
\lefthyphenmin3
edipus % ®di-pus
\lefthyphenmin4
edipus % ®dipus
\hjcode @=2
edipus % ®di-pus

\hjcode" i=32
\hjcode d=32

edipus % ®dipus

Carrying all this information with each glyph would give too much overhead and also make the
process of setting up thee codes more complex. A solution with hjcode sets was considered but
rejected because in practice the current approach is sufficient and it would not be compatible

anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph-
codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instance
discretionary injection. For this you can use the \wordboundary as trigger. Here are a few

examples of usage:
discrete---discrete

discrete—discrete

discrete\discretionary{}{}{---}discrete

discrete
discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis-
crete
discrete

Languages, characters, fonts and glyphs

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis-
crete
dis-
crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis-

crete—

dis-

crete

We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of
explicit hyphens as that normally indicates a - - or - - - ligature in which case we can in a worse
case usage get bad node lists later on due to messed up ligature building as these dashes are
ligatures in base fonts. This is a side effect of the separating the hyphenation, ligaturing and
kerning steps.

The start and end of a characters is signalled by a glue, penalty, kern or boundary node. But by
default also a hlist, vlist, rule, dir, whatsit, ins, and adjust node indicate a start or end. You can
omit the last set from the test by setting \hyphenationbounds to a non-zero value:

not strict

strict start

strict end

strict start and strict end

W NP O

The word start is determined as follows:

boundary yes when wordboundary

hlist when hyphenationbounds 1 or 3

vlist when hyphenationbounds 1 or 3

rule when hyphenationbounds 1 or 3

dir when hyphenationbounds 1 or 3

whatsit when hyphenationbounds 1 or 3

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no - —)

otherwise yes
The word end is determined as follows:

boundary yes

glyph yes when different language

glue yes

penalty yes

kern yes when not italic (for some historic reason)
hlist when hyphenationbounds 2 or 3

\0\‘, 56 Languages, characters, fonts and glyphs

vlist when hyphenationbounds 2 or 3

rule when hyphenationbounds 2 or 3
dir when hyphenationbounds 2 or 3
whatsit when hyphenationbounds 2 or 3
ins when hyphenationbounds 2 or 3
adjust when hyphenationbounds 2 or 3

Figures 4.1 upto 4.5 show some examples. In all cases we set the min values to 1 and make sure
that the words hyphenate at each character.

o- o- o- o-
n- n- n- n-
e e e e

0 1 2 3

Figure 4.1 one

0- o- onet- onetwo
n- n- w-
et- etwo 0]
W-
0
0 1 2 3

Figure 4.2 one\null two

o- o- onet- onetwo
n- n- w-
et- etwo o]
w-
0
0 1 2 3

Figure 4.3 \null one\null two

o- o- onetwo onetwo
n- n-
et- etwo
W-
0
0 1 2 3

Figure 4.4 one\null two\null

o- o- onetwo onetwo
n- n-
et- etwo
W-
0
0 1 2 3

Figure 4.5 \null one\null two\null

Languages, characters, fonts and glyphs 57 { 0\\[

In traditional TgX ligature building and hyphenation are interwoven with the line break mech-
anism. In LuaTgX these phases are isolated. As a consequence we deal differently with (a se-
quence of) explicit hyphens. We already have added some control over aspects of the hyphen-
ation and yet another one concerns automatic hyphens (e.g. - characters in the input).

When \automatichyphenmode has a value of 0, a hyphen will be turned into an automatic discre-
tionary. The snippets before and after it will not be hyphenated. A side effect is that a leading
hyphen can lead to a split but one will seldom run into that situation. Setting a pre and post
character makes this more prominent. A value of 1 will prevent this side effect and a value of
2 will not turn the hyphen into a discretionary. Experiments with other options, like permitting
hyphenation of the words on both sides were discarded.

We show three samples:

Input A:

before-after \par
before--after \par
before---after \par

Input B:

-before \par
after- \par
--before \par
after-- \par
---before \par
after--- \par

Input C:

before-after \par
before--after \par
before---after \par

As with primitive companions of other single character commands, the \ - command has a more
verbose primitive version in \explicitdiscretionary and the normally intercepted in the hy-
phenator character - (or whatever is configured) is available as \automaticdiscretionary.

4.2 The main control loop

In LuaTgX'’s main loop, almost all input characters that are to be typeset are converted into glyph
node records with subtype ‘character’, but there are a few exceptions.

First, the \accent primitives creates nodes with subtype ‘glyph’ instead of ‘character’: one for
the actual accent and one for the accentee. The primary reason for this is that \accent in TgX82
is explicitly dependent on the current font encoding, so it would not make much sense to attach
a new meaning to the primitive’s name, as that would invalidate many old documents and macro
packages.! A secondary reason is that in TgX82, \accent prohibits hyphenation of the current

1 Of course, modern packages will not use the \accent primitive at all but try to map directly on composed characters.

\0\‘, 58 Languages, characters, fonts and glyphs

before-after before- before- before-after
before--after after after before--after
before---after| |before-- before--after before---after
after before---after
before- - -
after
A O 6em A 0 2pt A 1 2pt A 2 2pt
-before) -before -before
after- before after- after-
--before after- --before --before
after-- --before after-- after--
---before after-- ---before ---before
after--- ---before after--- after---
after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt
before-after before- before- before-after
before--after after after before--after
before---after| |before-- before--after before---after

after before---after
before- - -
after
C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 4.6 The automatic modes 0 (default), 1 and 2, with a \hsize of
6em and 2pt (which triggers a linebreak).

word. Since in LuaTgX hyphenation only takes place on ‘character’ nodes, it is possible to achieve
the same effect.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a charac-
ter subtype. In traditional TgX there was a strong relationship between the 8-bit input encoding,
hyphenation and glyphs taken from a font. In LuaTgX we have utf input, and in most cases this
maps directly to a character in a font, apart from glyph replacement in the font engine. If you
want to access arbitrary glyphs in a font directly you can always use Lua to do so, because fonts
are available as Lua table.

Second, all the results of processing in math mode eventually become nodes with ‘glyph’ sub-
types.

Third, the Aleph-derived commands \leftghost and \rightghost create nodes of a third sub-
type: ‘ghost’. These nodes are ignored completely by all further processing until the stage where
inter-glyph kerning is added.

Fourth, automatic discretionaries are handled differently. TEX82 inserts an empty discretionary
after sensing an input character that matches the \hyphenchar in the current font. This test is

Languages, characters, fonts and glyphs 59

before-after beforeB beforeB before-after
before--after Aafter Aafter before--after
before---after| |before-B before--after before---after
Aafter before---after
before--B
Aafter
A O 6em A 0 2pt A 1 2pt A 2 2pt
-before B -before -before
after- Abefore after- after-
--before after- --before --before
after-- --before after-- after--
---before after-- ---before ---before
after--- ---before after--- after---
after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt
before-after beforeB beforeB before-after
before--after Aafter Aafter before--after
before---after| |before-B before--after before---after

Aafter before---after
before--B
Aafter
C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 4.7 The automatic modes 0 (default), 1 and 2, with \preexhy-
phenchar and \postexhyphenchar set to characters A and B.

wrong in our opinion: whether or not hyphenation takes place should not depend on the current
font, it is a language property.?

In LuaTgX, it works like this: if LuaTgX senses a string of input characters that matches the
value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary after
that series of nodes. Initex sets the \exhyphenchar="\-. Incidentally, this is a global parameter
instead of a language-specific one because it may be useful to change the value depending on
the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same time
as the other hyphenation processing, not inside the main control loop.

The only use LuaTgX has for \hyphenchar is at the check whether a word should be considered
for hyphenation at all. If the \hyphenchar of the font attached to the first character node in a
word is negative, then hyphenation of that word is abandoned immediately. This behaviour is
added for backward compatibility only, and the use of \hyphenchar=-1 as a means of preventing

When TgX showed up we didn't have Unicode yet and being limited to eight bits meant that one sometimes had to
compromise between supporting character input, glyph rendering, hyphenation.

60 Languages, characters, fonts and glyphs

hyphenation should not be used in new LuaTgX documents.

Fifth, \setlanguage no longer creates whatsits. The meaning of \setlanguage is changed so
that it is now an integer parameter like all others. That integer parameteris used in \glyph node
creation to add language information to the glyph nodes. In conjunction, the \language primitive
is extended so that it always also updates the value of \setlanguage.

Sixth, the \noboundary command (that prohibits word boundary processing where that would
normally take place) now does create nodes. These nodes are needed because the exact place
of the \noboundary command in the input stream has to be retained until after the ligature and
font processing stages.

Finally, there is no longer a main_loop label in the code. Remember that TEX82 did quite a lot
of processing while adding char nodes to the horizontal list? For speed reasons, it handled that
processing code outside of the ‘main control’ loop, and only the first character of any ‘word’ was
handled by that ‘main control’ loop. In LuaTgX, there is no longer a need for that (all hard work
is done later), and the (now very small) bits of character-handling code have been moved back
inline. When \tracingcommands is on, this is visible because the full word is reported, instead
of just the initial character.

Because we tend to make hard codes behaviour configurable a few new primitives have been
added:

\hyphenpenaltymode
\automatichyphenpenalty
\explicithyphenpenalty

The first parameter has the following consequences for automatic discs (the ones resulting from
an \exhyphenchar:

mode automatic disc - explicit disc \ -
0 \exhyphenpenalty \exhyphenpenalty
1 \hyphenpenalty \hyphenpenalty
2 \exhyphenpenalty \hyphenpenalty
3 \hyphenpenalty \exhyphenpenalty
4 \automatichyphenpenalty \explicithyphenpenalty
5 \exhyphenpenalty \explicithyphenpenalty
6 \hyphenpenalty \explicithyphenpenalty
7 \automatichyphenpenalty \exhyphenpenalty
8 \automatichyphenpenalty \hyphenpenalty

other values do what we always did in LuaTgX: insert \exhyphenpenalty.

4.3 Loading patterns and exceptions
The hyphenation algorithm in LuaTgX is quite different from the one in TgX82, although it uses
essentially the same user input.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns sep-
arated by spaces, no \char or \chardefd commands are allowed. The current implementation
quite strict and will reject all non-Unicode characters.

Languages, characters, fonts and glyphs 61

Likewise, the expanded argument for \hyphenation also has to be proper utf8, but here a bit of
extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicates a desired complex discretionary,
with arguments as in \discretionary’s command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal
document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,
but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the
internal command names. This string is then converted into a dictionary by a routine that creates
key-value pairs by converting the other listed items. It is important to note that the keys in an
exception dictionary can always be generated from the values. Here are a few examples:

value implied key (input) effect
ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)
ba{k-}{}{c}tken Dbacken ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is
the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the
command is optional in the TgX-based input syntax. The underlying reason for that is that it is
conceivable that a whole dictionary of words is stored as a plain text file and loaded into LuaTgX
using one of the functions in the Lua lang library. This loading method is quite a bit faster than
going through the TgX language primitives, but some (most?) of that speed gain would be lost if
it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the
explicit hyphen character (replace - by the actual explicit hyphen character if needed). For
example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetween
‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the e-TEX extension \savinghyphcodes was that hyphenation heavily de-
pended on font encodings. This is no longer true in LuaTgX, and the corresponding primitive is
basically ignored. Because we now have hjcode, the case relate codes can be used exclusively
for \uppercase and \lowercase.

4.4 Applying hyphenation

The internal structures LuaTgX uses for the insertion of discretionaries in words is very different
from the ones in TEX82, and that means there are some noticeable differences in handling as
well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still
reads patgen-generated pattern files, but LuaTgX uses a finite state hash to match the patterns

0\‘, 62 Languages, characters, fonts and glyphs

against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by
OpenOffice, which in turn is inspired by TgX.

There are a few differences between LuaTgX and TgX82 that are a direct result of the implemen-
tation:

« LuaTgX happily hyphenates the full Unicode character range.

« Pattern and exception dictionary size is limited by the available memory only, all allocations
are done dynamically. The trie-related settings in texmf.cnf are ignored.

« Because there is no ‘trie preparation’ stage, language patterns never become frozen. This
means that the primitive \patterns (and its Lua counterpart lang.patterns) can be used at
any time, not only in iniTEX.

« Only the string representation of \patterns and \hyphenation is stored in the format file.
At format load time, they are simply re-evaluated. It follows that there is no real reason to
preload languages in the format file. In fact, it is usually not a good idea to do so. It is much
smarter to load patterns no sooner than the first time they are actually needed.

« LuaTgX uses the language-specific variables \prehyphenchar and \posthyphenchar in the
creation of implicit discretionaries, instead of TEX82’s \hyphenchar, and the values of the
language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre-
tionaries (instead of TgX82’s empty discretionary).

« The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphen-
penalty, are now stored in the discretionary nodes. This permits a local overload for explicit
\discretionary commands. The value current when the hyphenation pass is applied is used.
When no callbacks are used this is compatible with traditional TgX. When you apply the Lua
lang.hyphenate function the current values are used.

Because we store penalties in the disc node the \discretionary command has been extended
to accept an optional penalty specification, so you can do the following:

\hsizelmm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par
2:foo\discretionary penalty 10000 {}{}{}bar\par
3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar
2:foobar

3:foo
bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu-
ally the preceding one, but the following one for the items inserted at the left-hand side of a
word).

Word boundaries are no longer implied by font switches, but by language switches. One word
can have two separate fonts and still be hyphenated correctly (but it can not have two different
languages, the \setlanguage command forces a word boundary).

Languages, characters, fonts and glyphs 63 (\ 0

All languages start out with \prehyphenchar="\-, \posthyphenchar=0, \preexhyphenchar=0
and \postexhyphenchar=0. When you assign the values of one of these four parameters, you
are actually changing the settings for the current \language, this behaviour is compatible with
\patterns and \hyphenation.

LuaTgX also hyphenates the first word in a paragraph. Words can be up to 256 characters
long (up from 64 in TgX82). Longer words generate an error right now, but eventually either
the limitation will be removed or perhaps it will become possible to silently ignore the excess
characters (this is what happens in TgX82, but there the behaviour cannot be controlled).

If you are using the Lua function lang.hyphenate, you should be aware that this function expects
to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’,
‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

The hyphenation exception dictionary is maintained as key-value hash, and that is also dynamic,
so the hyph size setting is not used either.

4.5 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTgX will process the list
to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two
stages: first all ligatures are processed, then all kerning information is applied to the result list.
But those two stages are somewhat dependent on each other: If the used font makes it possible
to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.
While doing so, it removes and interprets \noboundary nodes. The kerning stage deletes those
word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,
at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This work separation is worth mentioning because, if you overrule from Lua only one of the two
callbacks related to font handling, then you have to make sure you perform the tasks normally
done by LuaTgX itself in order to make sure that the other, non-overruled, routine continues to
function properly.

Work in this area is not yet complete, but most of the possible cases are handled by our rewritten
ligaturing engine. At some point all of the possible inputs will become supported.?

For example, take the word office, hyphenated of-fice, using a ‘normal’ font with all the f-f
and f-i type ligatures:

initial {o}{fH{fH{i}{c}{e}

after hyphenation {o}{f}{{-},{}, {}}H{fI{i}{c}H{e}
first ligature stage {o}{{f-},{f}, {<ff>}}{i}{c}{e}
final result {o}{{f-},{<fi>}, {<ffi>}}{c}{e}

That’s bad enough, but let us assume that there is also a hyphenation point between the f and
the i, to create of-f-ice. Then the final result should be:

{o}{{f-},

3 Not all of this makes sense because we nowadays have OpenType fonts and ligature building can happen in ,any different
ways there.

\0\‘, 64 Languages, characters, fonts and glyphs

{{f-},
{i},
{<fi>}},
{{<ff>-},
{i},
{<ffi>}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level
discretionary that resulted from the first hyphenation point.
Here is that nested solution again, in a different representation:
pre post replace
topdisc f- (D) sub 1 sub 2

sub 1 f- 2) i (3) <fi> 4)
sub 2 <ff>- (5) i (6) <ffi> (7)

When line breaking is choosing its breakpoints, the following fields will eventually be selected:

of-f-ice f- (1)

f- ()

i 3)

of-fice f- 1)
<fi> (4)

off-ice <ff>- (5)
i (6)

office <ffi> (7)

The current solution in LuaTgX is not able to handle nested discretionaries, but it is in fact
smart enough to handle this fictional of - f-ice example. It does so by combining two sequential
discretionary nodes as if they were a single object (where the second discretionary node is
treated as an extension of the first node).

One can observe that the of-f-ice and off-ice cases both end with the same actual post re-
placement list (i), and that this would be the case even if that i was the first item of a potential
following ligature like ic. This allows LuaTgX to do away with one of the fields, and thus make
the whole stuff fit into just two discretionary nodes.

The mapping of the seven list fields to the six fields in this discretionary node pair is as follows:

field description

discl.pre f- (D)
discl.post <fi> (4)
discl.replace <ffi> (7)
disc2.pre f- (2)
disc2.post i (3,6)
disc2.replace <ff>- (5)

What is actually generated after ligaturing has been applied is therefore:

{o}{{f-},

Languages, characters, fonts and glyphs 65 | 0\‘,

{<fi>},

{<ffi>}}
{{f-},

{1},

{<ff>-}}{c}{e}

The two discretionaries have different subtypes from a discretionary appearing on its own: the
first has subtype 4, and the second has subtype 5. The need for these special subtypes stems
from the fact that not all of the fields appear in their ‘normal’ location. The second discretionary
especially looks odd, with things like the <ff>- appearing in disc2. replace. The fact that some
of the fields have different meanings (and different processing code internally) is what makes it
necessary to have different subtypes: this enables LuaTgX to distinguish this sequence of two
joined discretionary nodes from the case of two standalone discretionaries appearing in a row.

Of course there is still that relationship with fonts: ligatures can be implemented by mapping a
sequence of glyphs onto one glyph, but also by selective replacement and kerning. This means
that the above examples are just representing the traditional approach.

4.6 Breaking paragraphs into lines

This code is still almost unchanged, but because of the above-mentioned changes with respect
to discretionaries and ligatures, line breaking will potentially be different from traditional TgX.
The actual line breaking code is still based on the TgX82 algorithms, and it does not expect there
to be discretionaries inside of discretionaries.

But that situation is now fairly common in LuaTgX, due to the changes to the ligaturing mech-
anism. And also, the LuaTgX discretionary nodes are implemented slightly different from the
TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these
nodes kept their place in the horizontal list. In traditional TgX the discretionary node contains
a counter indicating how many nodes to skip, but in LuaTEX we store the pre, post and replace
text in the discretionary node.

The combined effect of these two differences is that LuaTgX does not always use all of the poten-
tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course
kerning also complicates matters here.

4.7 The lang library

This library provides the interface to LuaTgX's structure representing a language, and the asso-
ciated functions.

<language> 1 = lang.new()
<language> 1 = lang.new(<number> id)

This function creates a new userdata object. An object of type <language> is the first argument
to most of the other functions in the lang library. These functions can also be used as if they
were object methods, using the colon syntax.

Without an argument, the next available internal id number will be assigned to this object. With
argument, an object will be created that links to the internal language with that id number.

\0\‘, 66 Languages, characters, fonts and glyphs

<number> n = lang.id(<language> 1)
returns the internal \language id number this object refers to.

<string> n = lang.hyphenation(<language> 1)
lang.hyphenation(<language> 1, <string> n)

Either returns the current hyphenation exceptions for this language, or adds new ones. The
syntax of the string is explained in section 4.3.

lang.clear hyphenation(<language> 1)
Clears the exception dictionary (string) for this language.

lang.clean(<language> 1, <string> o)
lang.clean(<string> o)

<string> n
<string> n

Creates a hyphenation key from the supplied hyphenation value. The syntax of the argument
string is explained in section 4.3. This function is useful if you want to do something else based
on the words in a dictionary file, like spell-checking.

<string> n = lang.patterns(<language> 1)
lang.patterns(<language> 1, <string> n)

Adds additional patterns for this language object, or returns the current set. The syntax of this
string is explained in section 4.3.

lang.clear patterns(<language> 1)
Clears the pattern dictionary for this language.

<number> n = lang.prehyphenchar(<language> 1)
lang.prehyphenchar(<language> 1, <number> n)

Gets or sets the ‘pre-break’ hyphen character for implicit hyphenation in this language (initially
the hyphen, decimal 45).

<number> n = lang.posthyphenchar(<language> 1)
lang.posthyphenchar(<language> 1, <number> n)

Gets or sets the ‘post-break’ hyphen character for implicit hyphenation in this language (initially
null, decimal 0, indicating emptiness).

<number> n = lang.preexhyphenchar(<language> 1)
lang.preexhyphenchar(<language> 1, <number> n)

Gets or sets the ‘pre-break’ hyphen character for explicit hyphenation in this language (initially
null, decimal 0, indicating emptiness).

<number> n = lang.postexhyphenchar(<language> 1)
lang.postexhyphenchar(<language> 1, <number> n)

Languages, characters, fonts and glyphs 67 (\ 0‘,

Gets or sets the ‘post-break’ hyphen character for explicit hyphenation in this language (initially
null, decimal 0, indicating emptiness).

<boolean> success = lang.hyphenate(<node> head)
<boolean> success = lang.hyphenate(<node> head, <node> tail)

Inserts hyphenation points (discretionary nodes) in a node list. If tail is given as argument,
processing stops on that node. Currently, success is always true if head (and tail, if specified)
are proper nodes, regardless of possible other errors.

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node
subtype having the value 1. Glyph modes with different subtypes are not processed. See sec-
tion 4.1 for more details.

The following two commands can be used to set or query hj codes:

lang.sethjcode(<language> 1, <number> char, <number> usedchar)
<number> usedchar = lang.gethjcode(<language> 1, <number> char)

When you set a hjcode the current sets get initialized unless the set was already initialized due
to \savinghyphcodes being larger than zero.

\0\‘, 68 Languages, characters, fonts and glyphs

5 Font structure

5.1 The font tables

All TgX fonts are represented to Lua code as tables, and internally as C structures. All keys in
the table below are saved in the internal font structure if they are present in the table returned
by the define font callback, or if they result from the normal tfm/vf reading routines if there
isno define font callback defined.

The column ‘vf” means that this key will be created by the font.read vf() routine, ‘tfm’ means
that the key will be created by the font.read tfm() routine, and ‘used’ means whether or not
the LuaTgX engine itself will do something with the key.

The top-level keys in the table are as follows:

key vf tfm used value type description

name yes yes yes string metric (file) name

area no yes yes string (directory) location, typically empty
used no yes yes boolean indicates usage (initial: false)
characters yes yes yes table the defined glyphs of this font

checksum yes yes no number default: 0

designsize no yes yes number expected size (default: 655360 == 10pt)
direction no yes yes number default: 0

encodingbytes no no yes number default: depends on format
encodingname no no yes string encoding name

fonts yes no yes table locally used fonts

psname no no yes string This is the PostScript fontname in the in-

coming font source, and it’'s used as font-
name identifier in the pdf output. This has
to be a valid string, e.g. no spaces and such,
as the backend will not do a cleanup. This
gives complete control to the loader.

fullname no no yes string output font name, used as a fallback in the
pdf output if the psname is not set

header yes no no string header comments, if any

hyphenchar no no yes number default: TEX’s \hyphenchar

parameters no vyes yes hash default: 7 parameters, all zero

size no yes yes number loaded (at) size. (default: same as design-
size)

skewchar no no yes number default: TeX’s \skewchar

type yes no yes string basic type of this font

format no no yes string disk format type

embedding no no yes string pdf inclusion

filename no no yes string the name of the font on disk

tounicode no yes yes number When this is set to 1 LuaTgX assumes per-

glyph tounicode entries are present in the

font.
Font structure 69 ! 0/‘[

stretch no
shrink no

step no
expansion factor no

attributes no
cache no
nomath no
oldmath no
slant no
extent no

no

no

no
no

no
no

no

no

no

no

yes

yes

yes
no

yes
yes

yes

yes

yes

yes

number

number

number
number

string
string

boolean

boolean

number

number

the ‘stretch’ value from \expandglyphsin-
font

the ‘shrink’ value from \expandglyphsin-
font

the ‘step’ value from \expandglyphsinfont
the actual expansion factor of an expanded
font

the \pdffontattr

This key controls caching of the Lua table
on the TEX end where yes means: use a ref-
erence to the table that is passed to LuaTgX
(this is the default), and no no means: don't
store the table reference, don’t cache any
Lua data for this font while renew means:
don’t store the table reference, but save a
reference to the table that is created at the
first access to one of its fields in font. Note:
the saved reference is thread-local, so be
careful when you are using coroutines: an
error will be thrown if the table has been
cached in one thread, but you reference it
from another thread.

This key allows a minor speedup for text
fonts. If it is present and true, then LuaTgX
will not check the character entries for math-
specific keys.

This key flags a font as representing an old
school TeX math font and disables the Open-
Type code path.

This has the same semantics as the Slant-
Font operator in font map files.

This has the same semantics as the Extend -
Font operator in font map files.

The key name is always required. The keys stretch, shrink, step only have meaning when used
together: they can be used to replace a post-loading \expandglyphsinfont command. The
auto_expand option is not supported in LuaTgX. In fact, the primitives that create expanded or
protruding copies are probably only useful when used with traditional fonts because all these
extra OpenType properties are kept out of the picture. The expansion factor is value that
can be present inside a font in font.fonts. It is the actual expansion factor (a value between
-shrink and stretch, with step step) of a font that was automatically generated by the font

expansion algorithm.

Because we store the actual state of expansion with each glyph and don’t have special font
instances, we can change some font related parameters before lines are constructed, like:

font.setexpansion(font.current(),100,100,20)

i 70 Font structure

This is mostly meant for experiments (or an optimizing routing written in Lua) so there is no
primitive.

The key attributes can be used to set font attributes in the pdf file. The key used is set by the
engine when a font is actively in use, this makes sure that the font’s definition is written to the
output file (dvi or pdf). The tfm reader sets it to false. The direction is a number signalling the
‘normal’ direction for this font. There are sixteen possibilities:

number meaning number meaning

0 LT 8 TT
1 LL 9 TL
2 LB 10 B
3 LR 11 TR
4 RT 12 BT
5 RL 13 BL
6 RB 14 BB
7 RR 15 BR

These are Omega-style direction abbreviations: the first character indicates the ‘first’ edge of
the character glyphs (the edge that is seen first in the writing direction), the second the ‘top’
side. Keep in mind that LuaTgX has a bit different directional model so these values are not used
for anything.

The parameters is a hash with mixed key types. There are seven possible string keys, as well as
a number of integer indices (these start from 8 up). The seven strings are actually used instead
of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

name remapping
slant 1
space
space_stretch
space shrink
x_height

quad
extra_space

N O O W0N

The keys type, format, embedding, fullname and filename are used to embed OpenType fonts
in the result pdf.

The characters table is a list of character hashes indexed by an integer number. The number
is the ‘internal code’ TEX knows this character by.

Two very special string indexes can be used also: left boundary is a virtual character whose
ligatures and kerns are used to handle word boundary processing. right boundary is similar
but not actually used for anything (yet).

Other index keys are ignored.

Each character hash itself is a hash. For example, here is the character ‘f’ (decimal 102) in the
font cmrl® at 10pt:

Font structure 71 | 0

[102] = {

['width'] = 200250,
['height'] = 455111,

['depth'] = 0,

['italic'] = 50973,

['kerns'] = {
[63]
[93]
[39]
[33]
[41]

50973

}I

['ligatures'] = {

[102] = {
['char']
['type']

},

[108] = {
['char']
['type'l

b

[105] = {
['char']
['type']

}

50973,
50973,
50973,
50973,

11,

13,

12,

The following top-level keys can be present inside a character hash:

key vf
width yes
height no
depth no
italic no
top accent no
bot accent no

left _protruding no
right protruding no

expansion factor no
tounicode no
next no
extensible no
vert variants no

// \\
\0/‘, 72 Font structure

tfm
yes
yes
yes
yes
no

no

no
no
no
no

yes
yes
no

used
yes
yes
yes
yes
maybe

maybe

maybe
maybe
maybe
maybe

yes
yes
yes

type

number
number
number
number
number

number

number
number
number
string

number
table
table

description

character’s width, in sp (default 0)
character’s height, in sp (default 0)
character’s depth, in sp (default 0)
character’s italic correction, in sp (default zero)
character’s top accent alignment place, in sp
(default zero)

character’s bottom accent alignment place,
in sp (default zero)

character’s \1lpcode

character’s \rpcode

character’s \efcode

character’s Unicode equivalent(s), in utf-16BE
hexadecimal format

the ‘next larger’ character index

the constituent parts of an extensible recipe
constituent parts of a vertical variant set

horiz variants no no yes table constituent parts of a horizontal variant set

kerns no yes yes table kerning information

ligatures no yes yes table ligaturing information

commands yes no yes array virtual font commands

name no no no string the character (PostScript) name

index no no yes number the (OpenType or TrueType) font glyph index
used no yes yes boolean typeset already (default: false)?

mathkern no no yes table math cut-in specifications

The values of top accent, bot accent and mathkern are used only for math accent and super-
script placement, see the math chapter 83 in this manual for details.

The values of left protruding and right protruding are used only when \protrudechars is
non-zero.

Whether or not expansion factor is used depends on the font’s global expansion settings, as
well as on the value of \adjustspacing.

The usage of tounicode is this: if this font specifies a tounicode=1 at the top level, then LuaTgX
will construct a /ToUnicode entry for the pdf font (or font subset) based on the character-level
tounicode strings, where they are available. If a character does not have a sensible Unicode
equivalent, do not provide a string either (no empty strings).

If the font level tounicode is not set, then LuaTgX will build up /ToUnicode based on the TgX
code points you used, and any character-level tounicodes will be ignored. The string format
is exactly the format that is expected by Adobe CMap files (utf-16BE in hexadecimal encoding),
minus the enclosing angle brackets. For instance the tounicode for a fi ligature would be
00660069. When you pass a number the conversion will be done for you.

The presence of extensible will overrule next, if that is also present. It in in turn can be
overruled by vert variants.

The extensible table is very simple:

key type description

top number top character index

mid number middle character index
bot number bottom character index
rep number repeatable character index

The horiz variants and vert variants are arrays of components. Each of those components
is itself a hash of up to five keys:

key type explanation

glyph number The character index. Note that this is an encoding number, not a name.
extender number One (1) if this part is repeatable, zero (0) otherwise.

start number The maximum overlap at the starting side (in scaled points).

end number The maximum overlap at the ending side (in scaled points).

advance number The total advance width of this item. It can be zero or missing, then the
natural size of the glyph for character component is used.

Font structure 73 x\

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either
a non-negative integer or the string value right boundary), with the values the kerning to be
applied, in scaled points.

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as
either a non-negative integer or the string value right boundary), with the values being yet
another small hash, with two fields:

key type description
type number the type of this ligature command, default O
char number the character index of the resultant ligature

The char field in a ligature is required.

The type field inside a ligature is the numerical or string value of one of the eight possible
ligature types supported by TeX. When TgX inserts a new ligature, it puts the new glyph in the
middle of the left and right glyphs. The original left and right glyphs can optionally be retained,
and when at least one of them is kept, it is also possible to move the new ‘insertion point’ forward
one or two places. The glyph that ends up to the right of the insertion point will become the
next ‘left’.

textual (Knuth) number string result

lL+r=:n 0 =: [n

L+r=:]n 1 =] [nr
1L+r |=:n 2 |=: | tn
1L+ r |=:]n 3 =] | tnr
L+r=:|>n 5 =:|> nir
1L+r |=:>n 6 |=:> 1|n
L+r |=:]>n 7 |=:1> 1|nr
L+r |[=:]>>n 11 |=:]>> 1ln|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature
replaces both original glyphs. In this table the | indicates the final insertion point.

The commands array is explained below.

5.2 Real fonts

Whether or not a TgX font is a ‘real’ font that should be written to the pdf document is decided
by the type value in the top-level font structure. If the value is real, then this is a proper font,
and the inclusion mechanism will attempt to add the needed font object definitions to the pdf.
Values for type are:

value description
real this is a base font
virtual thisis a virtual font

The actions to be taken depend on a number of different variables:

\0/‘, 74 Font structure

« Whether the used font fits in an 8-bit encoding scheme or not.
« The type of the disk font file.
« The level of embedding requested.

A font that uses anything other than an 8-bit encoding vector has to be written to the pdf in a
different way.

The rule is: if the font table has encodingbytes set to 2, then this is a wide font, in all other cases
it isn’t. The value 2 is the default for OpenType and TrueType fonts loaded via Lua. For Typel
fonts, you have to set encodingbytes to 2 explicitly. For pk bitmap fonts, wide font encoding is
not supported at all.

If no special care is needed, LuaTgX currently falls back to the mapfile-based solution used by
pdfTEX and dvips. This behaviour might silently be removed in the future, in which case the
related primitives and Lua functions will become no-ops.

If a ‘wide’ font is used, the new subsystem kicks in, and some extra fields have to be present in
the font structure. In this case, LuaTgX does not use a map file at all.

The extra fields are: format, embedding, fullname, cidinfo (as explained above), filename,
and the index key in the separate characters.

Values for format are:

value description
typel this is a PostScript Typel font
type3 this is a bitmapped (pk) font

truetype thisis a TrueType or TrueType-based OpenType font
opentype this is a PostScript-based OpenType font

type3 fonts are provided for backward compatibility only, and do not support the new wide
encoding options.

Values for embedding are:

value description

no don’t embed the font at all
subset include and atttempt to subset the font
full include this font in its entirety

The other fields are used as follows: The fullname will be the PostScript/pdf font name. The
cidinfo will be used as the character set (the CID /0rdering and /Registry keys). The file-
name points to the actual font file. If you include the full path in the filename or if the file is in
the local directory, LuaTgX will run a little bit more efficient because it will not have to re-run
the find xxx_file callback in that case.

Be careful: when mixing old and new fonts in one document, it is possible to create PostScript
name clashes that can result in printing errors. When this happens, you have to change the
fullname of the font.

Typeset strings are written out in a wide format using 2 bytes per glyph, using the index key
in the character information as value. The overall effect is like having an encoding based on
numbers instead of traditional (PostScript) name-based reencoding. The way to get the correct

Font structure 75 | 0

index numbers for Typel fonts is by loading the font via fontloader.open and use the table
indices as index fields.

In order to make sure that cut and paste of the final document works okay you can best make
sure that there is a tounicode vector enforced.

5.3 Virtual fonts

5.3.1 The structure

You have to take the following steps if you want LuaTgX to treat the returned table from de-
fine font as a virtual font:

« Set the top-level key type to virtual.
« Make sure there is at least one valid entry in fonts (see below).
« Give a commands array to every character (see below).

The presence of the toplevel type key with the specific value virtual will trigger handling of
the rest of the special virtual font fields in the table, but the mere existence of 'type’ is enough
to prevent LuaTgX from looking for a virtual font on its own.

Therefore, this also works ‘in reverse’: if you are absolutely certain that a font is not a virtual
font, assigning the value base or real to type will inhibit LuaTgX from looking for a virtual font
file, thereby saving you a disk search.

The fonts is another Lua array. The values are one- or two-key hashes themselves, each entry
indicating one of the base fonts in a virtual font. In case your font is referring to itself, you can
use the font.nextid () function which returns the index of the next to be defined font which is
probably the currently defined one.

An example makes this easy to understand

fonts = {
{ name = 'ptmr8a', size = 655360 },
{ name = 'psyr', size = 600000 },
{id =38 }

}

says that the first referenced font (index 1) in this virtual font is pt rmr8a loaded at 10pt, and the
second is psyr loaded at a little over 9pt. The third one is previously defined font that is known
to LuaTgX as font id ‘38°.

The array index numbers are used by the character command definitions that are part of each
character.

The commands array is a hash where each item is another small array, with the first entry rep-
resenting a command and the extra items being the parameters to that command. The allowed
commands and their arguments are:

command name arguments type description
font 1 number select a new font from the local fonts table

\0/‘, 76 Font structure

char 1 number typeset this character number from the current
font, and move right by the character’s width

node 1 node output this node (list), and move right by the width
of this list

slot 2 2 numbers a shortcut for the combination of a font and char
command

push 0 save current position

nop 0 do nothing

pop 0 pop position

rule 2 2 numbers output a rule ht * wd, and move right.

down 1 number move down on the page

right 1 number move right on the page

special 1 string output a \special command

pdf 2 2 strings output a pdf literal, the first string is one of ori-
gin, page, direct or raw; if you have one string
only origin is assumed

lua 1 string execute a Lua script (at \latelua time)

image 1 image output an image (the argument can be either an
<image> variable or an image spec table)

comment any any the arguments of this command are ignored

When a font id is set to O then it will be replaced by the currently assigned font id. This pre-
vents the need for hackery with future id’s (normally one could use font.nextid but when more
complex fonts are built in the meantime other instances could have been loaded.

Here is a rather elaborate glyph commands example:

commands = {

{ "push" }, -- remember where we are
{ "right", 5000 }, -- move right about 0.08pt
{ "font", 3 }, -- select the fonts[3] entry
{ "char", 97 }, -- place character 97 (ASCII 'a')
{ "pop" 1}, -- go all the way back
{ "down", -200000 }, -- move upwards by about 3pt
{ "special", "pdf: 1 0 0 rg" } -- switch to red color
-- { "pdf", "origin", "1 0 0 rg" } -- switch to red color (alternative)
{ "rule", 500000, 20000 } -- draw a bar
{ "special", "pdf: 0 g" } -- back to black
-- { "pdf", "origin", "0 g" } -- back to black (alternative)

The default value for font is always 1 at the start of the commands array. Therefore, if the
virtual font is essentially only a re-encoding, then you do usually not have create an explicit
‘font’ command in the array.

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.
For correct vertical placement, an extra down command may be needed.
Font structure 77 | 0/‘[

Regardless of the amount of movement you create within the commands, the output pointer will
always move by exactly the width that was given in the width key of the character hash. Any
movements that take place inside the commands array are ignored on the upper level.

The special can have a pdf:, pdf:origin:, pdf:page:, pdf:direct: or pdf:raw: prefix. When
you have to concatenate strings using the pdf command might be more efficient.

5.3.2 Artificial fonts

Even in a ‘real’ font, there can be virtual characters. When LuaTgX encounters a commands field
inside a character when it becomes time to typeset the character, it will interpret the commands,
just like for a true virtual character. In this case, if you have created no ‘fonts’ array, then the
default (and only) ‘base’ font is taken to be the current font itself. In practice, this means that
you can create virtual duplicates of existing characters which is useful if you want to create
composite characters.

Note: this feature does not work the other way around. There can not be ‘real’ characters in a
virtual font! You cannot use this technique for font re-encoding either; you need a truly virtual
font for that (because characters that are already present cannot be altered).

5.3.3 Example virtual font

Finally, here is a plain TgX input file with a virtual font demonstration:

\directlua {
callback.register('define font',
function (name,size)

if name == 'cmrlO-red' then
f = font.read tfm('cmrl0',size)
f.name = 'cmrlO-red'
f.type = 'virtual'
f.fonts = {{ name = 'cmrl0', size = size }}

for i,v in pairs(f.characters) do
if (string.char(i)):find('[tacohanshartmut]') then
v.commands = {
{'special','pdf: 1 0 0 rg'},
{'char',i},
{'special', 'pdf: 0 g'},
}
else
v.commands = {{'char',i}}
end
end
else
f = font.read tfm(name,size)
end
return f

0/‘[78 Font structure

end

\font\myfont = cmrl0-red at 10pt \myfont This is a line of text \par
\font\myfontx= cmrl@ at 10pt \myfontx Here is another line of text \par

5.4 The font library

The font library provides the interface into the internals of the font system, and also it contains
helper functions to load traditional TgX font metrics formats. Other font loading functionality is
provided by the fontloader library that will be discussed in the next section.

5.4.1 Loading a TFM file

The behavior documented in this subsection is considered stable in the sense that there will not
be backward-incompatible changes any more.

<table> fnt =
font.read tfm(<string> name, <number> s)

The number is a bit special:

« [If it is positive, it specifies an ‘at size’ in scaled points.
« Ifit is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of
the font.

The internal structure of the metrics font table that is returned is explained in chapter 5.

5.4.2 Loading a VF file

The behavior documented in this subsection is considered stable in the sense that there will not
be backward-incompatible changes any more.

<table> vf fnt =
font.read vf(<string> name, <number> s)

The meaning of the number s and the format of the returned table are similar to the ones in the
read tfm() function.
5.4.3 The fonts array

The whole table of TEX fonts is accessible from Lua using a virtual array.

font.fonts[n] = { ... }
<table> f = font.fonts[n]

// \\
Font structure 79 | 0/‘[

See chapter 5 for the structure of the tables. Because this is a virtual array, you cannot call
pairs on it, but see below for the font.each iterator.

The two metatable functions implementing the virtual array are:

<table> f = font.getfont(<number> n)
font.setfont(<number> n, <table> f)

Note that at the moment, each access to the font. fonts or call to font.getfont creates a Lua
table for the whole font. This process can be quite slow. In a later version of LuaTgX, this
interface will change (it will start using userdata objects instead of actual tables).

Also note the following: assignments can only be made to fonts that have already been defined
in TgX, but have not been accessed at all since that definition. This limits the usability of the
write access to font.fonts quite a lot, a less stringent ruleset will likely be implemented later.
5.4.4 Checking a font’s status

You can test for the status of a font by calling this function:

<boolean> f =
font.frozen(<number> n)

The return value is one of true (unassignable), false (can be changed) or nil (not a valid font
at all).

5.4.5 Defining a font directly

You can define your own font into font. fonts by calling this function:

<number> i =
font.define(<table> f)

The return value is the internal id number of the defined font (the index into font. fonts). If the
font creation fails, an error is raised. The table is a font structure, as explained in chapter 5. An
alternative call is:

<number> i =
font.define(<number> n, <table> f)

Where the first argument is a reserved font id (see below).

5.4.6 Extending a font

Within reasonable bounds you can extend a font after it has been defined. Because some prop-
erties are best left unchanged this is limited to adding characters.

font.addcharacters(<number n>, <table> f)

\0/‘, 80 Font structure

The table passed can have the fields characters which is a (sub)table like the one used in define,
and for virtual fonts a fonts table can be added. The characters defined in the characters table
are added (when not yet present) or replace an existing entry. Keep in mind that replacing can
have side effects because a character already can have been used. Instead of posing restrictions
we expect the user to be careful. (The setfont helper is a more drastic replacer.)

5.4.7 Projected next font id

<number> i =
font.nextid()

This returns the font id number that would be returned by a font.define call if it was executed
at this spot in the code flow. This is useful for virtual fonts that need to reference themselves.
If you pass true as argument, the id gets reserved and you can pass to font.define as first
argument. This can be handy when you create complex virtual fonts.

<number> i =
font.nextid(true)

5.4.8 Font id

<number> i =
font.id(<string> csname)

This returns the font id associated with csname string, or —1 if csname is not defined.

5.4.9 Currently active font

<number> i = font.current()
font.current(<number> i)

This gets or sets the currently used font number.

5.4.10 Maximum font id

<number> i =
font.max()

This is the largest used index in font. fonts.

5.4.11 Iterating over all fonts

for i,v in font.each() do

end

Font structure 81 ! 0

This is an iterator over each of the defined TgX fonts. The first returned value is the index in
font.fonts, the second the font itself, as a Lua table. The indices are listed incrementally, but
they do not always form an array of consecutive numbers: in some cases there can be holes in
the sequence.

0/‘[82 Font structure

6 Math

The handling of mathematics in LuaTgX differs quite a bit from how TgX82 (and therefore pdfIgX)
handles math. First, LuaTgX adds primitives and extends some others so that Unicode input can
be used easily. Second, all of TEX82’s internal special values (for example for operator spacing)
have been made accessible and changeable via control sequences. Third, there are extensions
that make it easier to use OpenType math fonts. And finally, there are some extensions that have
been proposed or considered in the past that are now added to the engine.

6.1 The current math style

It is possible to discover the math style that will be used for a formula in an expandable fashion
(while the math list is still being read). To make this possible, LuaTgX adds the new primitive:
\mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only be read,
not set.

6.1.1 \mathstyle

The returned value is between 0 and 7 (in math mode), or —1 (all other modes). For easy testing,
the eight math style commands have been altered so that the can be used as numeric values, so
you can write code like this:

\ifnum\mathstyle=\textstyle
\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle
\message{cramped text style}

\fi \fi

Sometimes you won’t get what you expect so a bit of explanation might help to understand what
happens. When math is parsed and expanded it gets turned into a linked list. In a second pass
the formula will be build. This has to do with the fact that in order to determine the automatically
chosen sizes (in for instance fractions) following content can influence preceding sizes. A side
effect of this is for instance that one cannot change the definition of a font family (and thereby
reusing numbers) because the number that got used is stored and used in the second pass (so
changing \fam 12 mid-formula spoils over to preceding use of that family).

The style switching primitives like \textstyle are turned into nodes so the styles set there are
frozen. The \mathchoice primitive results in four lists being constructed of which one is used
in the second pass. The fact that some automatic styles are not yet known also means that the
\mathstyle primitive expands to the current style which can of course be different from the one
really used. It’s a snapshot of the first pass state. As a consequence in the following example
you get a style number (first pass) typeset that can actually differ from the used style (second
pass). In the case of a math choice used ungrouped, the chosen style is used after the choice
too, unless you group.

[a:\mathstyle]\quad

Math 83 !

\bgroup
\mathchoice

{\bf \scriptstyle (x:d :\mathstyle)}
{\bf \scriptscriptstyle (x:t :\mathstyle)}
{\bf \scriptscriptstyle (x:s :\mathstyle)}
{\bf \scriptscriptstyle (x:ss:\mathstyle)}

\egroup

\quad[b:\mathstyle]\quad

\mathchoice
{\bf \scriptstyle (y:d :\mathstyle)}
{\bf \scriptscriptstyle (y:t :\mathstyle)}
{\bf \scriptscriptstyle (y:s :\mathstyle)}
{\bf \scriptscriptstyle (y:ss:\mathstyle)}

\quad[c:\mathstyle]\quad

\bgroup

\mathchoice
{\bf \scriptstyle (z:d :\mathstyle)}
{\bf \scriptscriptstyle (z:t :\mathstyle)}
{\bf \scriptscriptstyle (z:s :\mathstyle)}
{\bf \scriptscriptstyle (z:ss:\mathstyle)}

\egroup

\quad[d:\mathstyle]

This gives:

[a:0] x:d:4) [b:0] (y:d:4) [c:0] (z:s:6) [d:0]

[a:2] &t:6) [b:2] (y:t:6) [c:2] (z:s5:6) [d:2]

Using \begingroup ... \endgroup instead gives:

[a:0] x:d:4) [b:0] (y:s:6)

[@a:2] &:t:6) [b:2] (y:s5:6)

This might look wrong but it’s just a side effect of \mathstyle expanding to the current (first
pass) style and the number being injected in the list that gets converted in the second pass. It all
makes sense and it illustrates the importance of grouping. In fact, the math choice style being
effective afterwards has advantages. It would be hard to get it otherwise.

6.1.2 \Ustack

There are a few math commands in TgX where the style that will be used is not known straight
from the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would
therefore normally return wrong values for \mathstyle. To fix this, LuaTgX introduces a special

prefix command: \Ustack:

$\Ustack {a \over b}$

84 Math

[c:0]

[c:2]

(z:5s5:6)

(z:85:6)

[d:0]

[d:2]

The \Ustack command will scan the next brace and start a new math group with the correct
(numerator) math style.

6.2 Unicode math characters
Character handling is now extended up to the full Unicode range (the \U prefix), which is com-
patible with XqTEX.

The math primitives from TgX are kept as they are, except for the ones that convert from input to
math commands: mathcode, and delcode. These two now allow for a 21-bit character argument
on the left hand side of the equals sign.

Some of the new LuaTgX primitives read more than one separate value. This is shown in the
tables below by a plus sign in the second column.

The input for such primitives would look like this:
\def\overbrace{\Umathaccent 0 1 "23DE }

The altered TEX82 primitives are:

primitive min max min max
\mathcode O 10FFFF = 0 8000
\delcode O 10FFFF = 0 FFFFFF

The unaltered ones are:

primitive min max
\mathchardef 0 8000
\mathchar 0 7FFF
\mathaccent O 7FFF
\delimiter 0 7FFFFFF
\radical 0 7FFFFFF

For practical reasons \mathchardef will silently accept values larger that ©x8000 and interpret
it as \Umathcharnumdef. This is needed to satisfy older macro packages.

The following new primitives are compatible with XqTEX:

primitive min max min max
\Umathchardef 0+0+0 7+FF+10FFFF!
\Umathcharnumdef® -80000000 7FFFFFFF3
\Umathcode 0 10FFFF = 0+040 7+FF+10FFFF!
\Udelcode 0 10FFFF = 040 FF+10FFFF2
\Umathchar 0+0+0 7+FF+10FFFF
\Umathaccent 0+0+0 7+FF+10FFFF24
\Udelimiter 0+0+0 7+FF+10FFFF>
\Uradical 0+0 FF+10FFFF2
\Umathcharnum -80000000 7FFFFFFF>
\Umathcodenum 0 10FFFF = -80000000 7FFFFFFF3
\Udelcodenum 0 10FFFF = -80000000 7FFFFFFF3

Math 85 (0/‘,

Specifications typically look like:

\Umathchardef\xx="1"0"456
\Umathcode 123="1"0"789

Note 1: The new primitives that deal with delimiter-style objects do not set up a ‘large family’.
Selecting a suitable size for display purposes is expected to be dealt with by the font via the
\Umathoperatorsize parameter (more information can be found in a following section).

Note 2: For these three primitives, all information is packed into a single signed integer. For
the first two (\Umathcharnum and \Umathcodenum), the lowest 21 bits are the character code,
the 3 bits above that represent the math class, and the family data is kept in the topmost bits
(This means that the values for math families 128-255 are actually negative). For \Udelcodenum
there is no math class. The math family information is stored in the bits directly on top of the
character code. Using these three commands is not as natural as using the two- and three-value
commands, so unless you know exactly what you are doing and absolutely require the speedup
resulting from the faster input scanning, it is better to use the verbose commands instead.

Note 3: The \Umathaccent command accepts optional keywords to control various details re-
garding math accents. See section 6.12 below for details.

New primitives that exist in LuaTgX only (all of these will be explained in following sections):

primitive value range (in hex)
\Uroot 0+0-FF+10FFFF2
\Uoverdelimiter 0+0-FF+10FFFF?2
\Uunderdelimiter 0+0-FF+10FFFF2
\Udelimiterover 0+0-FF+10FFFF2
\Udelimiterunder 0+0-FF+10FFFF?

6.3 Cramped math styles
LuaTgX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle
\crampedtextstyle
\crampedscriptstyle
\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as
arguments to the math parameter settings that will be added shortly.

In Eijkhouts “TgX by Topic” the rules for handling styles in scripts are described as follows:

« In any style superscripts and subscripts are taken from the next smaller style. Exception: in
display style they are in script style.

« Subscripts are always in the cramped variant of the style; superscripts are only cramped if
the original style was cramped.

« Inan..\over.. formulain any style the numerator and denominator are taken from the next
smaller style.

0/‘, 86 Math

« The denominator is always in cramped style; the numerator is only in cramped style if the
original style was cramped.
« Formulas under a \sqrt or \overline are in cramped style.

In LuaTgX one can set the styles in more detail which means that you sometimes have to set
both normal and cramped styles to get the effect you want. If we force styles in the script using
\scriptstyle and \crampedscriptstyle we get this:

default bX=xx

X=XX

: X=XX
script b =xx
3 X=XX
crampedscript b Z7%

Now we set the following parameters

\Umathordrelspacing\scriptstyle=30mu
\Umathordordspacing\scriptstyle=30mu

This gives:

default bX_.x~ ~

script bY X X
3 X=XX

crampedscript b Z7%

But, as this is not what is expected (visually) we should say:

\Umathordrelspacing\scriptstyle=30mu
\Umathordordspacing\scriptstyle=30mu
\Umathordrelspacing\crampedscriptstyle=30mu
\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

default by IX X
script bY I} %
crampedscript b} ¥ X

6.4 Math parameter settings

In LuaTgX, the font dimension parameters that TgX used in math typesetting are now accessible
via primitive commands. In fact, refactoring of the math engine has resulted in many more
parameters than were accessible before.

primitive name description

\Umathquad the width of 18 mu’s

\Umathaxis height of the vertical center axis of the math formula above the
baseline

\Umathoperatorsize minimum size of large operators in display mode

\Umathoverbarkern vertical clearance above the rule

\Umathoverbarrule the width of the rule

Math 87 !

\Umathoverbarvgap
\Umathunderbarkern
\Umathunderbarrule
\Umathunderbarvgap
\Umathradicalkern
\Umathradicalrule
\Umathradicalvgap

\Umathradicaldegreebefore

\Umathradicaldegreeafter

\Umathradicaldegreeraise

\Umathstackvgap
\Umathstacknumup
\Umathstackdenomdown
\Umathfractionrule
\Umathfractionnumvgap
\Umathfractionnumup
\Umathfractiondenomvgap
\Umathfractiondenomdown
\Umathfractiondelsize
\Umathlimitabovevgap
\Umathlimitabovebgap
\Umathlimitabovekern
\Umathlimitbelowvgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Umathoverdelimitervgap
\Umathoverdelimiterbgap
\Umathunderdelimitervgap
\Umathunderdelimiterbgap
\Umathsubshiftdrop
\Umathsubshiftdown
\Umathsupshiftdrop
\Umathsupshiftup
\Umathsubsupshiftdown
\Umathsubtopmax

\Umathsupbottommin
\Umathsupsubbottommax

\Umathsubsupvgap

88 Math

vertical clearance below the rule

vertical clearance below the rule

the width of the rule

vertical clearance above the rule

vertical clearance above the rule

the width of the rule

vertical clearance below the rule

the forward kern that takes place before placement of the radical
degree

the backward kern that takes place after placement of the radi-
cal degree

this is the percentage of the total height and depth of the radical
sign that the degree is raised by; it is expressed in percents, so
60% is expressed as the integer 60

vertical clearance between the two elements in a \atop stack
numerator shift upward in \atop stack

denominator shift downward in \atop stack

the width of the rule in a \over

vertical clearance between the numerator and the rule
numerator shift upward in \over

vertical clearance between the denominator and the rule
denominator shift downward in \over

minimum delimiter size for \...withdelims

vertical clearance for limits above operators

vertical baseline clearance for limits above operators

space reserved at the top of the limit

vertical clearance for limits below operators

vertical baseline clearance for limits below operators

space reserved at the bottom of the limit

vertical clearance for limits above delimiters

vertical baseline clearance for limits above delimiters

vertical clearance for limits below delimiters

vertical baseline clearance for limits below delimiters
subscript drop for boxes and subformulas

subscript drop for characters

superscript drop (raise, actually) for boxes and subformulas
superscript raise for characters

subscript drop in the presence of a superscript

the top of standalone subscripts cannot be higher than this above
the baseline

the bottom of standalone superscripts cannot be less than this
above the baseline

the bottom of the superscript of a combined super- and subscript
be at least as high as this above the baseline

vertical clearance between super- and subscript

\Umathspaceafterscript additional space added after a super- or subscript
\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

Each of the parameters in this section can be set by a command like this:
\Umathquad\displaystyle=1lem

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

6.5 Skips around display math

The injection of \abovedisplayskip and \belowdisplayskip is not symmetrical. An above one
is always inserted, also when zero, but the below is only inserted when larger than zero. Espe-
cially the later makes it sometimes hard to fully control spacing. Therefore LuaTgX comes with
a new directive: \mathdisplayskipmode. The following values apply:

0 normal TgX behaviour

1 always (same as 0)

2 only when not zero

3 never, not even when not zero

6.6 Font-based Math Parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have
to set each of them by hand. For this reason, LuaTgX initializes a bunch of these parameters
whenever you assign a font identifier to a math family based on either the traditional math font
dimensions in the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy
and cmex), or based on the named values in a potential MathConstants table when the font is
loaded via Lua. If there is a MathConstants table, this takes precedence over font dimensions,
and in that case no attention is paid to which family is being assigned to: the MathConstants
tables in the last assigned family sets all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names
match those using in the TgXbook. Assignments to \textfont set the values for the cramped and
uncramped display and text styles, \scriptfont sets the script styles, and \scriptscriptfont
sets the scriptscript styles, so we have eight parameters for three font sizes. In the tfm case,
assignments only happen in family 2 and family 3 (and of course only for the parameters for
which there are font dimensions).

Besides the parameters below, LuaTgX also looks at the ‘space’ font dimension parameter. For
math fonts, this should be set to zero.

variable style default value opentype default value tfm
\Umathaxis - AxisHeight axis height
\Umathoperatorsize D, D’ DisplayOperatorMinHeight 6
\Umathfractiondelsize D, D’ FractionDelimiterDisplayStyleSize? delim1

TT,S, S, SS,SS’ FractionDelimiterSize® delim?2
\Umathfractiondenomdown D, D’ FractionDenominatorDisplayStyleShiftDown denoml

T, T,S,S’, SS, SS’ FractionDenominatorShiftDown denom?2

Math 89 {\0/‘,

\Umathfractiondenomvgap

\Umathfractionnumup

\Umathfractionnumvgap

\Umathfractionrule
\Umathskewedfractionhgap
\Umathskewedfractionvgap
\Umathlimitabovebgap
\Umathlimitabovekern
\Umathlimitabovevgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Umathlimitbelowvgap
\Umathoverdelimitervgap
\Umathoverdelimiterbgap
\Umathunderdelimitervgap
\Umathunderdelimiterbgap

D, D’

TT,S,5S’, SS, SS
D, D’
TT,S, S, SS, SS
D, D’

TT,S,S’,SS, SS

FractionDenominatorDisplayStyleGapMin

FractionDenominatorGapMin

FractionNumeratorDisplayStyleShiftUp

FractionNumeratorShiftUp

FractionNumeratorDisplayStyleGapMin

FractionNumeratorGapMin
FractionRuleThickness
SkewedFractionHorizontalGap
SkewedFractionVerticalGap
UpperLimitBaselineRiseMin

0 1

UpperLimitGapMin
LowerLimitBaselineDropMin

0 1

LowerLimitGapMin
StretchStackGapBelowMin
StretchStackTopShiftUp
StretchStackGapAboveMin
StretchStackBottomShiftDown

3*default rule thick-
ness
default rule thickness
numl

num?2
3*default rule thick-
ness
default rule thickness
default rule thickness
math quad/2
math x height

big op spacing3

big op spacingb

big op spacingl

big op spacing4

big op spacingb

big op spacing2

big op spacingl

big op spacing3

big op spacing?2

big op spacing4

\Umathoverbarkern - OverbarExtraAscender default rule thickness
\Umathoverbarrule - OverbarRuleThickness default rule thickness
\Umathoverbarvgap - OverbarVerticalGap 3*default rule thick-
ness
\Umathquad - 1 math_quad
\Umathradicalkern - RadicalExtraAscender default rule thickness
\Umathradicalrule - RadicalRuleThickness <not set>2
\Umathradicalvgap D, D’ RadicalDisplayStyleVerticalGap (default rule thickness+

(abs(math_x_height)/4))3

T T,S,S’, SS, SS’ RadicalVerticalGap (default rule thickness+

(abs(default rule thickness)/4))3

\Umathradicaldegreebefore
\Umathradicaldegreeafter
\Umathradicaldegreeraise
\Umathspaceafterscript
\Umathstackdenomdown
\Umathstacknumup

\Umathstackvgap

\Umathsubshiftdown
\Umathsubshiftdrop
\Umathsubsupshiftdown
\Umathsubtopmax
\Umathsubsupvgap

\Umathsupbottommin

\Umathsupshiftdrop
\Umathsupshiftup

90 Math

D, D’
T,T,S,S’, SS, SS’
D, D’
TT,S,S’, SS, SS
D, D’

T,T,S,5S’, SS, SS

RadicalKernBeforeDegree
RadicalKernAfterDegree
RadicalDegreeBottomRaisePercent
SpaceAfterScript
StackBottomDisplayStyleShiftDown
StackBottomShiftDown
StackTopDisplayStyleShiftUp
StackTopShiftUp
StackDisplayStyleGapMin

StackGapMin

SubscriptShiftDown

SubscriptBaselineDropMin

SubscriptShiftDownWithSuperscript®
or SubscriptShiftDown

SubscriptTopMax

SubSuperscriptGapMin

SuperscriptBottomMin

SuperscriptBaselineDropMax
SuperscriptShiftUp

<not set>2

<not set>2

<not set>27

script space?
denom1

denom?2

numl

num3
7*default rule thick-
ness
3*default rule thick-
ness

subl

sub _drop

sub2
(abs(math x height *
4)/5)
4*default rule thick-
ness
(abs(math x height)/
4)

sup_drop

supl

T, S, SS, SuperscriptShiftUp sup?2

D, T,S’, SS’ SuperscriptShiftUpCramped sup3
\Umathsupsubbottommax - SuperscriptBottomMaxWithSubscript (abs(math x height*
4)/5)
\Umathunderbarkern - UnderbarExtraDescender default rule thickness
\Umathunderbarrule - UnderbarRuleThickness default rule thickness
\Umathunderbarvgap - UnderbarVerticalGap 3*default rule thick-
ness
\Umathconnectoroverlapmin - MinConnectorOverlap 05

Note 1: OpenType fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set
\Umathquad to the font size of the used font, because these are not supported in the MATH table,

Note 2: Traditional tfm fonts do not set \Umathradicalrule because TEX82 uses the height of
the radical instead. When this parameter is indeed not set when LuaTgX has to typeset a radi-
cal, a backward compatibility mode will kick in that assumes that an oldstyle TgX font is used.
Also, they do not set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umath-
radicaldegreeraise. These are then automatically initialized to 5/18quad, —10/18quad, and
60.

Note 3: If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTgX
has to typeset a formula because this needs parameters from both family 2 and family 3. This
provides a partial backward compatibility with TgX82, but that compatibility is only partial: once
the \Umathradicalvgap is set, it will not be recalculated any more.

Note 4: When tfm fonts are used a similar situation arises with respect to \Umathspaceafter-
script: it is not set until the first time LuaTgX has to typeset a formula. This provides some
backward compatibility with TgX82. But once the \Umathspaceafterscript is set, \script-
space will never be looked at again.

Note 5: Traditional tfm fonts set \Umathconnectoroverlapmin to zero because TgX82 always
stacks extensibles without any overlap.

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType
fonts. In tfm font mode, it is artificially set to one scaled point more than the initial attempt’s
size, so that always the ‘first next’ will be tried, just like in TgX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that
is expressed in a percentage instead of as a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ Open-
Type math font Cambria, but it is useful enough to be added.

Note 9: FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually ex-
ist in the ‘standard’ OpenType math font Cambria, but were useful enough to be added.

6.7 Nolimit correction

There are two extra math parameters \Umathnolimitsupfactor and \Umathnolimitsubfactor
that were added to provide some control over how limits are spaced (for example the position of
super and subscripts after integral operators). They relate to an extra parameter \mathnolim-
itsmode. The half corrections are what happens when scripts are placed on above and below.
The problem with italic corrections is that officially that correction italic is used for above/below

Math 91 |

placement while advanced kerns are used for placement at the right end. The question is: how
often is this implemented, and if so, does the kerns assume correction too. Anyway, with this
parameter one can control it.

O O A R S

mode 0 1 2 3 4 8000
superscript 0 font 0 0 +ic/2 0
subscript -ic font 0 -ic/2 -ic/2 8000ic/1000

When the mode is set to one, the math parameters are used. This way a macro package writer
can decide what looks best. Given the current state of fonts in ConTgXt we currently use mode
1 with factor O for the superscript and 750 for the subscripts. Positive values are used for both
parameters but the subscript shifts to the left. A \mathnolimitsmode larger that 15 is considered
to be a factor for the subscript correction. This feature can be handy when experimenting.

6.8 Math italic mess

The \mathitalicsmode parameter can be set to 1 to force italic correction before noads that
represent some more complex structure (read: everything that is not an ord, bin, rel, open,
close, punct or inner). We show a Cambria example.

\mathitalicsmode = 0 T+1
\mathitalicsmode = 1 [T T+1

This kind of parameters relate to the fact that italic correction in OpenType math is bound to
fuzzy rules. So, control is the solution.

6.9 Script boxes

If you want typeset text in math macro packages often provide something \text which obeys the
script sizes. As the definition can be anything there is a good change that the kerning doesn’t
come out well when used in a script. Given that the first glyph ends up in an \hbox we have
some control over this. And, as a bonus we also added control over the normal sublist kerning.
The \mathscriptboxmode parameter defaults to 1.

forget about kerning

kern math sub lists with a valid glyph

also kern math sub boxes that have a valid glyph

only kern math sub boxes with a boundary node present

NN PR O

Here we show some examples. Of course this doesn’t solve all our problems, if only because
some fonts have characters with bounding boxes that compensate for italics, while other fonts
can lack kerns.

modern

$T {\tf fluff}$ ST {\tf fluff}s ST {\text{fluff}}s $T {\text{fluff}}$ $T {\text{\boundaryl fluff
mode 0 mode 1 mode 1 mode 2 mode 3

) 7 7 1 ,
Tfluff Ifluff Tﬂuﬁ Yﬂnﬁ Tﬂuﬂ

Math

lucidaot Thute Thufe THutr Thuff Toutr

pagella Terus Ty Thugs Tuse Tuss
cambria T fiute T T g Thugr T
dejavu T frurs T fruse T s Ty Ty

6.10 Unscaled fences

The \mathdelimitersmode primitive is experimental and deals with the following (potential)
problems. Three bits can be set. The first bit prevents an unwanted shift when the fence symbol
is not scaled (a cambria side effect). The second bit forces italic correction between a preceding
character ordinal and the fenced subformula, while the third bit turns that subformula into a
ordinary so that the same spacing applies as with unfenced variants. Here we show Cambria
(with \mathitalicsmode enabled).

\mathdelimitersmode = 0 [fi(x)
\mathdelimitersmode = 1 [f(x)
\mathdelimitersmode = 2 [i(x)
\mathdelimitersmode = 3 [f(x)
\mathdelimitersmode = 4 [f(x)
\mathdelimitersmode = 5 [fi(x)
\mathdelimitersmode = 6 [F(x)
\mathdelimitersmode = 7 [f(x)

So, when set to 7 fenced subformulas with unscaled delimiters come out the same as unfenced
ones. This can be handy for cases where one is forced to use \left and \right always because
of unpredictable content. As said, it’s an experimental features (which somehow fits in the
exceptional way fences are dealt with in the engine).

6.11 Math spacing setting

Besides the parameters mentioned in the previous sections, there are also 64 new primitives to
control the math spacing table (as explained in Chapter 18 of the TgXbook). The primitive names
are a simple matter of combining two math atom types, but for completeness’ sake, here is the
whole list:

\Umathordordspacing \Umathopopenspacing
\Umathordopspacing \Umathopclosespacing
\Umathordbinspacing \Umathoppunctspacing
\Umathordrelspacing \Umathopinnerspacing
\Umathordopenspacing \Umathbinordspacing
\Umathordclosespacing \Umathbinopspacing
\Umathordpunctspacing \Umathbinbinspacing
\Umathordinnerspacing \Umathbinrelspacing
\Umathopordspacing \Umathbinopenspacing
\Umathopopspacing \Umathbinclosespacing
\Umathopbinspacing \Umathbinpunctspacing
\Umathoprelspacing \Umathbininnerspacing

Math 93 |

\Umathrelordspacing
\Umathrelopspacing
\Umathrelbinspacing
\Umathrelrelspacing
\Umathrelopenspacing
\Umathrelclosespacing
\Umathrelpunctspacing
\Umathrelinnerspacing
\Umathopenordspacing
\Umathopenopspacing
\Umathopenbinspacing
\Umathopenrelspacing
\Umathopenopenspacing
\Umathopenclosespacing
\Umathopenpunctspacing
\Umathopeninnerspacing
\Umathcloseordspacing
\Umathcloseopspacing
\Umathclosebinspacing
\Umathcloserelspacing

\Umathcloseopenspacing
\Umathcloseclosespacing
\Umathclosepunctspacing
\Umathcloseinnerspacing
\Umathpunctordspacing
\Umathpunctopspacing
\Umathpunctbinspacing
\Umathpunctrelspacing
\Umathpunctopenspacing
\Umathpunctclosespacing
\Umathpunctpunctspacing
\Umathpunctinnerspacing
\Umathinnerordspacing
\Umathinneropspacing
\Umathinnerbinspacing
\Umathinnerrelspacing
\Umathinneropenspacing
\Umathinnerclosespacing
\Umathinnerpunctspacing
\Umathinnerinnerspacing

These parameters are of type \muskip, so setting a parameter can be done like this:
\Umathopordspacing\displaystyle=4mu plus 2mu

They are all initialized by initex to the values mentioned in the table in Chapter 18 of the
TgXbook.

Note 1: for ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and
\thickmuskip are treated especially. In their case a pointer to the corresponding internal para-
meter is saved, not the actual \muskip value. This means that any later changes to one of these
three parameters will be taken into account.

Note 2: Careful readers will realise that there are also primitives for the items marked * in the
TeXbook. These will not actually be used as those combinations of atoms cannot actually happen,
but it seemed better not to break orthogonality. They are initialized to zero.

6.12 Math accent handling

LuaTgX supports both top accents and bottom accents in math mode, and math accents stretch
automatically (if this is supported by the font the accent comes from, of course). Bottom and
combined accents as well as fixed-width math accents are controlled by optional keywords fol-
lowing \Umathaccent.

The keyword bottomafter \Umathaccent signals that a bottom accent is needed, and the keyword
both signals that both a top and a bottom accent are needed (in this case two accents need to
be specified, of course).

\0/‘, 94 Math

Then the set of three integers defining the accent is read. This set of integers can be prefixed by
the fixed keyword to indicate that a non-stretching variant is requested (in case of both accents,
this step is repeated).

A simple example:
\Umathaccent both fixed 0 0 "20D7 fixed 0 0 "20D7 {example}

If a math top accent has to be placed and the accentee is a character and has a non-zero top ac-
cent value, then this value will be used to place the accent instead of the \skewchar kern used
by TgX82.

The top accent value represents a vertical line somewhere in the accentee. The accent will be
shifted horizontally such that its own top accent line coincides with the one from the accentee.
If the top accent value of the accent is zero, then half the width of the accent followed by its
italic correction is used instead.

The vertical placement of a top accent depends on the x height of the font of the accentee (as
explained in the TEXbook), but if value that turns out to be zero and the font had a MathConstants
table, then AccentBaseHeight is used instead.

The vertical placement of a bottom accent is straight below the accentee, no correction takes
place.

Possible locations are top, bottom, both and center. When no location is given top is assumed.
An additional parameter fraction can be specified followed by a number; a value of for instance
1200 means that the criterium is 1.2 times the width of the nucleus. The fraction only applies
to the stepwise selected shapes and is mostly meant for the overlay location. It also works for
the other locations but then it concerns the width.

6.13 Math root extension

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its
syntax is an extension of \Uradical:

\Uradical <fam integer> <char integer> <radicand>
\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by the math parameters \Umathradicaldegreebefore,
\Umathradicaldegreeafter, and \Umathradicaldegreeraise. The degree will be typeset in
\scriptscriptstyle.

6.14 Math kerning in super- and subscripts

The character fields in a Lua-loaded OpenType math font can have a ‘mathkern’ table. The
format of this table is the same as the ‘mathkern’ table that is returned by the fontloader
library, except that all height and kern values have to be specified in actual scaled points.

When a super- or subscript has to be placed next to a math item, LuaTgX checks whether the
super- or subscript and the nucleus are both simple character items. If they are, and if the

Math 95 0

fonts of both character items are OpenType fonts (as opposed to legacy TgX fonts), then LuaTgX
will use the OpenType math algorithm for deciding on the horizontal placement of the super- or
subscript.

This works as follows:

« The vertical position of the script is calculated.

» The default horizontal position is flat next to the base character.

» For superscripts, the italic correction of the base character is added.

« For a superscript, two vertical values are calculated: the bottom of the script (after shifting
up), and the top of the base. For a subscript, the two values are the top of the (shifted down)
script, and the bottom of the base.

« For each of these two locations:

— find the math kern value at this height for the base (for a subscript placement, this is the
bottom right corner, for a superscript placement the top right corner)
— find the math kern value at this height for the script (for a subscript placement, this is the
top left corner, for a superscript placement the bottom left corner)
— add the found values together to get a preliminary result.
« The horizontal kern to be applied is the smallest of the two results from previous step.

The math kern value at a specific height is the kern value that is specified by the next higher
height and kern pair, or the highest one in the character (if there is no value high enough in the
character), or simply zero (if the character has no math kern pairs at all).

6.15 Scripts on horizontally extensible items like arrows

The primitives \Uunderdelimiter and \Uoverdelimiter allow the placement of a subscript or
superscript on an automatically extensible item and \Udelimiterunder and \Udelimiterover
allow the placement of an automatically extensible item as a subscript or superscript on a nu-
cleus. The input:

$\Uoverdelimiter 0 "2194 {\hbox{\strut overdelimiter}}$
$\Uunderdelimiter 0 "2194 {\hbox{\strut underdelimiter}}$
$\Udelimiterover 0 "2194 {\hbox{\strut delimiterover}}$
$\Udelimiterunder 0 "2194 {\hbox{\strut delimiterunder}}$

will render this:

overdelimiter -
delimiterover delimiterunder

underdelimiter

The vertical placements are controlled by \Umathunderdelimiterbgap, \Umathunderdelim-
itervgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit
placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable
scripted style, the subscript in \Uunderdelimiter is cramped as well.

These primitives accepts an option width specification. When used the also optional keywords
left, middle and right will determine what happens when a requested size can’t be met (which
can happen when we step to successive larger variants).

0/‘, 96 Math

An extra primitive \Uhextensible is available that can be used like this:
$\Uhextensible width 10cm 0 "2194%

This will render this:

Here you can also pass options, like:
$\Uhextensible width 1lpt middle 0 "2194%
This gives:

o

LuaTgX internally uses a structure that supports OpenType ‘MathVariants’ as well as tfm ‘exten-
sible recipes’. In most cases where font metrics are involved we have a different code path for
traditional fonts end OpenType fonts.

6.16 Extracting values

You can extract the components of a math character. Say that we have defined:
\Umathcode 1 2 3 4

then

[\Umathcharclassl] [\Umathcharfaml] [\Umathcharslotl]

will return:

[2] [3] [4]

These commands are provides as convenience. Before they came available you could do the
following:

\def\Umathcharclass{\directlua{tex.print(tex.getmathcode(token.scan int())[1])}}
\def\Umathcharfam {\directlua{tex.print(tex.getmathcode(token.scan int())[2])}}
\def\Umathcharslot {\directlua{tex.print(tex.getmathcode(token.scan int())[31)}}

6.17 fractions

The \abovewithdelims command accepts a keyword exact. When issued the extra space rela-
tive to the rule thickness is not added. One can of course use the \Umathfraction..gap com-
mands to influence the spacing. Also the rule is still positioned around the math axis.

$$ { {a} \abovewithdelims() exact 4pt {b} }$$

The math parameter table contains some parameters that specify a horizontal and vertical gap
for skewed fractions. Of course some guessing is needed in order to implement something that

Math 97 (0/‘,

uses them. And so we now provide a primitive similar to the other fraction related ones but with
a few options so that one can influence the rendering. Of course a user can also mess around a
bit with the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

{ {1} \Uskewed / <options> {2} }
{ {1} \Uskewedwithdelims / () <options> {2} }

where the options can be noaxis and exact. By default we add half the axis to the shifts and by
default we zero the width of the middle character. For Latin Modern The result looks as follows:

T+t z+Yo+x x4 (o)t z+ (Ys)+a
exact z4+ Y+ z+h+zr x+(9%)+z x4+ () +a
noaxis z4ah+x x4+ 12+z x+(afp)+x x4+ (172)+a
exact noaxis x+ah+z x+ 1o+ z+(ah)+z x4+ (1) +x

6.18 Last lines

There is a new primitive to control the overshoot in the calculation of the previous line in mid-
paragraph display math. The default value is 2 times the em width of the current font:

\predisplaygapfactor=2000

If you want to have the length of the last line independent of math i.e. you don’t want to revert
to a hack where you insert a fake display math formula in order to get the length of the last line,
the following will often work too:

\def\lastlinelength{\dimexpr
\directlua {tex.sprint (
(nodes.dimensions(node.tail(tex.lists.page head).list))

)}sp
\relax}

6.19 Other Math changes

6.19.1 Verbose versions of single-character math commands

LuaTgX defines six new primitives that have the same function as ~, , $, and $$:

primitive explanation

\Usuperscript Duplicates the functionality of ©

\Usubscript Duplicates the functionality of

\Ustartmath Duplicates the functionality of $, when used in non-math mode.
\Ustopmath Duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath Duplicates the functionality of $$, when used in non-math mode.
\Ustopdisplaymath Duplicates the functionality of $$, when used in display math mode.

0/‘, 98 Math

The \Ustopmath and \Ustopdisplaymath primitives check if the current math mode is the cor-
rect one (inline vs. displayed), but you can freely intermix the four mathon/mathoff commands
with explicit dollar sign(s).

6.19.2 Script commands \Unosuperscript and \Unosubscript

These two commands result in super- and subscripts but with the current style (at the time of
rendering). So,

$\Uhextensible width 1lpt middle 0 "2194$%

: 1_,1_,1_.,1
result51nx2—x2—x2—x2.

6.19.3 Allowed math commands in non-math modes

The commands \mathchar, and \Umathchar and control sequences that are the result of \math-
chardef or \Umathchardef are also acceptable in the horizontal and vertical modes. In those
cases, the \textfont from the requested math family is used.

6.20 Math surrounding skips

Inline math is surrounded by (optional) \mathsurround spacing but that is fixed dimension.
There is now an additional parameter \mathsurroundskip. When set to a non-zero value (or
zero with some stretch or shrink) this parameter will replace \mathsurround. By using an addi-
tional parameter instead of changing the nature of \mathsurround, we can remain compatible.
In the meantime a bit more control has been added via \mathsurroundmode. This directive can
take 6 values with zero being the default behaviour.

\mathsurround 10pt
\mathsurroundskip20pt

mode xxx Xx x x effect

0 XXX X x X obey \mathsurround when \mathsurroundskip is Opt
1 XXX x x X only add skip to the left

2 XXX x x X only add skip to the right

3 XXX x x X add skip to the left and right

4 XXX X x X ignore the skip setting, obey \mathsurround

5 XXX x x X disable all spacing around math

6 XXX x x X only apply \mathsurroundskip when also spacing

7 XXX x x X only apply \mathsurroundskip when no spacing

Method six omits the surround glue when there is (x)spacing glue present while method seven
does the opposite, the glue is only applied when there is (x)space glue present too. Anything
more fancy, like checking the begining or end of a paragraph (or edges of a box) would not be
robust anyway. If you want that you can write a callback that runs over a list and analyzes a
paragraph. Actually, in that case you could also inject glue (or set the properties of a math node)

Math 99 0

explicitly. So, these modes are in practice mostly useful for special purposes and experiments
(they originate in a tracker item). Keep in mind that this glue is part of the math node and not
always treated as normal glue: it travels with the begin and end math nodes. Also, method 6
and 7 will zero the skip related fields in a node when applicable in the first occasion that checks
them (linebreaking or packaging).

6.20.1 Delimiters: \Uleft, \Uniddle and \Uright

Normally you will force delimiters to certain sizes by putting an empty box or rule next to it. The
resulting delimiter will either be a character from the stepwise size range or an extensible. The
latter can be quite differently positioned that the characters as it depends on the fit as well as
the fact if the used characters in the font have depth or height. Commands like (plain TgXs) \big
need use this feature. In LuaTEX we provide a bit more control by three variants that supporting
optional parameters height, depth and axis. The following example uses this:

\Uleft height 30pt depth 10pt \Udelimiter "0 "0 "000028
\quad x\quad
\Umiddle height 40pt depth 15pt \Udelimiter "0 "0 "002016
\quad x\quad
\Uright height 30pt depth 1l0pt \Udelimiter "0 "0 "000029

\quad \quad \quad

\Uleft height 30pt depth 10pt axis \Udelimiter "0 "0 "000028
\quad x\quad

\Umiddle height 40pt depth 15pt axis \Udelimiter "0 "0 "002016
\quad x\quad

\Uright height 30pt depth 10pt axis \Udelimiter "0 "0 "000029

) L]

\) \ /

The keyword exact can be used as directive that the real dimensions should be applied when
the criteria can’t be met which can happen when we’re still stepping through the successively
larger variants. When no dimensions are given the noaxis command can be used to prevent
shifting over the axis.

You can influence the final class with the keyword class which will influence the spacing. The
numbers are the same as for character classes.

6.20.2 Fixed scripts

We have three parameters that are used for this fixed anchoring:

d \Umathsubshiftdown
\Umathsupshiftup
s \Umathsubsupshiftdown

0/‘, 100 Math

When we set \mathscriptsmode to a value other than zero these are used for calculating fixed
positions. This is something that is needed for instance for chemistry. You can manipulate the
mentioned variables to achive different effects.

mode down up
0 dynamic dynamic ~ CH, + CHJ + CH3
1 d u CH, + CH3 + CH3
2 s u CH, + CH} + CH3
3 s u+s—-d CH,+CHJ +CH?
4 d+(s-d)2 u+(s—d)/2 CH,+CH} +CH3
5 d u+s—d CH,+CH} + CH3

The value of this parameter obeys grouping but applies to the whole current formula.

6.20.3 Penalties: \mathpenaltiesmode

Only in inline math penalties will be added in a math list. You can force penalties (also in display
math) by setting:

\mathpenaltiesmode = 1

This primnitive is not really needed in LuaTgX because you can use the callback mlist to hlist
to force penalties by just calling the regular routine with forced penalties. However, as part
of opening up and control this primitive makes sense. As a bonus we also provide two extra
penalties:

\prebinoppenalty -100 % example value
\prerelpenalty = 900 % example value

They default to inifinite which signals that they don’t need to be inserted. When set they are
injected before a binop or rel noad. This is an experimental feature.

6.20.4 Tracing
Because there are quite some math related parameters and values, it is possible to limit tracing.
Only when tracingassigns and/or tracingrestores are set to 2 or more they will be traced.

6.20.5 Math options

The logic in the math engine is rather complex and there are often no universal solutions (read:
what works out well for one font, fails for another). Therefore some variations in the implemen-
tation will be driven by options for which a new primitive \mathoption has been introduced (so
that we don’t end up with many new commands). The approach of options also permits us to see
what effect a specific solution has.

6.20.5.1 \mathoption old

This option was introduced for testing purposes when the math engine got split code paths and
it forces the engine to treat new fonts as old ones with respect to italic correction etc. There are

Math 101 |

no guarantees given with respect to the final result and unexpected side effects are not seens
as bugs as they relate to font properties.

The oldmath boolean flag in the Lua font table is the official way to force old treatment as it’s
bound to fonts.

6.20.5.2 \mathoption noitaliccompensation

This option compensates placement for characters with a built-in italic correction.

{\showboxes\int}\quad
{\showboxes\int {|}~{|}}\quad
{\showboxes\int\limits {|}"{]|}}

Gives (with computer modern that has such italics):

[T o]

m W g,‘.l L,m i E,\I
l:@ «J0 L@ I
0:inline 0:display
[Tl o]

m . u,\l i,,m iy E,‘zl
[@ 0 Eﬁ i
1:inline 1:display

6.20.5.3 \mathoption nocharitalic

When two characters follow each other italic correction can interfere. The following example
shows what this option does:

\catcode"1D443=11
\catcode"1D444=11
\catcode"1D445=11
P(PP PQR

Gives (with computer modern that has such italics):

P(PPPQR P(PPPQR
O:inline 0:display
P(PPPQR P(PPPQR
1:inline 1:display

6.20.5.4 \mathoption useoldfractionscaling

This option has been introduced as solution for tracker item 604 for fuzzy cases around either
or not present fraction related settings for new fonts.

\0/‘, 102 Math

7 Nodes

7.1 LUA node representation

TEX’s nodes are represented in Lua as userdata object with a variable set of fields. In the fol-
lowing syntax tables, such the type of such a userdata object is represented as (node).

The current return value of node. types() is: hlist (0), vlist (1), rule (2), ins (3), mark (4), ad-
just (5), boundary (6), disc (7), whatsit (8), local par(9),dir (10), math (11), glue (12), kern
(13), penalty (14), unset (15), style (16), choice (17), noad (18), radical (19), fraction (20),
accent (21), fence (22), math _char (23), sub_box (24), sub_mlist (25), math_text char (26),
delim (27), margin_kern (28), glyph (29), align record (30), pseudo file (31), pseudo line
(32), page insert (33), split insert (34), expr_stack (35), nested list (36), span (37),
attribute (38), glue spec (39), attribute list (40), temp (41), align stack (42), move-
ment stack (43), if stack (44), unhyphenated (45), hyphenated (46), delta (47), passive (48),
shape (49).

The \lastnodetype primitive is e-TEX compliant. The valid range is still [-1, 15] and glyph nodes
(formerly known as char nodes) have number 0 while ligature nodes are mapped to 7. That way
macro packages can use the same symbolic names as in traditional ¢-TgX. Keep in mind that
these &-TgX node numbers are different from the real internal ones and that there are more
e-TgX node types than 15.

You can ask for a list of fields with the node.fields (which takes an id) and for valid subtypes
with node.subtypes (which takes a string because eventually we might support more used enu-
merations).

7.1.1 Attributes

The newly introduced attribute registers are non-trivial, because the value that is attached to a
node is essentially a sparse array of key-value pairs. It is generally easiest to deal with attribute
lists and attributes by using the dedicated functions in the node library, but for completeness,
here is the low-level interface.

7.1.1.1 attribute_list nodes

An attribute list item is used as a head pointer for a list of attribute items. It has only one
user-visible field:

field type explanation
next node pointer to the first attribute
7.1.1.2 attribute nodes

A normal node’s attribute field will point to an item of type attribute 1list, and the next field
in that item will point to the first defined ‘attribute’ item, whose next will point to the second
‘attribute’ item, etc.

Nodes 103 |

field type explanation

next node pointer to the next attribute
number number the attribute type id

value number the attribute value

As mentioned it’s better to use the official helpers rather than edit these fields directly. For
instance the prev field is used for other purposes and there is no double linked list.
7.1.2 Main text nodes

These are the nodes that comprise actual typesetting commands. A few fields are present in all
nodes regardless of their type, these are:

field type explanation
next node the next node in a list, or nil
id number the node’s type (id) number

subtype number the node subtype identifier

The subtype is sometimes just a stub entry. Not all nodes actually use the subtype, but this way
you can be sure that all nodes accept it as a valid field name, and that is often handy in node list
traversal. In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field
called prev. That last field is always present, but only initialized on explicit request: when the
function node.slide() is called, it will set up the prev fields to be a backwards pointer in the
argument node list. By now most of TEX’s node processing makes sure that the prev nodes are
valid but there can be exceptions, especially when the internal magic uses a leading temp nodes
to temporarily store a state.

7.1.2.1 hlist nodes

field type explanation

subtype number O = unknown, 1 = line, 2 = box, 3 = indent, 4 = alignment, 5 = cell,
6 = equation, 7 = equationnumber

attr node list of attributes

width number the width of the box

height number the height of the box

depth number the depth of the box

shift number a displacement perpendicular to the character progression direction

glue order number a number in the range [0, 4], indicating the glue order

glue set number the calculated glue ratio

glue sign number 0 =normal, 1 = stretching, 2 = shrinking
head/list node the first node of the body of this list
dir string the direction of this box, see 7.1.2.15

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may result.

\0/‘, 104 Nodes

Note: the field name head and list are both valid. Sometimes it makes more sense to refer to
a list by head, sometimes 1ist makes more sense.

7.1.2.2 vlist nodes

This node is similar to hlist, except that ‘shift’ is a displacement perpendicular to the line
progression direction, and ‘subtype’ only has the values 0, 4, and 5.

7.1.2.3 rule nodes

Contrary to traditional TgX, LuaTgX has more subtypes because we also use rules to store reuse-
able objects and images. User nodes are invisible and can be intercepted by a callback.

field type explanation

subtype number 0 = normal, 1 = box, 2 = image, 3 = empty, 4 = user, 5 = over, 6 = under,
7 = fraction, 8 = radical

attr node list of attributes

width number the width of the rule where the special value —1073741824 is used for ‘run-
ning’ glue dimensions

height number the height of the rule (can be negative)

depth number the depth of the rule (can be negative)

dir string the direction of this rule, see 7.1.2.15

index number an optional index that can be referred to

7.1.2.4 ins nodes

field type explanation

subtype number the insertion class

attr node list of attributes

cost number the penalty associated with this insert
height number height of the insert

depth number depth of the insert

head/list node the first node of the body of this insert
There is a set of extra fields that concern the associated glue: width, stretch, stretch order,
shrink and shrink order. These are all numbers.

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may be result. You can use list instead (often in functions you
want to use local variable swith similar names and both names are equally sensible).

7.1.2.5 mark nodes

field type explanation
subtype number unused
attr node list of attributes

Nodes 105 |

class number the mark class
mark table a table representing a token list

7.1.2.6 adjust nodes

field type explanation
subtype number O =normal, 1 = pre
attr node list of attributes
head/list node adjusted material

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may be result.

7.1.2.7 disc nodes

field type explanation

subtype number 0 =discretionary, 1 =explicit, 2 =automatic, 3 = reqular, 4 = first,
5 = second

attr node list of attributes

pre node pointer to the pre-break text

post node pointer to the post-break text

replace node pointer to the no-break text

penalty number the penalty associated with the break, normally \hyphenpenalty or \exhy-
phenpenalty

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere.

These disc nodes are kind of special as at some point they also keep information about break-
points and nested ligatures. The pre, post and replace fields at the Lua end are in fact indirectly
accessed and have a prev pointer that is not nil. This means that when you mess around with
the head of these (three) lists, you also need to reassign them because that will restore the
proper prev pointer, so:

pre = d.pre
-- change the list starting with pre
d.pre = pre

Otherwise you can end up with an invalid internal perception of reality and LuaTgX might even
decide to crash on you. It also means that running forward over for instance pre is ok but
backward you need to stop at pre. And you definitely must not mess with the node that prev
points to, if only because it is not really an node but part of the disc data structure (so freeing it
again might crash LuaTgX).

7.1.2.8 math nodes

field type explanation
subtype number O = beginmath, 1 = endmath

\0/‘, 106 Nodes

attr node list of attributes
surround number width of the \mathsurround kern

There is a set of extra fields that concern the associated glue: width, stretch, stretch order,
shrink and shrink _order. These are all numbers.
7.1.2.9 glue nodes

Skips are about the only type of data objects in traditional TgX that are not a simple value. The
structure that represents the glue components of a skip is called a glue spec, and it has the
following accessible fields:

key type explanation

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount
stretch order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink order number factor applied to shrink amount

The effective width of some glue subtypes depends on the stretch or shrink needed to make
the encapsulating box fit its dimensions. For instance, in a paragraph lines normally have glue
representing spaces and these stretch of shrink to make the content fit in the available space.
The effective glue function that takes a glue node and a parent (hlist or vlist) returns the
effective width of that glue item.

A gluespec node is a special kind of node that is used for storing a set of glue values in registers.
Originally they were also used to store properties of glue nodes (using a system of reference
counts) but we now keep these properties in the glue nodes themselves, which gives a cleaner
interface to Lua.

The indirect spec approach was in fact an optimization in the original TgX code. First of all it can
save quite some memory because all these spaces that become glue now share the same spec-
ification (only the reference count is incremented), and zero testing is also a bit faster because
only the pointer has to be checked (this is no longer true for engines that implement for instance
protrusion where we really need to ensure that zero is zero when we test for bounds). Another
side effect is that glue specifications are read-only, so in the end copies need to be made when
they are used from Lua (each assignment to a field can result in a new copy). So in the end the
advantages of sharing are not that high (and nowadays memory is less an issue, also given that
a glue node is only a few memory words larger than a spec).

field type explanation

subtype number 0 =userskip, 1= 1lineskip, 2 =baselineskip, 3 =parskip, 4 =abovedis-
playskip, 5 = belowdisplayskip, 6 = abovedisplayshortskip, 7 = be-
lowdisplayshortskip, 8 = leftskip, 9 = rightskip, 10 = topskip, 11

splittopskip, 12 = tabskip, 13 = spaceskip, 14 = xspaceskip, 15

parfillskip, 16 = mathskip, 17 = thinmuskip, 18 = medmuskip, 19 =

thickmuskip, 98 = conditionalmathskip, 99 = muglue, 100 = leaders,

101 = cleaders, 102 = xleaders, 103 = gleaders

Nodes 107

attr node list of attributes
leader node pointer to a box or rule for leaders

In addition there are the width, stretch stretch order, shrink, and shrink order fields. Note
that we use the key width in both horizontal and vertical glue. This suits the TgX internals well
so we decided to stick to that naming.

A regular word space also results in a spaceskip subtype (this used to be a userskip with
subtype zero).

7.1.2.10 kern nodes

field type explanation

subtype number 0 = fontkern, 1 = userkern, 2 = accentkern, 3 = italiccorrection
attr node list of attributes

kern number fixed horizontal or vertical advance

7.1.2.11 penalty nodes

field type explanation

subtype number 0 = userpenalty, 1 = linebreakpenalty, 2 = linepenalty, 3 = word-
penalty, 4 = finalpenalty, 5 = noadpenalty, 6 = beforedisplaypenalty,
7 = afterdisplaypenalty, 8 = equationnumberpenalty

attr node list of attributes

penalty number the penalty value

The subtypes are just informative and TgX itself doesn’t use them. When you run into an line-
breakpenalty you need to keep in mind that it’s a accumulation of club, widow and other rele-
vant penalties.

7.1.2.12 glyph nodes

field type explanation

subtype number Dbitfield

attr node list of attributes

char number the chatacter index in the font

font number the font identifier

lang number the language identifier

left number the frozen \lefthyphenmnin value

right number the frozen \righthyphenmnin value
uchyph boolean the frozen \uchyph value

components node pointer to ligature components

xoffset number a virtual displacement in horizontal direction
yoffset number a virtual displacement in vertical direction
width number the (original) width of the character
height number the (original) height of the character
depth number the (original) depth of the character

expansion factor number the to be applied expansion factor

\0/‘, 108 Nodes

The width, height and depth values are read-only. The expansion factor is assigned in the
parbuilder and used in the backend.

A warning: never assign a node list to the components field unless you are sure its internal link
structure is correct, otherwise an error may be result. Valid bits for the subtype field are:

bit meaning
0 character

ligature

ghost

left

right

B W N -

See section 4.1 for a detailed description of the subtype field.

The expansion factor has been introduced as part of the separation between font- and back-
end. It is the result of extensive experiments with a more efficient implementation of expansion.
Early versions of LuaTgX already replaced multiple instances of fonts in the backend by scaling
but contrary to pdfIgX in LuaTgX we now also got rid of font copies in the frontend and replaced
them by expansion factors that travel with glyph nodes. Apart from a cleaner approach this is
also a step towards a better separation between front- and backend.

The is char function checks if a node is a glyph node with a subtype still less than 256. This
function can be used to determine if applying font logic to a glyph node makes sense. The value
nil gets returned when the node is not a glyph, a character number is returned if the node is
still tagged as character and false gets returned otherwise. When nil is returned, the id is also
returned. The is glyph variant doesn’t check for a subtype being less than 256, so it returns
either the character value or nil plus the id. These helpers are not always faster than separate
calls but they sometimes permit making more readable tests. The uses font helpers takes a
node and font id and returns true when a glyph or disc node references that font.

7.1.2.13 boundary nodes

field type explanation
subtype number 0 = cancel, 1 = user, 2 = protrusion, 3 =word
attr node list of attributes

value number values 0-255 are reserved

This node relates to the \noboundary, \boundary, \protrusionboundary and \wordboundary
primitives.

7.1.2.14 local_par nodes

field type explanation

attr node list of attributes

pen inter number local interline penalty (from \localinterlinepenalty)
pen_broken number local broken penalty (from \localbrokenpenalty)

dir string the direction of this par. see 7.1.2.15

box left node the \localleftbox

Nodes 109 0

box left width number width of the \localleftbox
box right node the \localrightbox
box right width number width of the \localrightbox

A warning: never assign a node list to the box left or box right field unless you are sure its
internal link structure is correct, otherwise an error may be result.

7.1.2.15 dir nodes

field type explanation

attr node list of attributes

dir string the direction (but see below)

level number nesting level of this direction whatsit

A note on dir strings. Direction specifiers are three-letter combinations of T, B, R, and L.
These are built up out of three separate items:

« the first is the direction of the ‘top’ of paragraphs.

« the second is the direction of the ‘start’ of lines.

« the third is the direction of the ‘top’ of glyphs.

However, only four combinations are accepted: TLT, TRT, RTT, and LTL.

Inside actual dir whatsit nodes, the representation of dir is not a three-letter but a four-letter
combination. The first character in this case is always either + or -, indicating whether the value
is pushed or popped from the direction stack.

7.1.2.16 margin_kern nodes

field type explanation
subtype number
attr node list of attributes

width number the advance of the kern
glyph node the glyph to be used

7.1.3 Math nodes

These are the so-called ‘noad’s and the nodes that are specifically associated with math pro-
cessing. Most of these nodes contain subnodes so that the list of possible fields is actually quite
small. First, the subnodes:

7.1.3.1 Math kernel subnodes

Many object fields in math mode are either simple characters in a specific family or math lists
or node lists. There are four associated subnodes that represent these cases (in the following
node descriptions these are indicated by the word <kernel>).

The next and prev fields for these subnodes are unused.

\0/‘, 110 Nodes

7.1.3.1.1 math_char and math_text_char subnodes

field type explanation

attr node list of attributes
char number the character index
fam number the family number

The math char is the simplest subnode field, it contains the character and family for a single
glyph object. The math text char is a special case that you will not normally encounter, it
arises temporarily during math list conversion (its sole function is to suppress a following italic
correction).

7.1.3.1.2 sub_box and sub_mlist subnodes

field type explanation
attr node list of attributes
head/list node list of nodes

These two subnode types are used for subsidiary list items. For sub box, the head points to a
‘normal’ vbox or hbox. For sub _mlist, the head points to a math list that is yet to be converted.

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may be result.

7.1.3.2 Math delimiter subnode

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next and
prev fields are unused.

7.1.3.2.1 delim subnodes

field type explanation

attr node list of attributes

small char number -character index of base character

small fam number family number of base character

large char number character index of next larger character
large fam number family number of next larger character

The fields large char and large fam can be zero, in that case the font that is sed for the
small fam is expected to provide the large version as an extension to the small char.
7.1.3.3 Math core nodes

First, there are the objects (the TgXbook calls then ‘atoms’) that are associated with the simple
math objects: ord, op, bin, rel, open, close, punct, inner, over, under, vcent. These all have the
same fields, and they are combined into a single node type with separate subtypes for differen-

tiation.
Nodes 111 {\0/‘,
b /7

Some noads have an option field. The values in this bitset are common:

set

internal
internal

axis

no axis
exact

left

middle

right

no sub script

no super script

no script

0x08
0x00 + 0x08
0x01 + 0x08
0x02 + 0x08
0x04 + 0x08
0x10 + 0x08
0x11 + 0x08
0x12 + 0x08
0x14 + 0x08
0x21 + 0x08
0x22 + 0x08
0x23 + 0x08

7.1.3.3.1 simple nodes

field type explanation

subtype number 0=ord, 1 =opdisplaylimits, 2 =oplimits, 3 =opnolimits, 4 = bin,
5=rel, 6 =open, 7 = close, 8 = punct, 9 = inner, 10 = under, 11 =
over, 12 = vcenter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

options number

7.1.3.3.2

field
subtype
nucleus
sub

sup

accent

bot accent
fraction

accent nodes

type
number
kernel node
kernel node
kernel node
kernel node
kernel node
number

7.1.3.3.3 style nodes

field type

bitset of rendering options

explanation

0 = bothflexible, 1 = fixedtop, 2 = fixedbottom, 3 = fixedboth
base

subscript

superscript

top accent

bottom accent

larger step criterium (divided by 1000)

explanation
style string contains the style

There are eight possibilities for the string value: one of display, text, script, orscriptscript.
Each of these can have be prefixed by cramped.

112 Nodes

7.1.3.3.4 choice nodes

field type explanation

attr node list of attributes

display node list of display size alternatives
text node list of text size alternatives
script node list of scriptsize alternatives
scriptscript node list of scriptscriptsize alternatives

Warning: never assign a node list to the display, text, script, or scriptscript field unless
you are sure its internal link structure is correct, otherwise an error may be result.

7.1.3.3.5 radical nodes

field type explanation

subtype number 0 = radical, 1 = uradical, 2 = uroot, 3 = uunderdelimiter, 4 =
uoverdelimiter, 5 = udelimiterunder, 6 = udelimiterover

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

left delimiter node

degree kernel node only set by \Uroot

width number required width

options number bitset of rendering options

Warning: never assign a node list to the nucleus, sub, sup, left, or degree field unless you are
sure its internal link structure is correct, otherwise an error may be result.

7.1.3.3.6 fraction nodes

field type explanation

attr node list of attributes

width number (optional) width of the fraction
num kernel node numerator

denom kernel node denominator

left delimiter node left side symbol

right delimiter node right side symbol

middle delimiter node middle symbol

options number bitset of rendering options

Warning: never assign a node list to the num, or denom field unless you are sure its internal link
structure is correct, otherwise an error may be result.

7.1.3.3.7 fence nodes

field
subtype

type
number

explanation
0 = unset, 1 = left, 2 = middle, 3 = right

Nodes 113 (0/‘,
‘ /

attr node list of attributes
delim delimiter node delimiter specification

italic number italic correction

height number required height

depth number required depth

options number bitset of rendering options
class number spacing related class

Warning: some of these fields are used by the renderer and might get adapted in the process.

7.1.4 whatsit nodes

Whatsit nodes come in many subtypes that you can ask for by running node.whatsits():
open (0), write (1), close (2), special (3), save pos (6), late lua (7), user defined (8),
pdf literal (16), pdf refobj (17), pdf annot (18), pdf start link (19), pdf end link (20),
pdf dest (21), pdf action (22), pdf thread (23), pdf start thread (24), pdf end thread
(25), pdf _thread data (26), pdf link data (27), pdf colorstack (28), pdf setmatrix (29),
pdf save (30), pdf restore (31), fake (100).

7.1.4.1 front-end whatsits

7.1.4.1.1 open whatsits

field type explanation

attr node list of attributes

stream number TgX's stream id number

name string file name

ext string file extension

area string file area (this may become obsolete)

7.1.4.1.2 write whatsits

field type explanation

attr node list of attributes
stream number TgX's stream id number
data table a table representing the token list to be written

7.1.4.1.3 close whatsits

field type explanation
attr node list of attributes
stream number TgX'’s stream id number

7.1.4.1.4 user_defined whatsits

User-defined whatsit nodes can only be created and handled from Lua code. In effect, they are
an extension to the extension mechanism. The LuaTgX engine will simply step over such whatsits
without ever looking at the contents.

0/‘[114 Nodes
. /

field type explanation

attr node list of attributes

user id number id number

type number type of the value

value number a Lua number
node a node list

string a Lua string
table a Lua table

The type can have one of six distinct values. The number is the ascii value if the first character

if the type name (so you can use string.byte("1") instead of 108).

value meaning explanation

97 a list of attributes (a node list)
100 d a Lua number
108 1 a Lua value (table, number, boolean, etc)
110 n a node list
115 S a Lua string
116 t

7.1.4.1.5 save_pos whatsits

field type explanation
attr node list of attributes

7.1.4.1.6 late_lua whatsits

field type explanation

attr node list of attributes
data string data to execute
string string data to execute

name string the name to use for Lua error reporting

a Lua token list in Lua table form (a list of triplets)

The difference between data and string is that on assignment, the data field is converted to a

token list, cf. use as \latelua. The string version is treated as a literal string.

7.1.4.2 DVI backend whatsits

7.1.4.3 special whatsits

field type explanation
attr node list of attributes
data string the \special information

Nodes 115 {\0/‘,
. /

7.1.4.4 PDF backend whatsits

7.1.4.4.1 pdf literal whatsits

field type explanation

attr node list of attributes

mode number the ‘mode’ setting of this literal
data string the \pdfliteral information

Possible mode values are:

value pdfTgX keyword

0 setorigin
1 page

2 direct

3 raw

The higher the number, the less checking and the more you can run into troubles. Especially
the raw variant can produce bad pdf so you can best check what you generate.

7.1.4.4.2 pdf refobj whatsits

field type explanation
attr node list of attributes
objnum number the referenced pdf object number

7.1.4.4.3 pdf_annot whatsits

field type explanation

attr node list of attributes

width number the width (not used in calculations)
height number the height (not used in calculations)
depth number the depth (not used in calculations)
objnum number the referenced pdf object number
data string the annotation data

7.1.4.4.4 pdf start_link whatsits

field type explanation

attr node list of attributes

width number the width (not used in calculations)
height number the height (not used in calculations)
depth number the depth (not used in calculations)
objnum number the referenced pdf object number
link attr table the link attribute token list

action node the action to perform

0/‘[116 Nodes

7.1.4.4.5 pdf _end_link whatsits

field type explanation
attr node

7.1.4.4.6 pdf _dest whatsits

field type explanation

attr node list of attributes

width number the width (not used in calculations)
height number the height (not used in calculations)
depth number the depth (not used in calculations)
named id number isthe dest id a string value?

dest id number the destination id

string the destination name
dest type number type of destination
xXyz_zoom number the zoom factor (times 1000)
objnum number the pdf object number

7.1.4.4.7 pdf_action whatsits

These are a special kind of item that only appears inside pdf start link objects.

field type explanation

field type explanation

action type number the kind of action involved
action id number or string token list reference or string
named id number the index of the destination
file string the target filename

new window number the window state of the target
data string the name of the destination

Valid action types are:

page
goto
thread
user

W N - O

Valid window types are:

0 notset
1 new
2 nonew

7.1.4.4.8 pdf_thread whatsits

field type explanation
attr node list of attributes

Nodes 117

!

\

width number the width (not used in calculations)

height number the height (not used in calculations)
depth number the depth (not used in calculations)
named id number is tread id a string value?

tread id number the thread id

string the thread name
thread attr number extra thread information

7.1.4.4.9 pdf start_thread whatsits

field type explanation

attr node list of attributes

width number the width (not used in calculations)
height number the height (not used in calculations)
depth number the depth (not used in calculations)
named id number is tread id a string value?

tread id number the thread id

string the thread name
thread attr number extra thread information
7.1.4.4.10 pdf end_thread whatsits
field type explanation
attr node
7.1.4.4.11 pdf_colorstack whatsits

field type explanation

attr node list of attributes
stack number colorstack id number
command number command to execute
data string data

7.1.4.4.12 pdf setmatrix whatsits

field type explanation
attr node list of attributes
data string data

7.1.4.4.13 pdf_save whatsits

field type explanation
attr node list of attributes

7.1.4.4.14 pdf_restore whatsits

field type explanation
attr node list of attributes

0/‘[118 Nodes

7.2 The node library

The node library contains functions that facilitate dealing with (lists of) nodes and their values.
They allow you to create, alter, copy, delete, and insert LuaTEX node objects, the core objects
within the typesetter.

LuaTgX nodes are represented in Lua as userdata with the metadata type luatex.node. The
various parts within a node can be accessed using named fields.

Each node has at least the three fields next, id, and subtype:

« The next field returns the userdata object for the next node in a linked list of nodes, or nil,
if there is no next node.

« The id indicates TgX’s ‘node type’. The field id has a numeric value for efficiency reasons,
but some of the library functions also accept a string value instead of id.

« The subtypeis another number. It often gives further information about a node of a particular
id, but it is most important when dealing with ‘whatsits’, because they are differentiated
solely based on their subtype.

The other available fields depend on the id (and for ‘whatsits’, the subtype) of the node. Further
details on the various fields and their meanings are given in chapter 7.

Support for unset (alignment) nodes is partial: they can be queried and modified from Lua code,
but not created.

Nodes can be compared to each other, but: you are actually comparing indices into the node
memory. This means that equality tests can only be trusted under very limited conditions. It will
not work correctly in any situation where one of the two nodes has been freed and/or reallocated:
in that case, there will be false positives.

At the moment, memory management of nodes should still be done explicitly by the user. Nodes
are not ‘seen’ by the Lua garbage collector, so you have to call the node freeing functions yourself
when you are no longer in need of a node (list). Nodes form linked lists without reference
counting, so you have to be careful that when control returns back to LuaTgX itself, you have
not deleted nodes that are still referenced from a next pointer elsewhere, and that you did not
create nodes that are referenced more than once.

There are statistics available with regards to the allocated node memory, which can be handy
for tracing.

7.2.1 Node handling functions

7.2.1.1 node.is_node

<boolean> t =
node.is node(<any> item)

This function returns true if the argument is a userdata object of type <node>.

7.2.1.2 node.types

<table> t =

Nodes 119 {\0/‘,
.\ ’

node. types()
This function returns an array that maps node id numbers to node type strings, providing an
overview of the possible top-level id types.
7.2.1.3 node.whatsits

<table> t =
node.whatsits()

TEX’s ‘whatsits’ all have the same id. The various subtypes are defined by their subtype fields.
The function is much like node. types, except that it provides an array of subtype mappings.
7.2.1.4 node.id

<number> id =
node.id(<string> type)

This converts a single type name to its internal numeric representation.

7.2.1.5 node.subtype

<number> subtype =
node.subtype(<string> type)

This converts a single whatsit name to its internal numeric representation (subtype).

7.2.1.6 node.type

<string> type =
node.type(<any> n)

In the argument is a number, then this function converts an internal numeric representation to an
external string representation. Otherwise, it will return the string node if the object represents
a node, and nil otherwise.

7.2.1.7 node.fields

<table> t =
node.fields(<number> id)
<table> t =
node.fields(<number> id, <number> subtype)

This function returns an array of valid field names for a particular type of node. If you want to
get the valid fields for a ‘whatsit’, you have to supply the second argument also. In other cases,
any given second argument will be silently ignored.

This function accepts string id and subtype values as well.

\0/‘, 120 Nodes

7.2.1.8 node.has_field

<boolean> t =
node.has field(<node> n, <string> field)

This function returns a boolean that is only true if n is actually a node, and it has the field.

7.2.1.9 node.new

<node> n =
node.new(<number> id)
<node> n =
node.new(<number> id, <number> subtype)

Creates a new node. All of the new node’s fields are initialized to either zero or nil except for
id and subtype (if supplied). If you want to create a new whatsit, then the second argument is
required, otherwise it need not be present. As with all node functions, this function creates a
node on the TgX level.

This function accepts string id and subtype values as well.

7.2.1.10 node.free and node.flush_node

<node> next =
node. free(<node> n)
flush node(<node> n)

Removes the node n from TEX’s memory. Be careful: no checks are done on whether this node is
still pointed to from a register or some next field: it is up to you to make sure that the internal
data structures remain correct.

The free function returns the next field of the freed node, while the flush node alternative
returns nothing.

7.2.1.11 node. flush_list
node.flush list(<node> n)

Removes the node list n and the complete node list following n from TgX’s memory. Be careful:
no checks are done on whether any of these nodes is still pointed to from a register or some
next field: it is up to you to make sure that the internal data structures remain correct.

7.2.1.12 node. copy

<node> m =
node. copy(<node> n)

Creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node.

Only the next field is not copied.
Nodes 121 {\0/‘,
.\ ’

7.2.1.13 node.copy_list

<node> m =
node.copy_ list(<node> n)
<node> m =
node.copy list(<node> n, <node> m)

Creates a deep copy of the node list that starts at n. If m is also given, the copy stops just before
node m.

Note that you cannot copy attribute lists this way, specialized functions for dealing with attribute
lists will be provided later but are not there yet. However, there is normally no need to copy at-
tribute lists as when you do assignments to the attr field or make changes to specific attributes,
the needed copying and freeing takes place automatically.

7.2.1.14 node.next

<node> m =
node.next (<node> n)

Returns the node following this node, or nil if there is no such node.

7.2.1.15 node.prev

<node> m =
node.prev(<node> n)

Returns the node preceding this node, or nil if there is no such node.

7.2.1.16 node.current_attr

<node> m =
node.current attr()

Returns the currently active list of attributes, if there is one.
The intended usage of current _attr is as follows:

local x1 = node.new("glyph"
x1l.attr = node.current _attr

)
(
local x2 = node.new("glyph")
x2.attr = node.current_attr()

)

or:
local x1 = node.new("glyph")
local x2 = node.new("glyph")

local ca = node.current attr()
xl.attr = ca

\0/‘, 122 Nodes

x2.attr = ca

The attribute lists are ref counted and the assignment takes care of incrementing the refcount.
You cannot expect the value ca to be valid any more when you assign attributes (using tex.se-
tattribute) or when control has been passed back to TgX.

Note: this function is somewhat experimental, and it returns the actual attribute list, not a copy
thereof. Therefore, changing any of the attributes in the list will change these values for all
nodes that have the current attribute list assigned to them.

7.2.1.17 node.hpack

<node> h, <number> b =
node.hpack(<node> n)
<node> h, <number> b =
node.hpack(<node> n, <number> w, <string> info)
<node> h, <number> b =
node.hpack(<node> n, <number> w, <string> info, <string> dir)

This function creates a new hlist by packaging the list that begins at node n into a horizontal
box. With only a single argument, this box is created using the natural width of its components.
In the three argument form, info must be either additional or exactly, and w is the additional
(\hbox spread) or exact (\hbox to) width to be used. The second return value is the badness
of the generated box.

Caveat: at this moment, there can be unexpected side-effects to this function, like updating
some of the \marks and \inserts. Also note that the content of h is the original node list n: if
you call node.free(h) you will also free the node list itself, unless you explicitly set the list
field to nil beforehand. And in a similar way, calling node. free(n) will invalidate h as well!

7.2.1.18 node.vpack

<node> h, <number> b =
node.vpack(<node> n)
<node> h, <number> b =
node.vpack(<node> n, <number> w, <string> info)
<node> h, <number> b =
node.vpack(<node> n, <number> w, <string> info, <string> dir)

This function creates a new vlist by packaging the list that begins at node n into a vertical box.
With only a single argument, this box is created using the natural height of its components. In
the three argument form, info must be either additional or exactly, and w is the additional
(\vbox spread) or exact (\vbox to) height to be used.

The second return value is the badness of the generated box.

See the description of node.hpack() for a few memory allocation caveats.

7.2.1.19 node.dimensions, node.rangedimensions

<number> w, <number> h, <number> d =

Nodes 123 {0/‘,
‘\ /7

node.dimensions(<node> n)

<number> w, <number> h, <number> d =
node.dimensions(<node> n, <string> dir)

<number> w, <number> h, <number> d =
node.dimensions(<node> n, <node> t)

<number> w, <number> h, <number> d =
node.dimensions(<node> n, <node> t, <string> dir)

This function calculates the natural in-line dimensions of the node list starting at node n and
terminating just before node t (or the end of the list, if there is no second argument). The
return values are scaled points. An alternative format that starts with glue parameters as the
first three arguments is also possible:

<number> w, <number> h, <number> d =
node.dimensions (<number> glue set, <number> glue sign, <number> glue order,
<node> n)
<number> w, <number> h, <number> d =
node.dimensions (<number> glue set, <number> glue sign, <number> glue order,
<node> n, <string> dir)
<number> w, <number> h, <number> d =
node.dimensions (<number> glue set, <number> glue sign, <number> glue order,
<node> n, <node> t)
<number> w, <number> h, <number> d =
node.dimensions (<number> glue set, <number> glue sign, <number> glue order,
<node> n, <node> t, <string> dir)

This calling method takes glue settings into account and is especially useful for finding the actual
width of a sublist of nodes that are already boxed, for example in code like this, which prints the
width of the space in between the a and b as it would be if \box0 was used as-is:

\setbox® = \hbox to 20pt {a b}

\directlua{print (node.dimensions(
tex.box[0].glue_ set,
tex.box[0].glue sign,
tex.box[0].glue order,
tex.box[0].head.next,
node.tail(tex.box[0].head)

)) }

You need to keep in mind that this is one of the few places in TgX where floats are used, which
means that you can get small differences in rounding when you compare the width reported by
hpack with dimensions.

The second alternative saves a few lookups and can be more convenient in some cases:
<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first)
<number> w, <number> h, <number> d =

0} 124 Nodes
ow’

node.rangedimensions(<node> parent, <node> first, <node> last)

7.2.1.20 node.mlist_to hlist

<node> h =
node.mlist to hlist(<node> n, <string> display type, <boolean> penalties)

This runs the internal mlist to hlist conversion, converting the math list in n into the horizontal
list h. The interface is exactly the same as for the callback mlist to hlist

7.2.1.21 node.slide

<node> m =
node.slide(<node> n)

Returns the last node of the node list that starts at n. As a side-effect, it also creates a reverse
chain of prev pointers between nodes.

7.2.1.22 node.tail

<node> m =
node.tail (<node> n)

Returns the last node of the node list that starts at n.

7.2.1.23 node.length

<number> i =
node.length(<node> n)
<number> i =
node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it
stops at m instead of at the end of the list. The node m is not counted

7.2.1.24 node.count

<number> i =
node.count (<number> id, <node> n)
<number> i =
node.count (<number> id, <node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n that have a matching id
field. If m is also supplied, counting stops at m instead of at the end of the list. The node m is not
counted.

This function also accept string id’s.

Nodes 125 {0‘,
ow

Ny -

7.2.1.25 node.traverse

<node> t =
node. traverse(<node> n)

This is a Lua iterator that loops over the node list that starts at n. Typically code looks like this:

for n in node.traverse(head) do

end

is functionally equivalent to:

do
local n
local function f (head,var)
local t
if var == nil then
t = head
else
t = var.next
end
return t
end

while true do
n = f (head, n)
if n == nil then break end

end
end

It should be clear from the definition of the function f that even though it is possible to add or
remove nodes from the node list while traversing, you have to take great care to make sure all
the next (and prev) pointers remain valid.

If the above is unclear to you, see the section ‘For Statement’ in the Lua Reference Manual.

7.2.1.26 node.traverse_id

<node> t =
node.traverse id(<number> id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching
id field.

See the previous section for details. The change is in the local function f, which now does an
extra while loop checking against the upvalue id:

local function f(head,var)
local t

0} 126 Nodes
‘\ //

if var == nil then

t = head

else
t = var.next

end

while not t.id == id do
t = t.next

end

return t

end

7.2.1.27 node.traverse_char

This iterators loops over the glyph nodes in a list. Only nodes with a subtype less than 256 are
seen.

<node> n =
node.traverse char(<node> n)

7.2.1.28 node.has_glyph
This function returns the first glyph or disc node in the given list:

<node> n =
node.has glyph(<node> n)

7.2.1.29 node.end_of_math

<node> t =
node.end of math(<node> start)

Looks for and returns the next math node following the start. If the given node is a math
endnode this helper return that node, else it follows the list and return the next math endnote.
If no such node is found nil is returned.

7.2.1.30 node.remove

<node> head, current =
node. remove(<node> head, <node> current)

This function removes the node current from the list following head. It is your responsibility to
make sure it is really part of that list. The return values are the new head and current nodes.
The returned current is the node following the current in the calling argument, and is only
passed back as a convenience (or nil, if there is no such node). The returned head is more
important, because if the function is called with current equal to head, it will be changed.

Nodes 127 f‘)
‘\ //

Ny -

7.2.1.31 node.insert_before

<node> head, new =
node.insert before(<node> head, <node> current, <node> new)

This function inserts the node new before current into the list following head. It is your respon-
sibility to make sure that current is really part of that list. The return values are the (potentially
mutated) head and the node new, set up to be part of the list (with correct next field). If head is
initially nil, it will become new.

7.2.1.32 node.insert_after

<node> head, new =
node.insert after(<node> head, <node> current, <node> new)

This function inserts the node new after current into the list following head. It is your respon-
sibility to make sure that current is really part of that list. The return values are the head and
the node new, set up to be part of the list (with correct next field). If head is initially nil, it will
become new.

7.2.1.33 node.first_glyph

<node> n =
node.first glyph(<node> n)
<node> n =
node.first glyph(<node> n, <node> m)

Returns the first node in the list starting at n that is a glyph node with a subtype indicating it is
a glyph, or nil. If mis given, processing stops at (but including) that node, otherwise processing
stops at the end of the list.

7.2.1.34 node.ligaturing

<node> h, <node> t, <boolean> success
node.ligaturing(<node> n)

<node> h, <node> t, <boolean> success
node.ligaturing(<node> n, <node> m)

Apply TgX-style ligaturing to the specified nodelist. The tail node mis optional. The two returned
nodes h and t are the new head and tail (both n and m can change into a new ligature).

7.2.1.35 node.kerning

<node> h, <node> t, <boolean> success
node.kerning(<node> n)

<node> h, <node> t, <boolean> success
node.kerning(<node> n, <node> m)

0} 128 Nodes
‘\ //

Apply TgX-style kerning to the specified node list. The tail node m is optional. The two returned
nodes h and t are the head and tail (either one of these can be an inserted kern node, because
special kernings with word boundaries are possible).

7.2.1.36 node.unprotect_glyphs and node.unprotect_glyph

node.unprotect glyph(<node> n)
node.unprotect glyphs(<node> n,[<node> n])

Subtracts 256 from all glyph node subtypes. This and the next function are helpers to con-
vert from characters to glyphs during node processing. The second argument is option and
indicates the end of a range.

7.2.1.37 node.protect_glyphs and node.protect_glyph

node.protect glyph(<node> n)
node.protect glyphs(<node> n,[<node> n])

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1,
it adds only 255. The special handling of 1 means that characters will become glyphs after
subtraction of 256. A single character can be marked by the singular call. The second argument
is option and indicates the end of a range.

7.2.1.38 node.last_node

<node> n =
node.last node()

This function pops the last node from TgX’s ‘current list’. It returns that node, or nil if the
current list is empty.

7.2.1.39 node.write

node.write(<node> n)

This is an experimental function that will append a node list to TEX’s ‘current list” The node list
is not deep-copied! There is no error checking either!

7.2.1.40 node.protrusion_skippable

<boolean> skippable =
node.protrusion skippable(<node> n)

Returns true if, for the purpose of line boundary discovery when character protrusion is active,
this node can be skipped.

Nodes 129 {0‘,
w

Ny -

7.2.2 Glue handling

7.2.2.1 node.setglue

You can set the properties of a glue in one go. If you pass no values, the glue will become a zero
glue.

node.setglue(<node> n)
node.setglue(<node> n,width,stretch,shrink,stretch order,shrink order)

When you pass values, only arguments that are numbers are assigned so
node.setglue(n,655360, false,65536)

will only adapt the width and shrink.

When a list node is passed, you set the glue, order and sign instead.

7.2.2.2 node.getglue
The next call will return 5 values (or northing when no glue is passed).

<integer> width, <integer> stretch, <integer> shrink, <integer> stretch order,
<integer> shrink order = node.getglue(<node> n)

When the second argument is false, only the width is returned (this is consistent with tex.get).

When a list node is passed, you get back the glue that is set, the order of that glue and the sign.

7.2.2.3 node.is_zero_glue
This function returns true when the width, stretch and shrink properties are zero.

<boolean> isglue =
node.is zero glue(<node> n)

7.2.3 Attribute handling

Attributes appear as linked list of userdata objects in the attr field of individual nodes. They can
be handled individually, but it is much safer and more efficient to use the dedicated functions
associated with them.

7.2.3.1 node.has_attribute

<number> v =
node.has attribute(<node> n, <number> 1id)
<number> v =
node.has attribute(<node> n, <number> id, <number> val)

0} 130 Nodes
N !

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value
matches val. It returns the value, or, if no match is found, nil.
7.2.3.2 node.get_attribute

<number> v =
node.get attribute(<node> n, <number> id)

Tests if a node has an attribute with number id set. It returns the value, or, if no match is found,
nil.
7.2.3.3 node.find_attribute

<number> v, <node> n =
node.find attribute(<node> n, <number> id)

Finds the first node that has attribute with number id set. It returns the value and the node if
there is a match and otherwise nothing.

7.2.3.4 node.set_attribute
node.set attribute(<node> n, <number> id, <number> val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored.

7.2.3.5 node.unset_attribute

<number> v =
node.unset attribute(<node> n, <number> id)
<number> v =
node.unset attribute(<node> n, <number> id, <number> val)

Unsets the attribute with number id. If val is also supplied, it will only perform this operation
if the value matches val. Missing attributes or attribute-value pairs are ignored.

If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

7.2.3.6 node.slide
This helper makes sure that the node lists is double linked and returns the found tail node.

<node> tail =
node.slide(<node> n)

After some callbacks automatic sliding takes place. This feature can be turned off with
node.fix node lists(false) but you better make sure then that you don’t mess up lists. In
most cases TgX itself only uses next pointers but your other callbacks might expect proper prev
pointers too. Future versions of LuaTgX can add more checking but this will not influence usage.

Nodes 131 ! }
i *)

Ny -

7.2.3.7 node.check_discretionary and node.check_discretionaries

When you fool around with disc nodes you need to be aware of the fact that they have a special
internal data structure. As long as you reassign the fields when you have extended the lists it’s
ok because then the tail pointers get updated, but when you add to list without reassigning you
might end up in troubles when the linebreak routien kicks in. You can call this function to check
the list for issues with disc nodes.

node.check discretionary(<node> n)
node.check discretionaries(<node> head)

The plural variant runs over all disc nodes in a list, the singular variant checks one node only (it
also checks if the node is a disc node).

7.2.3.8 node.flatten_discretionaries

This function will remove the discretionaries in the list and inject the replace field when set.

<node> head, count = node.flatten discretionaries(<node> n)

7.2.3.9 node.family font

When you pass it a proper family identifier the next helper will return the font currently associ-
ated with it. You can normally also access the font with the normal font field or getter because
it will resolve the family automatically for noads.

<integer> id =
node.family font(<integer> fam)

7.2.3.10 node.set_synctex_fields and node.get_synctex_ fields

You can set and query the synctex fields, a file number aka tag and a line number, for a glue,
kern, hlist, vlist, rule and math nodes as well as glyph nodes (although this last one are not used
in native synctex).

node.set synctex fields(<integer> f, <integer> 1)
<integer> f, <integer> 1 =
node.get synctex fields(<node> n)

Of course you need to know what you’'re doing as no checking on sane values takes place. Also,
the synctex interpreter used in editors is rather peculiar and has some assumptions (heuristics).

7.3 Two access models

Deep down in TEX a node has a number which is an numeric entry in a memory table. In fact, this
model, where TEX manages memory is real fast and one of the reasons why plugging in callbacks
that operate on nodes is quite fast too. Each node gets a number that is in fact an index in the
memory table and that number often gets reported when you print node related information.

.0/‘, 132 Nodes

There are two access models, a robust one using a so called user data object that provides a
virtual interface to the internal nodes, and a more direct access which uses the node numbers
directly. The first model provide key based access while the second always accesses fields via
functions:

nodeobject.char
getfield(nodenumber, "char")

If you use the direct model, even if you know that you deal with numbers, you should not depend
on that property but treat it an abstraction just like traditional nodes. In fact, the fact that we
use a simple basic datatype has the penalty that less checking can be done, but less checking
is also the reason why it’s somewhat faster. An important aspect is that one cannot mix both
methods, but you can cast both models. So, multiplying a node number makes no sense.

So our advice is: use the indexed (table) approach when possible and investigate the direct one
when speed might be an real issue. For that reason we also provide the get* and set* functions
in the top level node namespace. There is a limited set of getters. When implementing this
direct approach the regular index by key variant was also optimized, so direct access only makes
sense when we’re accessing nodes millions of times (which happens in some font processing for
instance).

We’re talking mostly of getters because setters are less important. Documents have not that
many content related nodes and setting many thousands of properties is hardly a burden con-
trary to millions of consultations.

Normally you will access nodes like this:

local next = current.next
if next then

-- do something
end

Here next is not a real field, but a virtual one. Accessing it results in a metatable method being
called. In practice it boils down to looking up the node type and based on the node type checking
for the field name. In a worst case you have a node type that sits at the end of the lookup list and
a field that is last in the lookup chain. However, in successive versions of LuaTgX these lookups
have been optimized and the most frequently accessed nodes and fields have a higher priority.

Because in practice the next accessor results in a function call, there is some overhead involved.
The next code does the same and performs a tiny bit faster (but not that much because it is still
a function call but one that knows what to look up).

local next = node.next(current)
if next then

-- do something
end

Some accessors are used frequently and for these we provide more efficient helpers:

getnext parsing nodelist always involves this one
getprev used less but is logical companion to getnext

Nodes 133 ‘0

getboth returns the next and prev pointer of a node

getid consulted a lot

getsubtype consulted less but also a topper

getfont used a lot in OpenType handling (glyph nodes are consulted a lot)

getchar idem and also in other places

getwhd returns the width, height and depth of a list, rule or (unexpanded) glyph as well
as glue (its spec is looked at) and unset nodes

getdisc returns the pre, post and replace fields and optionally when true is passed also
the tail fields.

getlist we often parse nested lists so this is a convenient one too

getleader comparable to list, seldom used in TgX (but needs frequent consulting like lists;
leaders could have been made a dedicated node type)

getfield generic getter, sufficient for the rest (other field names are often shared so a spe-
cific getter makes no sense then)
getbox gets the given box (a list node)

In the direct namespace there are more such helpers and most of them are accompanied by
setters. The getters and setters are clever enough to see what node is meant. We don’t deal
with whatsit nodes: their fields are always accessed by name. It doesn’t make sense to add
getters for all fields, we just identifier the most likely candidates. In complex documents, many
node and fields types never get seen, or seen only a few times, but for instance glyphs are
candidates for such optimization. The node.direct interface has some more helpers.*

The setdisc helper takes three (optional) arguments plus an optional fourth indicating the sub-
type. Its getdisc takes an optional boolean; when its value is true the tail nodes will also be
returned. The setfont helper takes an optional second argument, it being the character. The
directmode setter setlink takes a list of nodes and will link them, thereby ignoring nil entries.
The first valid node is returned (beware: for good reason it assumes single nodes). For rarely
used fields no helpers are provided and there are a few that probably are used seldom too but
were added for consistency. You can of course always define additional accessor using getfield
and setfield with little overhead.

function node direct

check discretionaries
copy list

copy

count
current_attr
dimensions
effective glue
end of math
family font
fields

find _attribute
first glyph

+

+

+ 4+ + + + + +

+ 4+ + ++++ A+ + o+
+

We can define the helpers in the node namespace with getfield which is about as efficient, so at some point we might
provide that as module.

0/‘[134 Nodes

flush list
flush _node
free

get attribute
getattributelist
getboth
getbox
getchar
getcomponents
getdepth
getdir
getdisc
getfam
getfield
getfont
getglue
getheight
getid

getkern
getlang
getleader
getlist
getnext
getnucleus
getoffsets
getpenalty
getprev
getproperty
getshift
getwidth
getwhd

getsub
getsubtype
getsup
has_attribute
has field

has glyph
hpack

id

insert after
insert before
is char

is direct

is glue zero
is glyph

is node

+ 4+ + +

I+ + + |

+

I+ + + 1

+ 4+ + ++ A+

+ + +

+++++++++++ A+ A+ A A+ o+

+ 4+ + + 4+ + +

kerning

last node
length
ligaturing
mlist to hlist

+ 4+ + +

new
next
prev

+

protect glyphs
protect glyph
protrusion skippable
rangedimensions

remove

set attribute
setattributelist

setboth
setbox
setchar

setcomponents

setdepth
setdir
setdisc
setfield
setfont
setglue
setheight
setid
setkern
setlang
setleader
setlist
setnext
setnucleus
setoffsets
setpenalty
setprev
setproperty
setshift
setwidth
setwhd
setsub
setsubtype
setsup
slide
subtypes
subtype

0/‘[136 Nodes

+ 4+ +++++ A+ o+

+ + +

+++++++++ A+ A A A+ o+

tail

todirect

tonode

tostring

traverse char
traverse id
traverse

types

type

unprotect glyphs
unset attribute
usedlist

uses font

vpack
whatsitsubtypes
whatsits

write

set synctex fields
get synctex fields

+ 4+ + + 4+ + +

+ 4+ + + +

+++++++ A+

N

The node.next and node.prev functions will stay but for consistency there are variants called
getnext and getprev. We had to use get because node.id and node.subtype are already taken
for providing meta information about nodes. Note: The getters do only basic checking for valid
keys. You should just stick to the keys mentioned in the sections that describe node properties.

Some nodes have indirect references. For instance a math character refers to a family instead
of a font. In that case we provide a virtual font field as accessor. So, getfont and . font can be
used on them. The same is true for the width, height and depth of glue nodes. These actually
access the spec node properties, and here we can set as well as get the values.

Nodes 137 ‘0/‘,

-

138 Nodes

8 LUATEX LUA callbacks

8.1 Registering callbacks

This library has functions that register, find and list callbacks. Callbacks are Lua functions
that are called in well defined places. There are two kind of callbacks: those that mix with
existing functionality, and those that (when enabled) replace functionality. In mosty cases the
second category is expected to behave similar to the built in functionality because in a next step
specific data is expected. For instance, you can replace the hyphenation routine. The function
gets a list that can be hyphenated (or not). The final list should be valid and is (normally) used
for constructing a paragraph. Another function can replace the ligature builder and/or kerner.
Doing something else is possible but in the end might not give the user the expected outcome.

The first thing you need to do is registering a callback:

id, error =

callback.register (<string> callback name, <function> func)
id, error =

callback.register (<string> callback name, nil)
id, error =

callback.register (<string> callback name, false)

Here the callback name is a predefined callback name, see below. The function returns the
internal id of the callback or nil, if the callback could not be registered. In the latter case,
error contains an error message, otherwise it is nil.

LuaTgX internalizes the callback function in such a way that it does not matter if you redefine a
function accidentally.

Callback assignments are always global. You can use the special value nil instead of a function
for clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks,
doing so will prevent LuaTgX from executing whatever it would execute by default (when no
callback function is registered at all). Be warned: this may cause all sorts of grief unless you
know exactly what you are doing!

<table> info =
callback.list()

The keys in the table are the known callback names, the value is a boolean where true means
that the callback is currently set (active).

<function> f = callback.find (callback name)

If the callback is not set, callback.find returns nil.

8.2 File discovery callbacks

The behaviour documented in this subsection is considered stable in the sense that there will
not be backward-incompatible changes any more.

LuaTgX Lua callbacks 139 .’0

I
/

8.2.1 find read file and find write_ file

Your callback function should have the following conventions:

<string> actual name =
function (<number> id number, <string> asked name)

Arguments:

id number
This number is zero for the log or \input files. For TgX’s \read or \write the number is
incremented by one, so \read0 becomes 1.

asked name
This is the user-supplied filename, as found by \input, \openin or \openout.

Return value:

actual name
This is the filename used. For the very first file that is read in by TgX, you have to make sure
you return an actual name that has an extension and that is suitable for use as jobname. If
you don’t, you will have to manually fix the name of the log file and output file after LuaTgX
is finished, and an eventual format filename will become mangled. That is because these file
names depend on the jobname.
You have to return nil if the file cannot be found.

8.2.2 find_font_file
Your callback function should have the following conventions:

<string> actual name =
function (<string> asked name)

The asked name is an otf or tfm font metrics file.

Return nil if the file cannot be found.

8.2.3 find output_file
Your callback function should have the following conventions:

<string> actual name =
function (<string> asked name)

The asked name is the pdf or dvi file for writing.

8.2.4 find_format_file
Your callback function should have the following conventions:

<string> actual name =

0\‘[140 LuaTgX Lua callbacks

function (<string> asked name)

The asked name is a format file for reading (the format file for writing is always opened in the

current directory).

8.2.5 find vf file

Like find font file, but for virtual fonts. This applies to both Aleph’s ovf files and traditional

Knuthian vf files.

8.2.6 find_map_file

Like find font file, but for map files.

8.2.7 find_enc_file

Like find font file, but for enc files.

8.2.8 find_sfd file

Like find font file, but for subfont definition files.

8.2.9 find_pk_file

Like find font file, but for pk bitmap files. This callback takes two arguments: name and dpi.

In your callback you can decide to look for:

<base res>dpi/<fontname>.<actual res>pk

but other strategies are possible. It is up to you to find a ‘reasonable’ bitmap file to go with that

specification.

8.2.10 find data_file

Like find font file, but for embedded files (\pdfobj file '...

8.2.11 find_opentype_file

Like find font file, but for OpenType font files.

8.2.12 find_truetype_file and find_typel_file
Your callback function should have the following conventions:

<string> actual name =

LuaTgX Lua callbacks 141

function (<string> asked name)

The asked name is a font file. This callback is called while LuaTgX is building its internal list of
needed font files, so the actual timing may surprise you. Your return value is later fed back into
the matching read file callback.

Strangely enough, find typel file is also used for OpenType (otf) fonts.

8.2.13 find_image file
Your callback function should have the following conventions:

<string> actual name =
function (<string> asked name)

The asked name is an image file. Your return value is used to open a file from the hard disk, so
make sure you return something that is considered the name of a valid file by your operating
system.

8.2.14 File reading callbacks

The behavior documented in this subsection is considered stable in the sense that there will not
be backward-incompatible changes any more.

8.2.15 open_read_file

Your callback function should have the following conventions:

<table> env =
function (<string> file name)

Argument:

file name
The filename returned by a previous find read file or the return value of
kpse.find file() if there was no such callback defined.

Return value:

env
This is a table containing at least one required and one optional callback function for this file.
The required field is reader and the associated function will be called once for each new line
to be read, the optional one is close that will be called once when LuaTgX is done with the
file.
LuaTgX never looks at the rest of the table, so you can use it to store your private per-file
data. Both the callback functions will receive the table as their only argument.

8.2.15.1 reader

LuaTgX will run this function whenever it needs a new input line from the file.

QO\‘, 142 LuaTgX Lua callbacks

function(<table> env)
return <string> line
end

Your function should return either a string or nil. The value nil signals that the end of file has
occurred, and will make TgX call the optional close function next.

8.2.15.2 close

LuaTgX will run this optional function when it decides to close the file.

function(<table> env)
end

Your function should not return any value.

8.2.16 General file readers

There is a set of callbacks for the loading of binary data files. These all use the same interface:

function(<string> name)
return <boolean> success, <string> data, <number> data size
end

The name will normally be a full path name as it is returned by either one of the file discovery
callbacks or the internal version of kpse.find file().

success

Return false when a fatal error occurred (e.g. when the file cannot be found, after all).
data

The bytes comprising the file.
data size

The length of the data, in bytes.

Return an empty string and zero if the file was found but there was a reading problem.

The list of functions is as follows:

read font file ofm or tfm files

read vf file virtual fonts

read map file map files

read enc file encoding files

read sfd file subfont definition files

read pk file pk bitmap files

read data file embedded files (as is possible with pdf objects)

read truetype file TrueType font files
read typel file Typel font files
read opentype file OpenType font files

LuaTgX Lua callbacks 143 Q’O‘,

8.3 Data processing callbacks

8.3.1 process_input_buffer

This callback allows you to change the contents of the line input buffer just before LuaTgX actu-
ally starts looking at it.

function(<string> buffer)
return <string> adjusted buffer
end

If you return nil, LuaTgX will pretend like your callback never happened. You can gain a small
amount of processing time from that. This callback does not replace any internal code.
8.3.2 process _output buffer

This callback allows you to change the contents of the line output buffer just before LuaTgX
actually starts writing it to a file as the result of a \write command. It is only called for output
to an actual file (that is, excluding the log, the terminal, and \writel8 calls).

function(<string> buffer)
return <string> adjusted buffer
end

If you return nil, LuaTgX will pretend like your callback never happened. You can gain a small
amount of processing time from that. This callback does not replace any internal code.
8.3.3 process_jobname

This callback allows you to change the jobname given by \ jobname in TEX and tex.jobname in
Lua. It does not affect the internal job name or the name of the output or log files.

function(<string> jobname)
return <string> adjusted jobname
end

The only argument is the actual job name; you should not use tex. jobname inside this function
or infinite recursion may occur. If you return nil, LuaTgX will pretend your callback never
happened. This callback does not replace any internal code.

8.4 Node list processing callbacks

The description of nodes and node lists is in chapter 7.

8.4.1 contribute_filter

This callback is called when LuaTgX adds contents to list:

0\‘[144 LuaTgX Lua callbacks

function(<string> extrainfo)
end

The string reports the group code. From this you can deduce from what list you can give a treat.

value explanation

pre box interline material is being added

pre _adjust \vadjust material is being added

box a typeset box is being added (always called)
adjust \vadjust material is being added

8.4.2 buildpage_filter

This callback is called whenever LuaTgX is ready to move stuff to the main vertical list. You can
use this callback to do specialized manipulation of the page building stage like imposition or
column balancing.

function(<string> extrainfo)
end

The string extrainfo gives some additional information about what TgX’s state is with respect
to the ‘current page’. The possible values for the buildpage filter callback are:

value explanation

alignment a (partial) alignment is being added
after output an output routine has just finished
new graf the beginning of a new paragraph
vmode par \par was found in vertical mode
hmode par \par was found in horizontal mode
insert an insert is added

penalty a penalty (in vertical mode)

before display immediately before a display starts
after display a display is finished
end LuaTgX is terminating (it’s all over)

8.4.3 build_page_insert

This callback is called when the pagebuilder adds an insert. There is not much control over this
mechanism but this callback permits some last minute manipulations of the spacing before an
insert, something that might be handy when for instance multiple inserts (types) are appended
in a row.

function(<number> n, <number> i)
return <number> register
end

with

LuaTgX Lua callbacks 145 .’0‘,

value explanation
n the insert class
i the order of the insert

The return value is a number indicating the skip register to use for the prepended spacing. This
permits for instance a different top space (when i equals one) and intermediate space (when i
is larger than one). Of course you can mess with the insert box but you need to make sure that
LuaTgX is happy afterwards.

8.4.4 pre_linebreak filter

This callback is called just before LuaTgX starts converting a list of nodes into a stack of \hboxes,
after the addition of \parfillskip.

function(<node> head, <string> groupcode)
return true | false | <node> newhead
end

The string called groupcode identifies the nodelist’s context within TgX's processing. The range
of possibilities is given in the table below, but not all of those can actually appear in pre_line-
break filter, some are for the hpack filter and vpack filter callbacks that will be ex-
plained in the next two paragraphs.

value explanation

<empty> main vertical list

hbox \hbox in horizontal mode
adjusted hbox \hbox in vertical mode
vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert
vcenter \vcenter

local box \localleftbox or \localrightbox
split off top of a \vsplit

split keep remainder of a \vsplit
align set alignment cell

fin_row alignment row

As for all the callbacks that deal with nodes, the return value can be one of three things:

« boolean true signals successful processing
« <node> signals that the ‘head’ node should be replaced by the returned node
« boolean false signals that the ‘head’ node list should be ignored and flushed from memory

This callback does not replace any internal code.

8.4.5 linebreak_filter

This callback replaces LuaTgX's line breaking algorithm.

\0\‘, 146 LuaTgX Lua callbacks

function(<node> head, <boolean> is display)
return <node> newhead
end

The returned node is the head of the list that will be added to the main vertical list, the boolean
argument is true if this paragraph is interrupted by a following math display.

If you return something that is not a <node>, LuaTgX will apply the internal linebreak algorithm
on the list that starts at <head>. Otherwise, the <node> you return is supposed to be the head
of a list of nodes that are all allowed in vertical mode, and at least one of those has to represent
a hbox. Failure to do so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up
in an unfixable ‘deadcycles loop’.

8.4.6 append_to_vlist_filter
This callback is called whenever LuaTgX adds a box to a vertical list:

function(<node> box, <string> locationcode, <number prevdepth>,
<boolean> mirrored)
return list, prevdepth

end

It is ok to return nothing in which case you also need to flush the box or deal with it yourself.
The prevdepth is also optional. Locations are box, alignment, equation, equation number and
post linebreak.

8.4.7 post_linebreak_filter

This callback is called just after LuaTgX has converted a list of nodes into a stack of \hboxes.

function(<node> head, <string> groupcode)
return true | false | <node> newhead
end

This callback does not replace any internal code.

8.4.8 hpack_filter

This callback is called when TgX is ready to start boxing some horizontal mode material. Math
items and line boxes are ignored at the moment.

function(<node> head, <string> groupcode, <number> size,
<string> packtype [, <string> direction] [, <node> attributelist])
return true | false | <node> newhead
end

LuaTgX Lua callbacks 147 ‘0}

The packtype is either additional or exactly. If additional, then the size is a \hbox spread
. argument. If exactly, then the size is a \hbox to In both cases, the number is in
scaled points.

The direction is either one of the three-letter direction specifier strings, or nil.

This callback does not replace any internal code.

8.4.9 vpack_filter

This callback is called when TgX is ready to start boxing some vertical mode material. Math
displays are ignored at the moment.

This function is very similar to the hpack filter. Besides the fact that it is called at different
moments, there is an extra variable that matches TgX’s \maxdepth setting.

function(<node> head, <string> groupcode, <number> size, <string> packtype,
<number> maxdepth [, <string> direction] [, <node> attributelist]))
return true | false | <node> newhead
end

This callback does not replace any internal code.

8.4.10 hpack_quality

This callback can be used to intercept the overfull messages that can result from packing a
horizontal list (as happens in the par builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,
<number> last)
return <node> whatever
end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of
overflow in case of overfull, or the badness otherwise. The head is the list that is constructed
(when protrusion or expansion is enabled, this is an intermediate list). Optionally you can return
a node, for instance an overfull rule indicator. That node will be appended to the list (just like
TEX’s own rule would).

8.4.11 vpack_quality

This callback can be used to intercept the overfull messages that can result from packing a
vertical list (as happens in the page builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,
<number> last)
end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of
overflow in case of overfull, or the badness otherwise. The head is the list that is constructed.

0\‘[148 LuaTgX Lua callbacks

8.4.12 process_rule

This is an experimental callback. It can be used with rules of subtype 4 (user). The callback gets
three arguments: the node, the width and the height. The callback can use pdf.print to write
code to the pdf file but beware of not messing up the final result. No checking is done.

8.4.13 pre_output_filter
This callback is called when TgX is ready to start boxing the box 255 for \output.

function(<node> head, <string> groupcode, <number> size, <string> packtype,
<number> maxdepth [, <string> direction])
return true | false | <node> newhead
end

This callback does not replace any internal code.

8.4.14 hyphenate

function(<node> head, <node> tail)
end
No return values. This callback has to insert discretionary nodes in the node list it receives.

Setting this callback to false will prevent the internal discretionary insertion pass.

8.4.15 ligaturing

function(<node> head, <node> tail)
end

No return values. This callback has to apply ligaturing to the node list it receives.

You don’t have to worry about return values because the head node that is passed on to the
callback is guaranteed not to be a glyph node (if need be, a temporary node will be prepended),
and therefore it cannot be affected by the mutations that take place. After the callback, the
internal value of the ‘tail of the list’ will be recalculated.

The next of head is guaranteed to be non-nil.

The next of tail is guaranteed to be nil, and therefore the second callback argument can often
be ignored. It is provided for orthogonality, and because it can sometimes be handy when special
processing has to take place.

Setting this callback to false will prevent the internal ligature creation pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail
a glue. Messing too much can push LuaTgX into panic mode.

8.4.16 kerning

function(<node> head, <node> tail)

LuaTgX Lua callbacks 149 .0‘,

Ny -

end

No return values. This callback has to apply kerning between the nodes in the node list it
receives. See ligaturing for calling conventions.

Setting this callback to false will prevent the internal kern insertion pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail
a glue. Messing too much can push LuaTgX into panic mode.
8.4.17 insert_local_par

Each paragraph starts with a local par node that keeps track of for instance the direction. You
can hook a callback into the creator:

function(<node> local par, <string> location)
end

There is no return value and you should make sure that the node stays valid as otherwise TgEX
can get confused.

8.4.18 mlist_to_hlist

This callback replaces LuaTgX's math list to node list conversion algorithm.

function(<node> head, <string> display type, <boolean> need penalties)
return <node> newhead
end

The returned node is the head of the list that will be added to the vertical or horizontal list, the
string argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean
argument is true if penalties have to be inserted in this list, false otherwise.

Setting this callback to false is bad, it will almost certainly result in an endless loop.

8.5 Information reporting callbacks

8.5.1 pre_dump

function()
end

This function is called just before dumping to a format file starts. It does not replace any code
and there are neither arguments nor return values.

8.5.2 start_run

function()

\0\‘, 150 LuaTgX Lua callbacks

end

This callback replaces the code that prints LuaTgX’s banner. Note that for successful use, this
callback has to be set in the Lua initialization script, otherwise it will be seen only after the run
has already started.

8.5.3 stop_run

function()
end

This callback replaces the code that prints LuaTgX’s statistics and ‘output written to’ messages.

8.5.4 start_page_number

function()
end

Replaces the code that prints the [and the page number at the begin of \shipout. This callback
will also override the printing of box information that normally takes place when \tracingout-
put is positive.

8.5.5 stop_page_number

function()
end

Replaces the code that prints the] at the end of \shipout.

8.5.6 show_error_hook

function()
end

This callback is run from inside the TgX error function, and the idea is to allow you to do some
extra reporting on top of what TgX already does (none of the normal actions are removed). You
may find some of the values in the status table useful. This callback does not replace any
internal code.

8.5.7 show_error_message

function()
end

This callback replaces the code that prints the error message. The usual interaction after the

message is not affected.
LuaTgX Lua callbacks 151 QO‘,

8.5.8 show _lua_error_hook

function()
end

This callback replaces the code that prints the extra Lua error message.

8.5.9 start_file

function(category, filename)
end

This callback replaces the code that prints LuaTgX’s when a file is opened like (filename for
regular files. The category is a number:

a normal data file, like a TgX source

a font map coupling font names to resources
an image file (png, pdf, etc)

an embedded font subset

a fully embedded font

O = W N -

8.5.10 stop_file

function(category)
end

This callback replaces the code that prints LuaTgX's when a file is closed like the) for regular
files.

8.5.11 call_edit

function(filename, linenumber)
end

This callback replaces the call to an external editor when ‘E’ is pressed in reply to an error mes-
sage. Processing will end immediately after the callback returns control to the main program.

8.5.12 finish_synctex_callback

This callback can be used to wrap up alternative synctex methods. It kicks in after the normal
synctex finalizer (that happens to remove the synctex files after a run when native synctex is not
enabled).

8.6 PDF-related callbacks

8.6.1 finish pdffile

function()

\0‘, 152 LuaTgX Lua callbacks

end

This callback is called when all document pages are already written to the pdf file and LuaTgX
is about to finalize the output document structure. Its intended use is final update of pdf dictio-
naries such as /Catalog or /Info. The callback does not replace any code. There are neither
arguments nor return values.

8.6.2 finish_pdfpage

function(shippingout)
end

This callback is called after the pdf page stream has been assembled and before the page object
gets finalized.

8.7 Font-related callbacks

8.7.1 define_font

function(<string> name, <number> size, <number> id)
return <table> font | <number> id
end

The string name is the filename part of the font specification, as given by the user.

The number size is a bit special:

« Ifit is positive, it specifies an ‘at size’ in scaled points.

« [If it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of
the font.

The id is the internal number assigned to the font.

The internal structure of the font table that is to be returned is explained in chapter 5. That
table is saved internally, so you can put extra fields in the table for your later Lua code to use.
In alternative, retval can be a previously defined fontid. This is useful if a previous definition
can be reused instead of creating a whole new font structure.

Setting this callback to false is pointless as it will prevent font loading completely but will
nevertheless generate errors.

8.7.2 glyph_not_found

This callback kicks in when the backend cannot insert a glyph. When no callback is defined a
message is written to the log.

function(<number> id, <number> char)
-- do something with font id and char code
end

LuaTgX Lua callbacks 153 90‘,

154 LuaTgX Lua callbacks

9 The TgX related libraries

9.1 The lua library

9.1.1 LUA version
This library contains one read-only item:
<string> s = lua.version

This returns the Lua version identifier string. The value is currently Lua 5.2.

9.1.2 LUA bytecode registers

Luaregisters can be used to communicate Lua functions across Lua chunks. The accepted values
for assignments are functions and nil. Likewise, the retrieved value is either a function or nil.

lua.bytecode[<number> n] = <function> f
lua.bytecode[<number> n] ()

The contents of the lua.bytecode array is stored inside the format file as actual Lua bytecode,
so it can also be used to preload Lua code.

Note: The function must not contain any upvalues. Currently, functions containing upvalues
can be stored (and their upvalues are set to nil), but this is an artifact of the current Lua
implementation and thus subject to change.

The associated function calls are

<function> f = lua.getbytecode(<number> n)
lua.setbytecode(<number> n, <function> f)

Note: Since a Lua file loaded using loadfile(filename) is essentially an anonymous function,
a complete file can be stored in a bytecode register like this:

lua.bytecode[n] = loadfile(filename)

Now all definitions (functions, variables) contained in the file can be created by executing this
bytecode register:

lua.bytecode[n] ()

Note that the path of the file is stored in the Lua bytecode to be used in stack backtraces and
therefore dumped into the format file if the above code is used in iniTgX. If it contains private
information, i.e. the user name, this information is then contained in the format file as well. This
should be kept in mind when preloading files into a bytecode register in iniTgX.

The TgX related libraries 155 .\0\‘,

9.1.3 LUA chunk name registers

There is an array of 65536 (0-65535) potential chunk names for use with the \directlua and
\latelua primitives.

lua.name[<number> n] = <string> s
<string> s = lua.name[<number> n]

If you want to unset a Lua name, you can assign nil to it.

9.2 The status library

This contains a number of run-time configuration items that you may find useful in message
reporting, as well as an iterator function that gets all of the names and values as a table.

<table> info = status.list()

The keys in the table are the known items, the value is the current value. Almost all of the
values in status are fetched through a metatable at run-time whenever they are accessed, so
you cannot use pairs on status, but you can use pairs on info, of course. If you do not need
the full list, you can also ask for a single item by using its name as an index into status.

The current list is:

key explanation
banner terminal display banner
best page break
the current best break (a node)

buf size current allocated size of the line buffer
callbacks total number of executed callbacks so far
cs_count number of control sequences

dest names size pdf destination table size

dvi gone written dvi bytes

dvi ptr not yet written dvi bytes

dyn used token (multi-word) memory in use

filename name of the current input file

fix_mem_end maximum number of used tokens

fix_mem min minimum number of allocated words for tokens
fix_mem_ max maximum number of allocated words for tokens
font_ptr number of active fonts

hash_extra extra allowed hash

hash size size of hash

indirect callbacks number of those that were themselves a result of other callbacks (e.g.
file readers)

ini version true if this is an iniTEX run
init pool ptr iniTEX string pool index
init str _ptr number of iniTEX strings

00\‘, 156 The TgX related libraries

input ptr

inputid
largest used mark
lasterrorcontext
lasterrorstring
lastluaerrorstring
lastwarningstring
lastwarningtag
linenumber

log name
luabytecode bytes
luabytecodes
luastate bytes
luatex_engine
luatex_hashchars
luatex_hashtype
luatex_revision
luatex_revision
luatex_version
max_buf stack
max_in stack
max_nest stack
max_param_stack
max_save stack
max_strings

nest size
node_mem _usage
obj ptr

obj tab size
output active
output file name
param size

pdf dest names ptr
pdf gone

pdf _mem ptr

pdf mem size
pdf os cntr

pdf os objidx

pdf ptr

pool ptr

pool size
save_size

shell escape
safer _option

kpse used

stack size

th elevel of input we're at

numeric id of the current input

max referenced marks class

last error context string (with newlines)
last TgX error string

last Lua error string

last warning tag, normally an indication of in what part
last warning string

location in the current input file

name of the log file

number of bytes in Lua bytecode registers
number of active Lua bytecode registers
number of bytes in use by Lua interpreters
the LuaTgX engine identifier

length to which Lua hashes strings (2™)
the hash method used (in LuajitTEX)

the LuaTgX revision string

the LuaTgX revision string

the LuaTgX version number

max used buffer position

max used input stack entries

max used nesting stack entries

max used parameter stack entries

max used save stack entries

maximum allowed strings

nesting stack size

a string giving insight into currently used nodes
max pdf object pointer

pdf object table size

true if the \output routine is active

name of the pdf or dvi file

parameter stack size

max pdf destination pointer

written pdf bytes

max pdf memory used

pdf memory size

max pdf object stream pointer

pdf object stream index

not yet written pdf bytes

string pool index

current size allocated for string characters
save stack size

0 means disabled, 1 means anything is permitted, and 2 is restricted
1 means safer is enforced

1 means that kpse is used

input stack size

The TgX related libraries 157 ‘x\O\‘,

str _ptr number of strings

total pages number of written pages

var_mem_max number of allocated words for nodes

var_used variable (one-word) memory in use

lc collate the value of LC_COLLATE at startup time (becomes C at startup)
lc ctype the value of LC_CTYPE at startup time (becomes C at startup)
lc_numeric the value of LC_NUMERIC at startup time

The error and warning messages can be wiped with the resetmessages function. A return value
can be set with setexitcode.

9.3 The tex library

The tex table contains a large list of virtual internal TgX parameters that are partially writable.

The designation ‘virtual’ means that these items are not properly defined in Lua, but are only
frontends that are handled by a metatable that operates on the actual TgX values. As a result,
most of the Lua table operators (like pairs and #) do not work on such items.

At the moment, it is possible to access almost every parameter that has these characteristics:

« You can use it after \the
« Itis a single token.
» Some special others, see the list below

This excludes parameters that need extra arguments, like \the\scriptfont.

The subset comprising simple integer and dimension registers are writable as well as readable
(stuff like \tracingcommands and \parindent).

9.3.1 Internal parameter values

For all the parameters in this section, it is possible to access them directly using their names as
index in the tex table, or by using one of the functions tex.get and tex.set.

The exact parameters and return values differ depending on the actual parameter, and so does
whether tex.set has any effect. For the parameters that can be set, it is possible to use global
as the first argument to tex.set; this makes the assignment global instead of local.

tex.set (["global",] <string> n, ...)
. = tex.get (<string> n)

Glue is kind of special because there are five values involved. The return value is a glue_ spec
node btu when you pass false as last argument to tex.get you get the width of the glue and
when you pass true you get all five values. Otherwise you get a node which is a copy of the
internal value so you are responsible for its freeing at the Lua end. When you set a glue quantity
you can either pass a glue spec or upto five numbers. If you pass true to get you get 5 values
returned for a glue and when you pass false you only get the width returned.

For the registers you can use getskip (node), getglue (numbers) setskip (node) and setglue
(numbers). If you pass false as second argument to getglue you only get the width returned.

0\‘[158 The TgX related libraries

There are also dedicated setters, getters and checkers:

local d = tex.getdimen("foo")

if tex.isdimen("bar") then
tex.setdimen("bar",d)

end

There are such helpers for dimen, count, skip, box and attribute registers.

9.3.1.1 Integer parameters

The integer parameters accept and return Lua numbers.

Read-write:

tex.adjdemerits tex.maxdeadcycles
tex.binoppenalty tex.month
tex.brokenpenalty tex.newlinechar
tex.catcodetable tex.outputpenalty
tex.clubpenalty tex.pausing

tex.day tex.postdisplaypenalty
tex.defaulthyphenchar tex.predisplaydirection
tex.defaultskewchar tex.predisplaypenalty
tex.delimiterfactor tex.pretolerance
tex.displaywidowpenalty tex.relpenalty
tex.doublehyphendemerits tex.righthyphenmin
tex.endlinechar tex.savinghyphcodes
tex.errorcontextlines tex.savingvdiscards
tex.escapechar tex.showboxbreadth
tex.exhyphenpenalty tex.showboxdepth

tex. fam tex.time

tex. finalhyphendemerits tex.tolerance
tex.floatingpenalty tex.tracingassigns
tex.globaldefs tex.tracingcommands
tex.hangafter tex.tracinggroups
tex.hbadness tex.tracingifs
tex.holdinginserts tex.tracinglostchars
tex.hyphenpenalty tex.tracingmacros
tex.interlinepenalty tex.tracingnesting
tex.language tex.tracingonline
tex.lastlinefit tex.tracingoutput
tex.lefthyphenmin tex.tracingpages
tex.linepenalty tex.tracingparagraphs
tex.localbrokenpenalty tex.tracingrestores
tex.localinterlinepenalty tex.tracingscantokens
tex.looseness tex.tracingstats
tex.mag tex.uchyph

The TgX related libraries 159 ‘\0\\,

tex.vbadness tex.year
tex.widowpenalty

Read-only:
tex.deadcycles tex.parshape tex.spacefactor
tex.insertpenalties tex.prevgraf

9.3.1.2 Dimension parameters

The dimension parameters accept Lua numbers (signifying scaled points) or strings (with in-
cluded dimension). The result is always a number in scaled points.

Read-write:

tex.boxmaxdepth tex.mathsurround tex.parindent
tex.delimitershortfall tex.maxdepth tex.predisplaysize
tex.displayindent tex.nulldelimiterspace tex.scriptspace
tex.displaywidth tex.overfullrule tex.splitmaxdepth
tex.emergencystretch tex.pagebottomoffset tex.vfuzz
tex.hangindent tex.pageheight tex.voffset
tex.hfuzz tex.pageleftoffset tex.vsize
tex.hoffset tex.pagerightoffset tex.prevdepth
tex.hsize tex.pagetopoffset tex.prevgraf
tex.lineskiplimit tex.pagewidth tex.spacefactor
Read-only:

tex.pagedepth tex.pagefilstretch tex.pagestretch
tex.pagefilllstretch tex.pagegoal tex.pagetotal
tex.pagefillstretch tex.pageshrink

Beware: as with all Lua tables you can add values to them. So, the following is valid:
tex.foo = 123

When you access a TgX parameter a look up takes place. For read-only variables that means
that you will get something back, but when you set them you create a new entry in the table
thereby making the original invisible.

There are a few special cases that we make an exception for: prevdepth, prevgraf and space-
factor. These normally are accessed via the tex.nest table:

tex.nest[tex.nest.ptr].prevdepth
tex.nest[tex.nest.ptr].spacefactor

Y
S

However, the following also works:

tex.prevdepth =p

0\‘[160 The TgX related libraries

tex.spacefactor = s

Keep in mind that when you mess with node lists directly at the Lua end you might need to
update the top of the nesting stack’s prevdepth explicitly as there is no way LuaTgX can guess
your intentions. By using the accessor in the tex tables, you get and set the values atthe top of
the nest stack.

9.3.1.3 Direction parameters

The direction parameters are read-only and return a Lua string.

tex.bodydir tex.pagedir tex.textdir

tex.mathdir tex.pardir

9.3.1.4 Glue parameters

The glue parameters accept and return a userdata object that represents a glue spec node.

tex.abovedisplayshortskip tex.leftskip tex.spaceskip
tex.abovedisplayskip tex.lineskip tex.splittopskip
tex.baselineskip tex.parfillskip tex.tabskip
tex.belowdisplayshortskip tex.parskip tex.topskip
tex.belowdisplayskip tex.rightskip tex.xspaceskip

9.3.1.5 Muglue parameters
All muglue parameters are to be used read-only and return a Lua string.

tex.medmuskip tex.thickmuskip tex.thinmuskip

9.3.1.6 Tokenlist parameters

The tokenlist parameters accept and return Lua strings. Lua strings are converted to and from
token lists using \the \toks style expansion: all category codes are either space (10) or other
(12). It follows that assigning to some of these, like ‘tex.output’, is actually useless, but it feels
bad to make exceptions in view of a coming extension that will accept full-blown token strings.

tex.errhelp tex.everyhbox tex.everyvbox
tex.everycr tex.everyjob tex.output
tex.everydisplay tex.everymath

tex.everyeof tex.everypar

9.3.2 Convert commands

All ‘convert’ commands are read-only and return a Lua string. The supported commands at this

The TgX related libraries 161 ?\0\‘[

moment are:

tex.eTeXVersion tex.fontname(number)
tex.eTeXrevision tex.uniformdeviate(number)
tex.formatname tex.number(number)
tex.jobname tex.romannumeral (number)
tex.luatexbanner tex.fontidentifier(number)

tex.luatexrevision

If you are wondering why this list looks haphazard; these are all the cases of the ‘convert’ internal
command that do not require an argument, as well as the ones that require only a simple numeric
value.

The special (lua-only) case of tex.fontidentifier returns the csname string that matches a
font id number (if there is one).

if these are really needed in a macro package.

9.3.3 Last item commands

All ‘last item’ commands are read-only and return a number.

The supported commands at this moment are:

tex.lastpenalty tex. lastypos tex.currentgrouptype
tex. lastkern tex.randomseed tex.currentiflevel
tex.lastskip tex.luatexversion tex.currentiftype
tex.lastnodetype tex.eTeXminorversion tex.currentifbranch
tex.inputlineno tex.eTeXversion

tex.lastxpos tex.currentgrouplevel

9.3.4 Attribute, count, dimension, skip and token registers

TgX'’s attributes (\attribute), counters (\count), dimensions (\dimen), skips (\skip) and token
(\toks) registers can be accessed and written to using two times five virtual sub-tables of the
tex table:

tex.attribute tex.dimen tex.toks
tex.count tex.skip

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, \skipdef, or
\toksdef control sequences as indices to these tables:

tex.count.scratchcounter = 0
enormous = tex.dimen['maxdimen']

In this case, LuaTgX looks up the value for you on the fly. You have to use a valid \countdef (or
\attributedef, or \dimendef, or \skipdef, or \toksdef), anything else will generate an error

0\‘[162 The TgX related libraries

(the intent is to eventually also allow <chardef tokens> and even macros that expand into a
number).

The attribute and count registers accept and return Lua numbers.

The dimension registers accept Lua numbers (in scaled points) or strings (with an included
absolute dimension; em and ex and px are forbidden). The result is always a number in scaled
points.

The token registers accept and return Lua strings. Lua strings are converted to and from token
lists using \the \toks style expansion: all category codes are either space (10) or other (12).

The skip registers accept and return glue spec userdata node objects (see the description of
the node interface elsewhere in this manual).

As an alternative to array addressing, there are also accessor functions defined for all cases, for
example, here is the set of possibilities for \skip registers:

tex.setskip (["global",] <number> n, <node> s)
tex.setskip (["global",] <string> s, <node> s)
<node> s = tex.getskip (<number> n)
<node> s = tex.getskip (<string> s)

We have similar setters for count, dimen, muskip, and toks. Counters and dimen are represented
by numbers, skips and muskips by nodes, and toks by strings. For tokens registers we have an
alternative where a catcode table is specified:

tex.scantoks (0,3, "$e=mc"2$")
tex.scantoks("global",0,"$\int\limits™1 2$")

In the function-based interface, it is possible to define values globally by using the string global
as the first function argument.

There are four extra skip related helpers:

tex.setglue (["global"], <number> n,
width, stretch, shrink, stretch order, shrink order)
tex.setglue (["global"], <string> s,
width, stretch, shrink, stretch order, shrink order)
width, stretch, shrink, stretch order, shrink order =
tex.getglue (<number> n)
width, stretch, shrink, stretch order, shrink order =
tex.getglue (<string> s)

The other two are tex.setmuglue and tex.getmuglue.

9.3.5 Character code registers

TEX’s character code tables (\lccode, \uccode, \sfcode, \catcode, \mathcode, \delcode) can
be accessed and written to using six virtual subtables of the tex table

tex.lccode

The TgX related libraries 163 ?0

tex.uccode tex.catcode tex.delcode
tex.sfcode tex.mathcode

The function call interfaces are roughly as above, but there are a few twists. sfcodes are the
simple ones:

tex.setsfcode (["global",] <number> n, <number> s)
<number> s = tex.getsfcode (<number> n)

The function call interface for 1ccode and uccode additionally allows you to set the associated
sibling at the same time:

tex.setlccode (["global"], <number> n, <number> 1lc)
tex.setlccode (["global"], <number> n, <number> lc, <number> uc)
<number> 1lc tex.getlccode (<number> n)

tex.setuccode (["global"], <number> n, <number> uc)
tex.setuccode (["global"], <number> n, <number> uc, <number> 1c)
<number> uc = tex.getuccode (<number> n)

The function call interface for catcode also allows you to specify a category table to use on
assignment or on query (default in both cases is the current one):

tex.setcatcode (["global"], <number> n, <number> c)

tex.setcatcode (["global"], <number> cattable, <number> n, <number> c)
<number> lc = tex.getcatcode (<number> n)

<number> lc = tex.getcatcode (<number> cattable, <number> n)

The interfaces for delcode and mathcode use small array tables to set and retrieve values:

tex.setmathcode (["global"], <number> n, <table> mval)
<table> mval = tex.getmathcode (<number> n)
tex.setdelcode (["global"], <number> n, <table> dval)
<table> dval = tex.getdelcode (<number> n)

Where the table for mathcode is an array of 3 numbers, like this:

{
<number> class,
<number> family,
<number> character
}

And the table for delcode is an array with 4 numbers, like this:

{

<number> small fam,
<number> small char,
<number> large fam,
<number> large char

’0\‘, 164 The TgX related libraries

}

You can also avoid the table:

tex.setmathcode (["global"], <number> n, <number> class,
<number> family, <number> character)
class, family, char =
tex.getmathcodes (<number> n)
tex.setdelcode (["global"], <number> n, <number> smallfam,
<number> smallchar, <number> largefam, <number> largechar)
smallfam, smallchar, largefam, largechar =
tex.getdelcodes (<number> n)

Normally, the third and fourth values in a delimiter code assignment will be zero according to
\Udelcode usage, but the returned table can have values there (if the delimiter code was set
using \delcode, for example). Unset delcode’s can be recognized because dval[1l] is —1.

9.3.6 Box registers

It is possible to set and query actual boxes, using the node interface as defined in the node
library:

tex.box
for array access, or

tex.setbox(["global",] <number> n, <node> s)
tex.setbox(["global",] <string> cs, <node> s)
<node> n = tex.getbox(<number> n)
<node> n = tex.getbox(<string> cs)

for function-based access. In the function-based interface, it is possible to define values globally
by using the string global as the first function argument.

Be warned that an assignment like
tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX com-
mands later on, the contents of \box0 becomes invalid as well. To prevent this from happening,
always use node.copy list() unless you are assigning to a temporary variable:

tex.box[0] = node.copy list(tex.box[2])

The following function will register a box for reuse (this is modelled after so called xforms in
pdf). You can (re)use the box with \useboxresource or by creating a rule node with subtype 2.

local index = tex.saveboxresource(n,attributes,resources,immediate,type,margin)

The optional second and third arguments are strings, the fourth is a boolean. The fifth argument
is a type. When set to non-zero the /Type entry is omitted. A value of 1 or 3 still writes a /BBox,

The TgX related libraries 165 ?0\‘,

Ny -

while 2 or 3 will write a /Matrix. The sixth argument is the (virtual) margin that extends beyond
the effective boundingbox as seen by TgX.

You can generate the reference (a rule type) with:
local reused = tex.useboxresource(n,wd,ht,dp)

The dimensions are optional and the final ones are returned as extra values. The following is

just a bonus (no dimensions returned means that the resource is unknown):
local w, h, d, m = tex.getboxresourcedimensions(n)

This returns the width, height, depth and margin of the resource.

You can split a box:
local vlist = tex.splitbox(n,height,mode)

The remainder is kept in the original box and a packaged vlist is returned. This operation is
comparable to the \vsplit operation. The mode can be additional or exactly and concerns
the split off box.

9.3.7 Math parameters

It is possible to set and query the internal math parameters using:

tex.setmath(["global",] <string> n, <string> t, <number> n)

<number> n =

tex.getmath(<string> n, <string> t)

As before an optional first parameter global indicates a global assignment.

The first string is the parameter name minus the leading ‘Umath’, and the second string is the
style name minus the trailing ‘style’. Just to be complete, the values for the math parameter

name are:

quad axis operatorsize
overbarkern overbarrule overbarvgap
underbarkern underbarrule underbarvgap
radicalkern radicalrule radicalvgap
radicaldegreebefore radicaldegreeafter radicaldegreeraise
stackvgap stacknumup stackdenomdown
fractionrule fractionnumvgap fractionnumup
fractiondenomvgap fractiondenomdown fractiondelsize
limitabovevgap limitabovebgap limitabovekern
limitbelowvgap limitbelowbgap limitbelowkern
underdelimitervgap underdelimiterbgap
overdelimitervgap overdelimiterbgap

subshiftdrop supshiftdrop subshiftdown
subsupshiftdown subtopmax supshiftup
supbottommin supsubbottommax subsupvgap
spaceafterscript connectoroverlapmin

166 The TgX related libraries

ordordspacing ordopspacing ordbinspacing ordrelspacing
ordopenspacing ordclosespacing ordpunctspacing ordinnerspacing
opordspacing opopspacing opbinspacing oprelspacing
opopenspacing opclosespacing oppunctspacing opinnerspacing
binordspacing binopspacing binbinspacing binrelspacing
binopenspacing binclosespacing binpunctspacing bininnerspacing
relordspacing relopspacing relbinspacing relrelspacing
relopenspacing relclosespacing relpunctspacing relinnerspacing
openordspacing openopspacing openbinspacing openrelspacing
openopenspacing openclosespacing openpunctspacing openinnerspacing
closeordspacing closeopspacing closebinspacing closerelspacing
closeopenspacing closeclosespacing closepunctspacing closeinnerspacing
punctordspacing punctopspacing punctbinspacing punctrelspacing
punctopenspacing punctclosespacing punctpunctspacing punctinnerspacing
innerordspacing inneropspacing innerbinspacing innerrelspacing
inneropenspacing innerclosespacing innerpunctspacing innerinnerspacing

The values for the style parameter name are:

display crampeddisplay

text crampedtext

script crampedscript
scriptscript crampedscriptscript

The value is either a number (representing a dimension or number) or a glue spec node repre-
senting a muskip for ordordspacing and similar spacing parameters.

9.3.8 Special list heads

The virtual table tex.lists contains the set of internal registers that keep track of building
page lists.

field

page _ins head
contrib head
page head
hold head
adjust head

description

circular list of pending insertions

the recent contributions

the current page content

used for held-over items for next page

head of the current \vadjust list

pre adjust head head of the current \vadjust pre list

page discards head head of the discarded items of a page break
split discards head head of the discarded items in a vsplit

9.3.9 Semantic nest levels

The virtual table tex.nest contains the currently active semantic nesting state. It has two
main parts: a zero-based array of userdata for the semantic nest itself, and the numerical
value tex.nest.ptr, which gives the highest available index. Neither the array items in

o, '\
The TgX related libraries 167 0‘,

tex.nest[] nor tex.nest.ptr can be assigned to (as this would confuse the typesetting en-
gine beyond repair), but you can assign to the individual values inside the array items, e.g.
tex.nest[tex.nest.ptr].prevdepth.

tex.nest[tex.nest.ptr] is the current nest state, tex.nest[0] the outermost (main vertical
list) level.

The known fields are:

key type modes explanation

mode number all a number representing the main mode at this level: 0 = no
mode (this happens during \write), 1 = vertical, 127 = hor-
izontal, 253 = display math, -1 = internal vertical, -127 =
restricted horizontal, -253 = inline math

modeline number all source input line where this mode was entered in, negative
inside the output routine

head node all the head of the current list

tail node all the tail of the current list

prevgraf number vmode number of lines in the previous paragraph

prevdepth number vmode depth of the previous paragraph
spacefactor number hmode the current space factor

dirs node hmode used for temporary storage by the line break algorithm

noad node mmode used for temporary storage of a pending fraction numerator,
for \over etc.

delimptr node mmode used for temporary storage of the previous math delimiter, for
\middle

mathdir boolean mmode true when during math processing the \mathdir is not the

same as the surrounding \textdir
mathstyle number mmode the current \mathstyle

9.3.10 Print functions
The tex table also contains the three print functions that are the major interface from Lua
scripting to TgX.

The arguments to these three functions are all stored in an in-memory virtual file that is fed to
the TgX scanner as the result of the expansion of \directlua.

The total amount of returnable text from a \directlua command is only limited by available
system ram. However, each separate printed string has to fit completely in TgX’s input buffer.

The result of using these functions from inside callbacks is undefined at the moment.

9.3.10.1 tex.print

tex.print(<string> s, ...)
tex.print(<number> n, <string> s, ...)
tex.print(<table> t)
tex.print(<number> n, <table> t)

\0\‘, 168 The TgX related libraries

Each string argument is treated by TgX as a separate input line. If there is a table argument
instead of a list of strings, this has to be a consecutive array of strings to print (the first non-string
value will stop the printing process).

The optional parameter can be used to print the strings using the catcode regime defined by
\catcodetable n. If nis —1, the currently active catcode regime is used. If n is —2, the resulting
catcodes are the result of \the \toks: all category codes are 12 (other) except for the space
character, that has category code 10 (space). Otherwise, if n is not a valid catcode table, then it
is ignored, and the currently active catcode regime is used instead.

The very last string of the very last tex.print() command in a \directlua will not have the
\endlinechar appended, all others do.
9.3.10.2 tex.sprint

tex.sprint(<string> s, ...)
tex.sprint(<number> n, <string> s, ...)
tex.sprint(<table> t)
tex.sprint(<number> n, <table> t)

Each string argument is treated by TgX as a special kind of input line that makes it suitable for
use as a partial line input mechanism:

« TgX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

« No \endlinechar is inserted.

« Trailing spaces are not removed.
Note that this does not prevent TgX itself from eating spaces as result of interpreting the line.
For example, in

before\directlua{tex.sprint("\\relax")tex.sprint(" inbetween")}after
the space before in between will be gobbled as a result of the ‘normal’ scanning of \relax.

If there is a table argument instead of a list of strings, this has to be a consecutive array of
strings to print (the first non-string value will stop the printing process).

The optional argument sets the catcode regime, as with tex.print().

9.3.10.3 tex.tprint
tex.tprint({<number> n, <string> s, ...}, {...})

This function is basically a shortcut for repeated calls to tex.sprint(<number> n, <string>
s, ...),once for each of the supplied argument tables.

9.3.10.4 tex.cprint

This function takes a number indicating the to be used catcode, plus either a table of strings or
an argument list of strings that will be pushed into the input stream.

L/ |
The TgX related libraries 169 | 0‘,

tex.cprint() -- a lot of \bgroup s
tex.cprint() -- matching \egroup s
tex.cprint() -- all get ignored
tex.cprint(10,"10: $&{\\foo}") tex.print("\\par") -- all become spaces
tex.cprint(11,"11: $&{\\foo}") tex.print("\\par") -- letters
tex.cprint(12,"12: $&{\\foo}") tex.print("\\par") -- other characters
tex.cprint(14,"12: $&{\\foo}") tex.print("\\par") -- comment triggers

1," 1: $&{\\foo}") tex.print("\\par"
2," 2: $&{\\foo}") tex.print("\\par"
9," 9: $&{\\foo}") tex.print("\\par"

9.3.10.5 tex.write

tex.write(<string> s, ...)
tex.write(<table> t)

Each string argument is treated by TgX as a special kind of input line that makes it suitable for
use as a quick way to dump information:

« All catcodes on that line are either ‘space’ (for ’ ’) or ‘character’ (for all others).
« There is no \endlinechar appended.

If there is a table argument instead of a list of strings, this has to be a consecutive array of
strings to print (the first non-string value will stop the printing process).

9.3.11 Helper functions

9.3.11.1 tex.round
<number> n = tex.round(<number> o)

Rounds Lua number o, and returns a number that is in the range of a valid TgX register value.
If the number starts out of range, it generates a ‘number to big’ error as well.

9.3.11.2 tex.scale

<number> n = tex.scale(<number> o, <number> delta)
<table> n = tex.scale(table o, <number> delta)

Multiplies the Lua numbers o0 and delta, and returns a rounded number that is in the range of
a valid TgX register value. In the table version, it creates a copy of the table with all numeric
top-level values scaled in that manner. If the multiplied number(s) are of range, it generates
‘number to big’ error(s) as well.

Note: the precision of the output of this function will depend on your computer’s architecture
and operating system, so use with care! An interface to LuaTgX’s internal, 100% portable scale
function will be added at a later date.

9.3.11.3 tex.sp

<number> n = tex.sp(<number> o)

\0\‘, 170 The TgX related libraries

<number> n = tex.sp(<string> s)

Converts the number o or a string s that represents an explicit dimension into an integer number
of scaled points.

For parsing the string, the same scanning and conversion rules are used that LuaTgX would use
if it was scanning a dimension specifier in its TgX-like input language (this includes generating
errors for bad values), expect for the following:

1. only explicit values are allowed, control sequences are not handled
2. infinite dimension units (fil...) are forbidden
3. mu units do not generate an error (but may not be useful either)

9.3.11.4 tex.definefont

tex.definefont(<string> csname, <number> fontid)
tex.definefont (<boolean> global, <string> csname, <number> fontid)

Associates csname with the internal font number fontid. The definition is global if (and only if)
global is specified and true (the setting of globaldefs is not taken into account).

9.3.11.5 tex.getlinenumber and tex.setlinenumber

You can mess with the current line number:

local n = tex.getlinenumber()
tex.setlinenumber(n+10)

which can be shortcut to:
tex.setlinenumber (10, true)

This might be handy when you have a callback that read numbers from a file and combines
them in one line (in which case an error message probably has to refer to the original line).
Interference with TgX’s internal handling of numbers is of course possible.

9.3.11.6 tex.error

tex.error(<string> s)
tex.error(<string> s, <table> help)

This creates an error somewhat like the combination of \errhelp and \errmessage would. Dur-
ing this error, deletions are disabled.

The array part of the help table has to contain strings, one for each line of error help.

9.3.11.7 tex.hashtokens

for i,v in pairs (tex.hashtokens()) do ... end

[N
The TgX related libraries 171 | 0‘,

Returns a list of names. This can be useful for debugging, but note that this also reports control
sequences that may be unreachable at this moment due to local redefinitions: it is strictly a
dump of the hash table. You can use token.create to inspect properties, for instance when the
command key in a created table equals 123, you have the cmdname value undefined cs.

9.3.12 Functions for dealing with primitives

9.3.12.1 tex.enableprimitives
tex.enableprimitives(<string> prefix, <table> primitive names)

This function accepts a prefix string and an array of primitive names.

For each combination of ‘prefix’ and ‘name’, the tex.enableprimitives first verifies that ‘name’
is an actual primitive (it must be returned by one of the tex.extraprimitives () calls explained
below, or part of TgX82, or \directlua). If it is not, tex.enableprimitives does nothing and
skips to the next pair.

But if it is, then it will construct a csname variable by concatenating the ‘prefix’ and ‘name’,
unless the ‘prefix’ is already the actual prefix of ‘name’. In the latter case, it will discard the
‘prefix’, and just use ‘name’.

Then it will check for the existence of the constructed csname. If the csname is currently un-
defined (note: that is not the same as \relax), it will globally define the csname to have the
meaning: run code belonging to the primitive ‘name’. If for some reason the csname is already
defined, it does nothing and tries the next pair.

An example:
tex.enableprimitives('LuaTeX', {'formatname'})

will define \LuaTeXformatname with the same intrinsic meaning as the documented primitive
\formatname, provided that the control sequences \LuaTeXformatname is currently undefined.

When LuaTgX is run with - -ini only the TEX82 primitives and \directlua are available, so no
extra primitives at all.

If you want to have all the new functionality available using their default names, as it is now,
you will have to add

\ifx\directlua\undefined \else
\directlua {tex.enableprimitives('',tex.extraprimitives ())}
\fi

near the beginning of your format generation file. Or you can choose different prefixes for
different subsets, as you see fit.

Calling some form of tex.enableprimitives() is highly important though, because if you do
not, you will end up with a TgX82-lookalike that can run Lua code but not do much else. The
defined csnames are (of course) saved in the format and will be available at runtime.

\0‘, 172 The TgX related libraries

9.3.12.2 tex.extraprimitives
<table> t = tex.extraprimitives(<string> s, ...)

This function returns a list of the primitives that originate from the engine(s) given by the re-
quested string value(s). The possible values and their (current) return values are:

name values

tex vskip write vsize \normalcontrolspace boundary unhcopy output - / unskip un-
vbox boxmaxdepth muskipdef string toksdef floatingpenalty righthyphenmin
voffset escapechar topmark splitfirstmark vsplit everydisplay badness xlead-
ers textfont showlists language mathchoice topskip abovedisplayshortskip un-
derline tracinglostchars pagefillstretch unvcopy splitbotmark finalhyphen-
demerits atopwithdelims pretolerance fi dp setlanguage ht mathchardef nullde-
limiterspace or wd pagegoal advance chardef catcode mathchar scriptscriptfont
mathcode leftskip pageshrink pagefilstretch delcode fontname brokenpenalty
lastkern belowdisplayshortskip tolerance mathopen exhyphenpenalty maxdepth
futurelet abovewithdelims csstring hangindent lastskip linepenalty everyjob
xspaceskip globaldefs everypar scriptfont delimiter afterassignment first-
mark wordboundary lineskiplimit lineskip def fam day iffalse textstyle end
mag box belowdisplayskip ifx let errmessage exhyphenchar hss expandafter the
displaywidth Uright mathsurround pagedepth looseness leaders vss ifhmode bot-
mark ifinner displaystyle accent immediate ifmmode parshape meaning abovedis-
playskip medmuskip emergencystretch rightskip mathclose hangafter hoffset
aftergroup cleaders romannumeral hbadness mathbin showboxbreadth ifvmode
jobname vbadness patterns nonstopmode errhelp predisplaypenalty endlinechar
mathinner lastbox showboxdepth postdisplaypenalty mathrel holdinginserts
radical mathord pagetotal everycr adjdemerits halign defaultskewchar error-
contextlines splitmaxdepth Uleft ifcase noindent tracingmacros moveright
predisplaysize tracingrestores message ifhbox deadcycles interlinepenalty
mathpunct lccode noboundary displayindent nonscript everyhbox global penalty
tracingcommands everymath nolimits noalign inputlineno pagestretch parskip
indent dimendef widowpenalty ifvbox above spaceskip middle displaylimits
pausing everyvbox iftrue moveleft mathop endcsname dimen ifcat clubpenalty
splittopskip doublehyphendemerits ifdim limits ifeof ignorespaces insert de-
limitershortfall ifodd insertpenalties tracingpages hpack vadjust tracin-
gonline count ifnum edef char begingroup sfcode tracingparagraphs hyphenation
uccode hfuzz openout leqgno hyphenpenalty vcenter hfil thickmuskip maxdead-
cycles mkern hbox overfullrule else hsize raise thinmuskip spacefactor in-
put hrule left eqno parfillskip font valign dump relax prevdepth read shipout
batchmode right setbox baselineskip special mskip endgroup uchyph binop-
penalty endinput omit pagefilllstretch overwithdelims newlinechar vfilneg
time tpack skip vfill span prevgraf over show vbox tracingstats year default-
hyphenchar nullfont muskip vpack toks outer multiply tracingoutput first-
validlanguage parindent protrusionboundary displaywidowpenalty unhbox left-
hyphenmin vtop mathaccent vfuzz overline unkern closeout showthe showbox up-
percase lowercase closein openin errorstopmode scrollmode skewchar hyphen-

o
The TgX related libraries 173 | 0‘,

char skipdef countdef xdef gdef long Umiddle atop scriptscriptstyle script-
style discretionary unpenalty copy lower kern vfil hfilneg hfill hskip crcrcr
ifvoid if number lastpenalty par vrule noexpand mark fontdimen divide csname
scriptspace outputpenalty month delimiterfactor relpenalty tabskip

core directlua

etex unless botmarks currentiftype pagediscards mutoglue displaywidowpenalties
fontcharic fontchardp fontcharht fontcharwd widowpenalties tracingifs if-
fontchar eTeXVersion protected topmarks showgroups glueexpr splitfirstmarks
predisplaydirection everyeof eTeXversion clubpenalties savingvdiscards
splitbotmarks showtokens tracingassigns dimexpr parshapedimen readline trac-
ingscantokens tracingnesting ifdefined currentifbranch firstmarks lastnode-
type marks currentgrouplevel interlinepenalties muexpr unexpanded ifcsname
parshapeindent showifs parshapelength splitdiscards gluetomu glueshrink
gluestretch glueshrinkorder gluestretchorder numexpr scantokens interac-
tionmode detokenize currentiflevel currentgrouptype savinghyphcodes last-
linefit tracinggroups eTeXrevision eTeXminorversion

luatex Umathcloseopspacing textdir Umathordpunctspacing Udelimiterunder mathsur-
roundmode Uskewedwithdelims Umathopenpunctspacing pagebottomoffset math-
surroundskip Umathordinnerspacing Umathbinclosespacing toksapp rightghost
Umathlimitbelowbgap Umathopeninnerspacing tokspre Umathnolimitsubfac-
tor Uoverdelimiter Umathpunctpunctspacing Umathclosepunctspacing mathdis-
playskipmode saveimageresource mathrulesfam Umathrelordspacing Umathsup-
bottommin Umathlimitbelowkern copyfont Umathstackdenomdown localrightbox
Umathfractionrule Umathcharfam Umathcloseinnerspacing Umathopenrelspac-
ing Uhextensible Umathsupsubbottommax leftmarginkern Umathcloserelspac-
ing ifincsname Umathcharnum Umathinnerordspacing synctex formatname letter-
spacefont pdfextension Umathrelinnerspacing Umathsubtopmax randomseed sup-
pressoutererror Umathsubsupshiftdown Umathopbinspacing Umathordbinspacing
Umathrelopspacing Umathopenbinspacing suppressprimitiveerror Umathoverde-
limiterbgap localleftbox alignmark Uunderdelimiter hyphenationmin Umath-
closebinspacing Umathcodenum dvifeedback outputmode luafunction Umathpunc-
topenspacing Umathconnectoroverlapmin crampedscriptscriptstyle Umathrad-
icaldegreeafter uniformdeviate luatexversion Umathfractionnumup rightmar-
ginkern Umathopclosespacing mathrulesmode explicithyphenpenalty Umathord-
closespacing Umathoverdelimitervgap etokspre expanded suppressmathparerror
Udelcode bodydir Umathopenclosespacing shapemode attribute Umathsubshift-
drop Umathsubshiftdown matheqnogapstep Umathpunctrelspacing lastsavedim-
ageresourceindex lastsavedimageresourcepages mathoption Umathradicalde-
greeraise adjustspacing Umathsupshiftdrop Umathcharslot Umathcloseclos-
espacing luatexrevision insertht localinterlinepenalty useboxresource ex-
plicitdiscretionary Umathchar Udelimiterover Ustack Umathcode mathdelim-
itersmode saveboxresource Udelcodenum suppresslongerror ignoreligaturesin-
font Umathaxis Umathfractionnumvgap Umathskewedfractionhgap Umathrelclos-
espacing Umathpunctbinspacing Ustopdisplaymath quitvmode crampedscript-
style letcharcode setrandomseed hyphenationbounds crampedtextstyle pagedir
Umathbinrelspacing Umathopordspacing dvivariable attributedef Umathor-

L o\
\0‘, 174 The TgX related libraries

dordspacing pdffeedback Umathskewedfractionvgap Umathopenordspacing math-
italicsmode mathdir outputbox Umathcloseordspacing Umathnolimitsupfactor
pagewidth Ustopmath aligntab prehyphenchar dviextension Umathpunctopspac-
ing breakafterdirmode Umathsubsupvgap luaescapestring prerelpenalty be-
gincsname Umathradicalrule Umathunderbarrule postexhyphenchar Umathradi-
caldegreebefore Umathstacknumup normaldeviate Umathbinopspacing boxdir Us-
tartdisplaymath savecatcodetable Umathbinpunctspacing mathscriptboxmode
tagcode Uroot lastsavedboxresourceindex Unosuperscript Umathoperatorsize
Uradical mathstyle Umathopopenspacing Umathordopenspacing automatichyphen-
penalty Umathbininnerspacing Umathinnerrelspacing clearmarks Umathoverbarv-
gap fontid Umathopenopenspacing Umathunderdelimiterbgap Umathoverbarrule
setfontid crampeddisplaystyle ifabsdim Umathlimitabovebgap Umathcharclass
Umathstackvgap Umathinneropspacing Umathrelbinspacing Umathcloseopenspac-
ing pardir initcatcodetable nokerns pageleftoffset tracingfonts nospaces
Umathrelopenspacing Umathlimitabovekern Udelimiter savepos nohrule local-
brokenpenalty Umathfractiondelsize automaticdiscretionary gleaders Umath-
underdelimitervgap Umathinnerbinspacing noligs hyphenpenaltymode draft-
mode automatichyphenmode prebinoppenalty Usubscript Umathcharnumdef rp-
code mathpenaltiesmode Umathaccent pagetopoffset pageheight catcodetable
Umathspaceafterscript predisplaygapfactor primitive Umathinneropenspacing
Uskewed pxdimen Umathordopspacing Umathopenopspacing ifabsnum scantexto-
kens mathnolimitsmode mathscriptsmode suppressifcsnameerror suppressfont-
notfounderror pdfvariable latelua useimageresource pagerightoffset linedir
efcode lpcode hjcode preexhyphenchar posthyphenchar Umathinnerinnerspac-
ing Umathinnerpunctspacing Umathinnerclosespacing Umathpunctinnerspacing
Umathpunctclosespacing Umathpunctordspacing Umathrelpunctspacing Umath-
relrelspacing Umathbinopenspacing Umathbinbinspacing Umathbinordspacing
Umathopinnerspacing Umathoppunctspacing Umathoprelspacing Umathopopspacing
Umathordrelspacing Umathsupshiftup Umathlimitbelowvgap Umathlimitabovev-
gap Umathfractiondenomdown Umathfractiondenomvgap Umathradicalvgap Umath-
radicalkern Umathunderbarvgap Umathunderbarkern Umathoverbarkern Umath-
quad Umathchardef Uvextensible Unosubscript Usuperscript Ustartmath ifprimi-
tive Uchar luatexbanner lastypos lastxpos novrule etoksapp leftghost expandg-
lyphsinfont lastnamedcs protrudechars

Note that Luatex does not contain directlua, as that is considered to be a core primitive, along
with all the TgX82 primitives, so it is part of the list that is returned from 'core".

Running tex.extraprimitives() will give you the complete list of primitives -ini startup. It
is exactly equivalent to tex.extraprimitives("etex","luatex").

9.3.12.3 tex.primitives
<table> t = tex.primitives()

This function returns a list of all primitives that LuaTgX knows about.

L o\
The TgX related libraries 175 0

9.3.13 Core functionality interfaces

9.3.13.1 tex.badness
<number> b = tex.badness(<number> t, <number> s)

This helper function is useful during linebreak calculations. t and s are scaled values; the
function returns the badness for when total t is supposed to be made from amounts that sum to
s. The returned number is a reasonable approximation of 100(t/s)3;

9.3.13.2 tex.resetparagraph

This function resets the parameters that TgX normally resets when a new paragraph is seen.

9.3.13.3 tex.linebreak

local <node> nodelist, <table> info =
tex.linebreak(<node> listhead, <table> parameters)

The understood parameters are as follows:

name type description
pardir string
pretolerance number
tracingparagraphs number
tolerance number
looseness number
hyphenpenalty number
exhyphenpenalty number
pdfadjustspacing number
adjdemerits number
pdfprotrudechars number
linepenalty number
lastlinefit number

doublehyphendemerits number
finalhyphendemerits number

hangafter number

interlinepenalty number or table if a table, then it is an array like \interlinepenal-
ties

clubpenalty number or table if a table, then it is an array like \clubpenalties

widowpenalty number or table if a table, then it is an array like \widowpenalties

brokenpenalty number

emergencystretch number in scaled points

hangindent number in scaled points

hsize number in scaled points

leftskip glue spec node

\0\‘, 176 The TgX related libraries

rightskip glue spec node
parshape table

Note that there is no interface for \displaywidowpenalties, you have to pass the right choice
for widowpenalties yourself.

It is your own job to make sure that listhead is a proper paragraph list: this function does
not add any nodes to it. To be exact, if you want to replace the core line breaking, you may
have to do the following (when you are not actually working in the pre _linebreak filter or
linebreak filter callbacks, or when the original list starting at listhead was generated in
horizontal mode):

« add an ‘indent box’ and perhaps a local par node at the start (only if you need them)

« replace any found final glue by an infinite penalty (or add such a penalty, if the last node is
not a glue)

« add a glue node for the \parfillskip after that penalty node

« make sure all the prev pointers are OK

The result is a node list, it still needs to be vpacked if you want to assign it to a \vbox.

The returned info table contains four values that are all numbers:

prevdepth depth of the last line in the broken paragraph
prevgraf number of lines in the broken paragraph

looseness the actual looseness value in the broken paragraph
demerits the total demerits of the chosen solution

Note there are a few things you cannot interface using this function: You cannot influence font
expansion other than via pdfadjustspacing, because the settings for that take place elsewhere.
The same is true for hbadness and hfuzz etc. All these are in the hpack() routine, and that
fetches its own variables via globals.

9.3.13.4 tex.shipout

tex.shipout (<number> n)

Ships out box number n to the output file, and clears the box register.

9.3.14 Functions related to synctex

The next helpers only make sense when you implement your own synctex logic. Keep in mind
that the library used in editors assumes a certain logic and is geared for plain and I¥TgX, so after
a decade users expect a certain behaviour.

set synctex mode 0 is the default and used normal synctex logic, 1 uses the values set by
the next helpers while 2 also sets these for glyph nodes; 3 sets glyphs
and glue and 4 sets only glyphs

set synctex tag set the current tag (file) value (obeys save stack)

set synctex line set the current line value (obeys save stack)

Y o\
The TgX related libraries 177 | 0‘,

force synctex tag overload the tag (file) value (0 resets)
force synctex line overload the line value (0 resets)

get synctex tag get the currently set value of tag (file)
get synctex line get the currently set value of line

set synctex no files disable synctex file logging

The last one is somewhat special. Due to the way files are registered in SyncTgX we need to
explicitly disable that feature if we provide our own alternative if we want to avoid that overhead.
Passing a value of 1 disables registering.

This mechanism is somewhat experimental.

9.4 The texconfig table

This is a table that is created empty. A startup Lua script could fill this table with a number of
settings that are read out by the executable after loading and executing the startup file.

key type default explanation

kpse init boolean true false totally disables kpathsea initialisation, and
enables interpretation of the following numeric
key-value pairs. (only ever unset this if you im-
plement all file find callbacks!)

shell escape string 'f! Use 'y'or 't'or 'l' to enable \write 18 uncon-
ditionally, 'p' to enable the commands that are
listed in shell escape commands

shell escape commands string Comma-separated list of command names that may
be executed by \write 18 even if shell escape
is set to 'p'. Do not use spaces around commas,
separate any required command arguments by us-
ing a space, and use the ascii double quote (") for
any needed argument or path quoting

string vacancies number 75000 cf. web2c docs
pool free number 5000 cf. web2c docs
max_strings number 15000 cf. web2c docs
strings free number 100 cf. web2c docs
nest size number 50 cf. web2c docs
max_in open number 15 cf. web2c docs
param size number 60 cf. web2c docs
save size number 4000 cf. web2c docs
stack size number 300 cf. web2c docs
dvi buf size number 16384 cf. web2c docs
error_line number 79 cf. web2c docs
half error _line number 50 cf. web2c docs
max_print_ line number 79 cf. web2c docs
hash extra number 0 cf. web2c docs
pk _dpi number 72 cf. web2c docs

[
\0‘, 178 The TgX related libraries

trace file names boolean true false disables TgX’s normal file open-close feed-
back (the assumption is that callbacks will take
care of that)

file line error boolean false do file:line style error messages

halt _on error boolean false abort run on the first encountered error

formatname string if no format name was given on the command line,
this key will be tested first instead of simply quit-
ting

jobname string if no input file name was given on the command
line, this key will be tested first instead of simply
giving up

Note: the numeric values that match web2c parameters are only used if kpse init is explicitly
set to false. In all other cases, the normal values from texmf.cnf are used.

9.5 The texio library

This library takes care of the low-level I/O interface: writing to the log file and/or console.

9.5.1 texio.write

texio.write(<string> target, <string> s, ...)
texio.write(<string> s, ...)

Without the target argument, writes all given strings to the same location(s) TgX writes mes-
sages to at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes
to the log and the terminal. The optional target can be one of three possibilities: term, log or
term and log.

Note: If several strings are given, and if the first of these strings is or might be one of the targets
above, the target must be specified explicitly to prevent Lua from interpreting the first string
as the target.

9.5.2 texio.write_nl

texio.write nl(<string> target, <string> s, ...)
texio.write nl(<string> s, ...)

This function behaves like texio.write, but make sure that the given strings will appear at the
beginning of a new line. You can pass a single empty string if you only want to move to the next
line.

9.5.3 texio.setescape

You can disable *”" escaping of control characters by passing a value of zero.

) .
The TgX related libraries 179 | 0‘,

9.6 The token library

9.6.1 The scanner

The token library provides means to intercept the input and deal with it at the Lua level. The
library provides a basic scanner infrastructure that can be used to write macros that accept
a wide range of arguments. This interface is on purpose kept general and as performance is
quite ok one can build additional parsers without too much overhead. It’s up to macro package
writers to see how they can benefit from this as the main principle behind LuaTgX is to provide a
minimal set of tools and no solutions. The functions provided in the token namespace are given
in the next table:

function argument result

is token token checks if the given argument is a token userdatum

get next returns the next token in the input

scan_keyword string returns true if the given keyword is gobbled

scan_int returns a number

scan_dimen infinity, mu-units returns a number representing a dimension and or two num-
bers being the filler and order

scan_glue mu-units returns a glue spec node

scan_toks definer, expand returns a table of tokens token list (this can become a linked
list in later releases)

scan_code bitset returns a character if its category is in the given bitset (rep-
resenting catcodes)

scan_string returns a string given between {}, as \macro or as sequence
of characters with catcode 11 or 12

scan_word returns a sequence of characters with catcode 11 or 12 as
string

scan_csname returns foo after scanning \foo

set macro see below assign a macro

create returns a userdata token object of the given control sequence

name (or character); this interface can change

The scanners can be considered stable apart from the one scanning for a token. This is because
futures releases can return a linked list instead of a table (as with nodes). The scan_code func-
tion takes an optional number, the keyword function a normal Lua string. The infinity boolean
signals that we also permit fill as dimension and the mu-units flags the scanner that we expect
math units. When scanning tokens we can indicate that we are defining a macro, in which case
the result will also provide information about what arguments are expected and in the result
this is separated from the meaning by a separator token. The expand flag determines if the list
will be expanded.

The string scanner scans for something between curly braces and expands on the way, or when
it sees a control sequence it will return its meaning. Otherwise it will scan characters with
catcode letter or other. So, given the following definition:

\def\bar{bar}

\0\‘, 180 The TgX related libraries

\def\foo{foo-\bar}

we get:
\directlua{token.scan string()}{foo} foo full expansion
\directlua{token.scan string()}foo foo letters and others

\directlua{token.scan string()}\foo foo-bar meaning

The \ foo case only gives the meaning, but one can pass an already expanded definition (\edef’d).
In the case of the braced variant one can of course use the \detokenize and \unexpanded prim-
itives as there we do expand.

The scan_word scanner can be used to implement for instance a number scanner:

function token.scan number(base)
return tonumber(token.scan word(),hbase)
end

This scanner accepts any valid Lua number so it is a way to pick up floats in the input.

The creator function can be used as follows:
local t = token.create("relax")

This gives back a token object that has the properties of the \relax primitive. The possible
properties of tokens are:

command a number representing the internal command number

cmdname the type of the command (for instance the catcode in case of a character or the
classifier that determines the internal treatment

csname the associated control sequence (if applicable)

id the unique id of the token

active a boolean indicating the active state of the token

expandable a boolean indicating if the token (macro) is expandable
protected a boolean indicating if the token (macro) is protected

The numbers that represent a catcode are the same as in TgX itself, so using this information
assumes that you know a bit about TgX’s internals. The other numbers and names are used
consistently but are not frozen. So, when you use them for comparing you can best query a
known primitive or character first to see the values.

More interesting are the scanners. You can use the Lua interface as follows:

\directlua {
function mymacro(n)

end

\def\mymacro#1{%
\directlua {

The TgX related libraries 181 | 0‘,

mymacro (\number\dimexpr#1l)

\mymacro{12pt}
\mymacro{\dimen0}

You can also do this:

\directlua {
function mymacro()
local d = token.scan dimen()

end
}
\def\mymacro{%
\directlua {
mymacro ()
}%
}

\mymacro 12pt
\mymacro \dimen0®

It is quite clear from looking at the code what the first method needs as argument(s). For the
second method you need to look at the Lua code to see what gets picked up. Instead of passing
from TgX to Lua we let Lua fetch from the input stream.

In the first case the input is tokenized and then turned into a string when it’s passed to Lua
where it gets interpreted. In the second case only a function call gets interpreted but then the
input is picked up by explicitly calling the scanner functions. These return proper Lua variables
so no further conversion has to be done. This is more efficient but in practice (given what TgX
has to do) this effect should not be overestimated. For numbers and dimensions it saves a bit
but for passing strings conversion to and from tokens has to be done anyway (although we can
probably speed up the process in later versions if needed).

9.6.2 Macros
The set macro function can get upto 4 arguments:

setmacro("csname", "content")
setmacro("csname", "content", "global")
setmacro("csname")

You can pass a catcodetable identifier as first argument:

setmacro(catcodetable, "csname", "content")
setmacro(catcodetable, "csname", "content", "global")

\0\‘, 182 The TgX related libraries

setmacro(catcodetable, "csname")
The results are like:

\def\csname{content}
\gdef\csname{content}
\def\csname{}

9.6.3 Pushing back

There is a (for now) experimental putter:

local t1l = token.get next()
local t2 = token.get next()
local t3 = token.get next()
local t4 = token.get next()

-- watch out, we flush in sequence
token.put next { t1, t2 }

-- but this one gets pushed in front
token.put next (t3, t4)

When we scan wxyz! we get yzwx! back. The argument is either a table with tokens or a list of
tokens.

9.6.4 Nota bene

When scanning for the next token you need to keep in mind that we’re not scanning like TEX
does: expanding, changing modes and doing things as it goes. When we scan with Lua we just
pick up tokens. Say that we have:

\bar
but \bar is undefined. Normally TgX will then issue an error message. However, when we have:
\def\foo{\bar}

We get no error, unless we expand \foo while \bar is still undefined. What happens is that as
soon as TEX sees an undefined macro it will create a hash entry and when later it gets defined
that entry will be reused. So, \bar really exists but can be in an undefined state.

bar : bar
foo : foo
myfirstbar :

This was entered as:

bar : \directlua{tex.print(token.scan csname())}\bar
foo : \directlua{tex.print(token.scan csname())}\foo
myfirstbar : \directlua{tex.print(token.scan csname())}\myfirstbar

The TgX related libraries 183 | 0‘,

The reason that you see bar reported and not myfirstbar is that \bar was already used in a
previous paragraph.

If we now say:
\def\foo{}
we get:

bar : bar
foo : foo
myfirstbar :

And if we say
\def\foo{\bar}
we get:

bar : bar
foo : foo
myfirstbar :

When scanning from Lua we are not in a mode that defines (undefined) macros at all. There we
just get the real primitive undefined macro token.

1404730 536941998
1404283 536941998
1404426 536941998

This was generated with:

\directlua{local t = token.get next() tex.print(t.id.." "..t.tok)}\myfirstbar
\directlua{local t = token.get next() tex.print(t.id.." "..t.tok)}\mysecondbar
\directlua{local t = token.get next() tex.print(t.id.." "..t.tok)}\mythirdbar

So, we do get a unique token because after all we need some kind of Lua object that can be
used and garbage collected, but it is basically the same one, representing an undefined control
sequence.

9.7 The kpse library

This library provides two separate, but nearly identical interfaces to the kpathsea file search
functionality: there is a ‘normal’ procedural interface that shares its kpathsea instance with
LuaTgX itself, and an object oriented interface that is completely on its own.

9.7.1 kpse.set_program_name and kpse.new

Before the search library can be used at all, its database has to be initialized. There are three
possibilities, two of which belong to the procedural interface.

\0\‘, 184 The TgX related libraries

First, when LuaTgX is used to typeset documents, this initialization happens automatically and
the kpathsea executable and program names are set to Luatex (that is, unless explicitly prohib-
ited by the user’s startup script. See section 3.1 for more details).

Second, in TgXLua mode, the initialization has to be done explicitly via the kpse.set pro-
gram_name function, which sets the kpathsea executable (and optionally program) name.

kpse.set program name(<string> name)
kpse.set program name(<string> name, <string> progname)

The second argument controls the use of the ‘dotted’ values in the texmf. cnf configuration file,
and defaults to the first argument.

Third, if you prefer the object oriented interface, you have to call a different function. It has the
same arguments, but it returns a userdata variable.

local kpathsea
local kpathsea

kpse.new(<string> name)
kpse.new(<string> name, <string> progname)

Apart from these two functions, the calling conventions of the interfaces are identical. Depend-
ing on the chosen interface, you either call kpse.find file() or kpathsea:find file(), with
identical arguments and return vales.

9.7.2 find_file

The most often used function in the library is find file:

<string> f = kpse.find file(<string> filename)

<string> f = kpse.find file(<string> filename, <string> ftype)

<string> f = kpse.find file(<string> filename, <boolean> mustexist)

<string> f = kpse.find file(<string> filename, <string> ftype, <boolean> mustex-
ist)

<string> f kpse.find file(<string> filename, <string> ftype, <number> dpi)

Arguments:

filename
the name of the file you want to find, with or without extension.

ftype
maps to the -format argument of kpsewhich. The supported ftype values are the same as
the ones supported by the standalone kpsewhich program: MetaPost support, PostScript
header, TeX system documentation, TeX system sources, Troff fonts, afm, base,
bib, bitmap font, bst, cid maps, clua, cmap files, cnf, cweb, dvips config,
enc files, fmt, font feature files, gf, graphic/figure, ist, lig files, 1ls-R,
lua, map, mem, mf, mfpool, mft, misc fonts, mlbib, mlbst, mp, mppool, ocp,
ofm, opentype fonts, opl, other binary files, other text files, otp, ovf,
ovp, pdftex config, pk, subfont definition files, tex, texmfscripts, texpool,
tfm, truetype fonts, typel fonts, typed42 fonts, vf, web, web2c files
The default type is tex. Note: this is different from kpsewhich, which tries to deduce the file
type itself from looking at the supplied extension.

The TgX related libraries 185

mustexist
is similar to kpsewhich’s -must-exist, and the default is false. If you specify true (or a non-
zero integer), then the kpse library will search the disk as well as the 1s-R databases.

dpi
This is used for the size argument of the formats pk, gf, and bitmap font.

9.7.3 lookup

A more powerful (but slower) generic method for finding files is also available. It returns a string
for each found file.

<string> f, ... = kpse.lookup(<string> filename, <table> options)

The options match commandline arguments from kpsewhich:

key type description

debug number set debugging flags for this lookup

format string use specific file type (see list above)

dpi number use this resolution for this lookup; default 600
path string search in the given path

all boolean output all matches, not just the first

mustexist boolean search the disk as well as Is-R if necessary
mktexpk boolean disable/enable mktexpk generation for this lookup
mktextex boolean disable/enable mktextex generation for this lookup
mktexmf boolean disable/enable mktexmf generation for this lookup
mktextfm boolean disable/enable mktextfm generation for this lookup
subdir string or table only output matches whose directory part ends with the given string(s)

9.7.4 init_prog

Extra initialization for programs that need to generate bitmap fonts.

kpse.init prog(<string> prefix, <number> base dpi, <string> mfmode)
kpse.init prog(<string> prefix, <number> base dpi, <string> mfmode, <string>
fallback)

9.7.5 readable_file

Test if an (absolute) file name is a readable file.

<string> f = kpse.readable file(<string> name)

The return value is the actual absolute filename you should use, because the disk name is not
always the same as the requested name, due to aliases and system-specific handling under e.g.
msdos. Returns nil if the file does not exist or is not readable.

9.7.6 expand_path

Like kpsewhich’s -expand-path:

\0\‘, 186 The TgX related libraries

<string> r = kpse.expand path(<string> s)

9.7.7 expand_var
Like kpsewhich’s -expand-var:

<string> r = kpse.expand var(<string> s)

9.7.8 expand_braces

Like kpsewhich’s -expand-braces:

<string> r = kpse.expand braces(<string> s)

9.7.9 show_path

Like kpsewhich’s -show-path:

<string> r = kpse.show path(<string> ftype)

9.7.10 var_value
Like kpsewhich’s -var-value:

<string> r = kpse.var value(<string> s)

9.7.11 version
Returns the kpathsea version string.

<string> r = kpse.version()

The TgX related libraries 187

188 The TgX related libraries

10 The graphic libraries

10.1 The img library

The img library can be used as an alternative to \pdfximage and \pdfrefximage, and the asso-
ciated ‘satellite’ commands like \pdfximagebbox. Image objects can also be used within virtual
fonts via the image command listed in section 5.3.

10.1.1 new

<image> var
<image> var

img.new()
img.new(<table> image spec)

This function creates a userdata object of type ‘image’. The image spec argument is optional.
If it is given, it must be a table, and that table must contain a filename key. A number of other
keys can also be useful, these are explained below.

You can either say

a = img.new()

followed by

a.filename = "foo.png"

or you can put the file name (and some or all of the other keys) into a table directly, like so:
a = img.new({filename="'foo.pdf', page=1})

The generated <image> userdata object allows access to a set of user-specified values as well as
a set of values that are normally filled in and updated automatically by LuaTgX itself. Some of
those are derived from the actual image file, others are updated to reflect the pdf output status
of the object.

There is one required user-specified field: the file name (filename). It can optionally be aug-
mented by the requested image dimensions (width, depth, height), user-specified image attrib-
utes (attr), the requested pdf page identifier (page), the requested boundingbox (pagebox) for
pdf inclusion, the requested color space object (colorspace).

The function img.new does not access the actual image file, it just creates the <image> userdata
object and initializes some memory structures. The <image> object and its internal structures
are automatically garbage collected.

Once the image is scanned, all the values in the <image> except width, height and depth, be-
come frozen, and you cannot change them any more.

You can use pdf.setignoreunknownimages(1l) (or at the TgX end the \pdfvariable ignore-
unknownimages) to get around a quit when no known image type is found (based on name or
preamble). Beware: this will not catch invalid images and we cannot guarantee side effects.

The graphic libraries 189 | 0\‘,

A zero dimension image is still included when requested. No special flags are set. A proper
workflow will not rely in such a catch but make sure that images are valid.

10.1.2 keys
<table> keys = img.keys()

This function returns a list of all the possible image spec keys, both user-supplied and automatic
ones.

field name type description

attr string the image attributes for LuaTgX

bbox table table with 4 boundingbox dimensions 11x, 11y, urx and ury over-
ruling the pagebox entry

colordepth number the number of bits used by the color space

colorspace number the color space object number

depth number the image depth for LuaTgX

filename string the image file name

filepath string the full (expanded) file name of the image

height number the image height for LuaTgX

imagetype string one of pdf, png, jpg, jp2 or jbig2

index number the pdf image name suffix

objnum number the pdf image object number

page number the identifier for the requested image page

pagebox string the requested bounding box, one of none, media, crop, bleed, trim,
art

pages number the total number of available pages

rotation number the image rotation from included pdf file, in multiples of 90 deg.

stream string the raw stream data for an /Xobject /Form object

transform number the image transform, integer number 0..7

orientation number the (jpeg) image orientation, integer number 1..8 (0 for unset)

width number the image width for LuaTgX

xres number the horizontal natural image resolution (in dpi)

xsize number the natural image width

yres number the vertical natural image resolution (in dpi)

ysize number the natural image height

visiblefileame string when set, this name will find its way in the pdf file as PTEX specifi-
cation; when an empty string is assigned nothing is written to file;
otherwise the natural filename is taken

A running (undefined) dimension in width, height, or depth is represented as nil in Lua, so
if you want to load an image at its ‘natural’ size, you do not have to specify any of those three
fields.

The stream parameter allows to fabricate an /X0bject /Form object from a string giving the
stream contents, e.g., for a filled rectangle:

a.stream = "0 0 20 10 re f"

0\‘, 190 The graphic libraries

When writing the image, an /Xobject /Form object is created, like with embedded pdf file writ-
ing. The object is written out only once. The stream key requires that also the bbox table is
given. The stream key conflicts with the filename key. The transform key works as usual also
with stream.

The bbox key needs a table with four boundingbox values, e.g.:
a.bbox = { "30bp", 0, "225bp", "200bp" }

This replaces and overrules any given pagebox value; with given bbox the box dimensions coming
with an embedded pdf file are ignored. The xsize and ysize dimensions are set accordingly,
when the image is scaled. The bbox parameter is ignored for non-pdf images.

The transform allows to mirror and rotate the image in steps of 90 deg. The default value 0
gives an unmirrored, unrotated image. Values 1 — 3 give counterclockwise rotation by 90, 180,
or 270 degrees, whereas with values 4 — 7 the image is first mirrored and then rotated coun-
terclockwise by 90, 180, or 270 degrees. The transform operation gives the same visual result
as if you would externally preprocess the image by a graphics tool and then use it by LuaTgX.
If a pdf file to be embedded already contains a /Rotate specification, the rotation result is the
combination of the /Rotate rotation followed by the transform operation.

10.1.3 scan

<image> var = img.scan(<image> var)
<image> var = img.scan(<table> image spec)

When you say img.scan(a) for a new image, the file is scanned, and variables such as xsize,
ysize, image type, number of pages, and the resolution are extracted. Each of the width,
height, depth fields are set up according to the image dimensions, if they were not given an
explicit value already. An image file will never be scanned more than once for a given image
variable. With all subsequent img.scan(a) calls only the dimensions are again set up (if they
have been changed by the user in the meantime).

For ease of use, you can do right-away a
<image> a = img.scan { filename = "foo.png" }

without a prior img. new.

Nothing is written yet at this point, so you can do a=img.scan, retrieve the available info like
image width and height, and then throw away a again by saying a=nil. In that case no image
object will be reserved in the PDF, and the used memory will be cleaned up automatically.

10.1.4 copy

<image> var = img.copy(<image> var)
<image> var = img.copy(<table> image spec)

If you say a = b, then both variables point to the same <image> object. if you want to write out

an image with different sizes, youcandoab = img.copy(a).
The graphic libraries 191 | 0

Afterwards, a and b still reference the same actual image dictionary, but the dimensions for b
can now be changed from their initial values that were just copies from a.

10.1.5 write

img.write(<image> var)
img.write(<table> image spec)

<image> var
<image> var

By img.write(a) a pdfobject numberis allocated, and a whatsit node of subtype pdf refximage
is generated and put into the output list. By this the image a is placed into the page stream, and
the image file is written out into an image stream object after the shipping of the current page
is finished.

Again you can do a terse call like
img.write { filename = "foo.png" }

The <image> variable is returned in case you want it for later processing.

10.1.6 immediatewrite

<image> var = img.immediatewrite(<image> var)
<image> var = img.immediatewrite(<table> image spec)

By img.immediatewrite(a) a pdf object number is allocated, and the image file for image a is
written out immediately into the pdf file as an image stream object (like with \immediate\pdfx-
image). The object number of the image stream dictionary is then available by the objnum key.
No pdf refximage whatsit node is generated. You will need an img.write(a) or img.node(a)
call to let the image appear on the page, or reference it by another trick; else you will have a
dangling image object in the pdf file.

Also here you can do a terse call like
a = img.immediatewrite { filename = "foo.png" }

The <image> variable is returned and you will most likely need it.

10.1.7 node

<node> n
<node> n

img.node(<image> var)
img.node(<table> image spec)

This function allocates a pdf object number and returns a whatsit node of subtype pdf refxim-
age, filled with the image parameters width, height, depth, and objnum. Also here you can do
a terse call like:

n = img.node ({ filename = "foo.png" })

This example outputs an image:

0 192 The graphic libraries

node.write(img.node{filename="foo0.png"})

10.1.8 types
<table> types = img.types()
This function returns a list with the supported image file type names, currently these are pdf,

png, jpg, jp2 (JPEG 2000), and jbig?2.

10.1.9 boxes

<table> boxes = img.boxes()

This function returns a list with the supported pdf page box names, currently these are media,
crop, bleed, trim, and art, all in lowercase letters.

10.2 The mplib library

The MetaPost library interface registers itself in the table mplib. It is based on mplib version
2.000.

10.2.1 new

To create a new MetaPost instance, call

<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The argument hash can have a number of different fields,
as follows:

name type description default
error_line number error line width 79
print line number line length in ps output 100
random seed number the initial random seed variable

math_mode string the number system to use: dou- scaled
ble, scaled, binary or decimal

interaction string the interaction mode: batch, non- errorstop
stop, scroll or errorstop

job _name string --jobname mpout

find file function a function to find files only local files

The find file function should be of this form:
<string> found = finder (<string> name, <string> mode, <string> type)

with:

The graphic libraries 193 ! 0\‘,

name the requested file
mode the file mode: r orw
type the kind of file, one of: mp, tfm, map, pfb, enc

Return either the full path name of the found file, or nil if the file cannot be found.

Note that the new version of mplib no longer uses binary mem files, so the way to preload a set
of macros is simply to start off with an input command in the first mp:execute() call.

10.2.2 mp:statistics
You can request statistics with:

<table> stats = mp:statistics()

This function returns the vital statistics for an mplib instance. There are four fields, giving the
maximum number of used items in each of four allocated object classes:

main_memory number memory size

hash size number hash size

param size number simultaneous macro parameters
max_in_open number input file nesting levels

Note that in the new version of mplib, this is informational only. The objects are all allocated
dynamically, so there is no chance of running out of space unless the available system memory
is exhausted.

10.2.3 mp:execute
You can ask the MetaPost interpreter to run a chunk of code by calling

<table> rettable = mp:execute('metapost language chunk')

for various bits of MetaPost language input. Be sure to check the rettable.status (see below)
because when a fatal MetaPost error occurs the mplib instance will become unusable thereafter.

Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey
proper syntax, like each of them is a small file. For instance, you cannot split a single statement
over multiple chunks.

In contrast with the normal stand alone mpost command, there is no implied ‘input’ at the start
of the first chunk.

10.2.4 mp:finish

<table> rettable = mp:finish()

If for some reason you want to stop using an mplib instance while processing is not yet actually
done, you can call mp: finish. Eventually, used memory will be freed and open files will be closed

\0\‘, 194 The graphic libraries

by the Lua garbage collector, but an explicit mp: finish is the only way to capture the final part
of the output streams.

10.2.5 Result table

The return value of mp:execute and mp: finish is a table with a few possible keys (only status
is always guaranteed to be present).

log string output to the ‘log’ stream

term string output to the ‘term’ stream

error string output to the ‘error’ stream (only used for ‘out of memory’)

status number the return value: 0 = good, 1 = warning, 2 = errors, 3 = fatal error
fig table an array of generated figures (if any)

When status equals 3, you should stop using this mplib instance immediately, it is no longer
capable of processing input.

If it is present, each of the entries in the fig array is a userdata representing a figure object,
and each of those has a number of object methods you can call:

boundingbox function returns the bounding box, as an array of 4 values

postscript function returns a string that is the ps output of the fig. this function accepts
two optional integer arguments for specifying the values of prologues
(first argument) and procset (second argument)

svg function returns a string thatis the svg output of the fig. This function accepts
an optional integer argument for specifying the value of prologues

objects function returns the actual array of graphic objects in this fig

copy objects function returns a deep copy of the array of graphic objects in this fig

filename function the filename this fig’s PostScript output would have written to in
stand alone mode

width function the fontcharwd value

height function the fontcharht value

depth function the fontchardp value

italcorr function the fontcharit value

charcode function the (rounded) charcode value

Note: you can call fig:objects() only once for any one fig object!

When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates is
larger than the second set, the picture is empty.

Graphical objects come in various types that each has a different list of accessible values. The
types are: fill, outline, text, start clip, stop _clip, start bounds, stop bounds, special.

There is helper function (mplib.fields(obj)) to get the list of accessible values for a particular
object, but you can just as easily use the tables given below.

All graphical objects have a field type that gives the object type as a string value; it is not explicit
mentioned in the following tables. In the following, numbers are PostScript points represented
as a floating point number, unless stated otherwise. Field values that are of type table are

explained in the next section.
The graphic libraries 195 | 0

10.2.5.1 fill

path table
htap table
pen table
color table

linejoin number
miterlimit number
prescript string
postscript string

the list of knots

the list of knots for the reversed trajectory
knots of the pen

the object’s color

line join style (bare number)

miterlimit

the prescript text

the postscript text

The entries htap and pen are optional.

There is helper function (mplib.pen info(obj)) that returns a table containing a bunch of vital

characteristics of the used pen (all values are floats):

width

SX
rx
ry
sy
tx
ty

number width of the pen

number x scale
number xy multiplier
number yx multiplier
number y scale
number x offset
number y offset

10.2.5.2 outline

path table
pen table
color table

linejoin number
miterlimit number
linecap number
dash table
prescript string
postscript string

the list of knots

knots of the pen

the object’s color

line join style (bare number)
miterlimit

line cap style (bare number)
representation of a dash list
the prescript text

the postscript text

The entry dash is optional.

10.2.5.3 text

text string
font string
dsize number
color table
width number
height number
depth number

transform table

the text

font tfm name
font size

the object’s color

a text transformation

196 The graphic libraries

prescript string the prescript text
postscript string the postscript text

10.2.5.4 special

prescript string special text

10.2.5.5 start_bounds, start_clip

path table the list of knots

10.2.5.6 stop_bounds, stop_clip

Here are no fields available.

10.2.6 Subsidiary table formats

10.2.6.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as mplib is concerned) are
represented by an array where each entry is a table that represents a knot.

left type string when present: endpoint, but usually absent
right type string like left type

x_coord number X coordinate of this knot

y coord number Y coordinate of this knot

left x number X coordinate of the precontrol point of this knot
left vy number Y coordinate of the precontrol point of this knot
right x number X coordinate of the postcontrol point of this knot
right vy number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra stringB
Avalued key type with value elliptical besides the array part containing the knot list.

10.2.6.2 Colors

A color is an integer array with 0, 1, 3 or 4 values:

0 marking only no values

1 greyscale one value in the range (0, 1), ‘black’ is 0

3 rgb three values in the range (0, 1), ‘black’ is 0,0, 0
4 cmyk four values in the range (0, 1), ‘black’ is 0,0, 0, 1

If the color model of the internal object was uninitialized, then it was initialized to the values
representing ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the

shipout.
The graphic libraries 197 | 0\‘,

10.2.6.3 Transforms
Each transform is a six-item array.

number represents x
number representsy
number represents xx
number represents yx
number represents xy
number represents yy

O Uk, WN B

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript,
where the translation comes last.

10.2.6.4 Dashes

Each dash is two-item hash, using the same model as PostScript for the representation of the
dashlist. dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

dashes hash an array of on-off numbers
offset number the starting offset value

10.2.7 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the
argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

10.2.7.1 mp:char_width

<number> w = mp:char width(<string> fontname, <number> char)

10.2.7.2 mp:char_height

<number> w = mp:char_height(<string> fontname, <number> char)

10.2.7.3 mp:char_depth

<number> w = mp:char depth(<string> fontname, <number> char)

\0\‘, 198 The graphic libraries

11 The fontloader

The fontloader library is sort of independent of the rest in the sense that it can load font into
a Lua table that then can be converted into a table suitable for TgX. The library is an adapted
subset of FontForge and as such gives a similar view on a font (which has advantages when you
want to debug.)

11.1 Getting quick information on a font

When you want to locate font by name you need some basic information that is hidden in the
font files. For that reason we provide an efficient helper that gets the basic information without
loading all of the font. Normally this helper is used to create a font (name) database.

<table> info =
fontloader.info(<string> filename)

This function returns either nil, or a table, or an array of small tables (in the case of a TrueType
collection). The returned table(s) will contain some fairly interesting information items from the
font(s) defined by the file:

key type explanation

fontname string the PostScript name of the font

fullname string the formal name of the font

familyname string the family name this font belongs to

weight string a string indicating the color value of the font

version string the internal font version

italicangle float the slant angle

units per em number 1000 for PostScript-based fonts, usually 2048 for TrueType
pfminfo table (see section 11.6.6)

Getting information through this function is (sometimes much) more efficient than loading the
font properly, and is therefore handy when you want to create a dictionary of available fonts
based on a directory contents.

11.2 Loading an OPENTYPE or TRUETYPE file

If you want to use an OpenType font, you have to get the metric information from somewhere.
Using the fontloader library, the simplest way to get that information is thus:

function load font (filename)
local metrics = nil
local font = fontloader.open(filename)
if font then
metrics = fontloader.to table(font)
fontloader.close(font)
end

The fontloader 199 (0

return metrics
end

myfont = load font('/opt/tex/texmf/fonts/data/arial.ttf')

The main function call is

<userdata> f, <table> w
<userdata> f, <table> w

fontloader.open(<string> filename)
fontloader.open(<string> filename, <string> fontname)

The first return value is a userdata representation of the font. The second return value is a table
containing any warnings and errors reported by fontloader while opening the font. In normal
typesetting, you would probably ignore the second argument, but it can be useful for debugging
purposes.

For TrueType collections (when filename ends in ’ttc’) and dfont collections, you have to use a
second string argument to specify which font you want from the collection. Use the fontname
strings that are returned by fontloader. info for that.

To turn the font into a table, fontloader.to table is used on the font returned by font-
loader.open.

<table> f = fontloader.to table(<userdata> font)

This table cannot be used directly by LuaTgX and should be turned into another one as described
in chapter 5. Do not forget to store the fontname value in the psname field of the metrics table to
be returned to LuaTgX, otherwise the font inclusion backend will not be able to find the correct
font in the collection.

See section 11.5 for details on the userdata object returned by fontloader.open() and the
layout of the metrics table returned by fontloader.to table().

The font file is parsed and partially interpreted by the font loading routines from FontForge. The
file format can be OpenType, TrueType, TrueType Collection, cff, or Typel.

There are a few advantages to this approach compared to reading the actual font file ourselves:

« The font is automatically re-encoded, so that the metrics table for TrueType and OpenType
fonts is using Unicode for the character indices.

« Many features are pre-processed into a format that is easier to handle than just the bare
tables would be.

« PostScript-based OpenType fonts do not store the character height and depth in the font file,
so the character boundingbox has to be calculated in some way.

« In the future, it may be interesting to allow Lua scripts access to the font program itself,
perhaps even creating or changing the font.

A loaded font is discarded with:

fontloader.close(<userdata> font)

11.3 Applying a ‘feature file’

You can apply a ‘feature file’ to a loaded font:

\0/‘, 200 The fontloader

<table> errors = fontloader.apply featurefile(<userdata> font, <string> file-
name)

A ‘feature file’ is a textual representation of the features in an OpenType font. See
http://www.adobe.com/devnet/opentype/afdko/topic_feature file syntax.html
and

http://fontforge.sourceforge.net/featurefile.html

for a more detailed description of feature files.

If the function fails, the return value is a table containing any errors reported by fontloader while
applying the feature file. On success, nil is returned.

11.4 Applying an ‘AFM file’

You can apply an ‘afm file’ to a loaded font:

<table> errors = fontloader.apply afmfile(<userdata> font, <string> filename)
An afm file is a textual representation of (some of) the meta information in a Typel font. See
ftp://ftp.math.utah.edu/u/ma/hohn/linux/postscript/5004.AFM Spec.pdf

for more information about afm files.

Note: If you fontloader.open() a Typel file named font.pfb, the library will automatically
search for and apply font.afm if it exists in the same directory as the file font.pfb. In that
case, there is no need for an explicit call to apply afmfile().

If the function fails, the return value is a table containing any errors reported by fontloader while
applying the AFM file. On success, nil is returned.

11.5 Fontloader font tables

As mentioned earlier, the return value of fontloader.open() is a userdata object. One way to
have access to the actual metrics is to call fontloader.to table() on this object, returning the
table structure that is explained in the following sections. In teh following sections we will not
explain each field in detail. Most fields are self descriptive and for the more technical aspects
you need to consult the relevant font references.

It turns out that the result from fontloader.to table() sometimes needs very large amounts
of memory (depending on the font’s complexity and size) so it is possible to access the userdata
object directly.

« All top-level keys that would be returned by to table() can also be accessed directly.
« The top-level key ‘glyphs’ returns a virtual array that allows indices from f.glyphmin to
(f.glyphmax).

The fontloader 201 |

« The items in that virtual array (the actual glyphs) are themselves also userdata objects, and
each has accessors for all of the keys explained in the section ‘Glyph items’ below.

« The top-level key ‘subfonts’ returns an actual array of userdata objects, one for each of the
subfonts (or nil, if there are no subfonts).

A short example may be helpful. This code generates a printout of all the glyph names in the
font PunkNova.kern.otf:

local f = fontloader.open('PunkNova.kern.otf')
print (f.fontname)
local i =0
if f.glyphcnt > 0 then
for i=f.glyphmin, f.glyphmax do
local g = f.glyphs[i]
if g then
print(g.name)
end
i=1+1
end
end
fontloader.close(f)

In this case, the LuaTgX memory requirement stays below 100MB on the test computer, while
the internal structure generated by to table() needs more than 2GB of memory (the font itself
is 6.9MB in disk size).

Only the top-level font, the subfont table entries, and the glyphs are virtual objects, everything
else still produces normal Lua values and tables.

If you want to know the valid fields in a font or glyph structure, call the fields function on an
object of a particular type (either glyph or font):

<table> fields
<table> fields

fontloader.fields(<userdata> font)
fontloader.fields(<userdata> font glyph)

For instance:

local fields = fontloader.fields(f)
local fields = fontloader.fields(f.glyphs[0])

11.6 Table types

11.6.1 Top-level

The top-level keys in the returned table are (the explanations in this part of the documentation
are not yet finished):

key type explanation
table version number indicates the metrics version (currently 0.3)

) 202 The fontloader

fontname
fullname
familyname
weight
copyright
filename
version
italicangle
units per_em

ascent

descent

upos

uwidth

uniqueid

glyphs

glyphcnt
glyphmax
glyphmin

notdef loc
hasvmetrics
onlybitmaps
serifcheck
isserif

issans
encodingchanged
strokedfont

use typo metrics
weight width_ slope only
head optimized for cleartype
uni interp

origname

map

private

xuid

pfminfo

names

cidinfo
subfonts
commments
fontlog

cvt names
anchor_classes
ttf tables
ttf tab saved

string
string
string
string
string
string
string
float
number

number
number
float
float
number
array
number
number
number
number
number
number
number
number
number
number
number
number
number
number
enum

string
table
table
string
table
table
table
array
string
string
string
table
table
table

PostScript font name

official (human-oriented) font name
family name

weight indicator

copyright information

the file name

font version

slant angle

1000 for PostScript-based fonts, usually 2048 for
TrueType

height of ascender in units per _em
depth of descender in units per_em

number of included glyphs

maximum used index the glyphs array

minimum used index the glyphs array

location of the . notdef glyph or -1 when not present

unset, none, adobe, greek, japanese, trad chi-
nese, simp_chinese, korean, ams
the file name, as supplied by the user

The fontloader 203 [0/‘,

kerns

vkerns

texdata
lookups

gpos

gsub

mm

chosenname
macstyle
fondname
fontstyle id
fontstyle name
strokewidth
mark _classes
creationtime
modificationtime
0s2_version
sfd version
math
validation state
horiz base
vert base
extrema bound
truetype

11.6.2 Glyph items

table
table
table
table
table
table
table
string
number
string
number
table
float
table
number
number
number
number
table
table
table
table
number

boolean signals a TrueType font

The glyphs is an array containing the per-character information (quite a few of these are only

present if nonzero).

key

name

unicode
boundingbox
width

vwidth
tsidebearing
lsidebearing
class

kerns
vkerns
dependents
lookups
ligatures
anchors

type
string
number
array
number
number
number
number
string

array
array
array
table
table
table

204 The fontloader

explanation

the glyph name

unicode code point, or -1

array of four numbers, see note below

only for horizontal fonts

only for vertical fonts

only for vertical ttf/otf fonts, and only if nonzero
only if nonzero and not equal to boundingbox[1]
one of "none", "base", "ligature", "mark", "component" (if not
present, the glyph class is ‘automatic’)

only for horizontal fonts, if set

only for vertical fonts, if set

linear array of glyph name strings, only if nonempty
only if nonempty

only if nonempty

only if set

comment string only if set

tex_height number only if set

tex depth number only if set

italic_correction number only if set

top_accent number only if set

is extended shape number only if this character is part of a math extension list
altuni table alternate Unicode items

vert variants table

horiz variants table

mathkern table

On boundingbox: The

boundingbox information for TrueType fonts and TrueType-based otf

fonts is read directly from the font file. PostScript-based fonts do not have this information,
so the boundingbox of traditional PostScript fonts is generated by interpreting the actual bezier
curves to find the exact boundingbox. This can be a slow process, so the boundingboxes of
PostScript-based otf fonts (and raw cff fonts) are calculated using an approximation of the glyph
shape based on the actual glyph points only, instead of taking the whole curve into account. This
means that glyphs that have missing points at extrema will have a too-tight boundingbox, but
the processing is so much faster that in our opinion the tradeoff is worth it.

The kerns and vkerns are linear arrays of small hashes:

key type
char string
off number

lookup string

The lookups is a hash,

explanation

based on lookup subtable names, with the value of each key inside that

a linear array of small hashes:

key
type

type
enum

specification table

explanation

position, pair, substitution, alternate, multiple, ligature, lcaret,
kerning, vkerning, anchors, contextpos, contextsub, chainpos, chain-
sub, reversesub, max, kernback, vkernback

extra data

For the first seven values of type, there can be additional sub-information, stored in the sub-table

specification:

value type
position table
pair table
substitution table
alternate table
multiple table
ligature table
lcaret array

explanation

a table of the offset specs type

one string: paired, and an array of one or two offset specs tables:
offsets

one string: variant

one string: components

one string: components

two strings: components, char

linear array of numbers

The fontloader 205 [0/‘,

Tables for offset specs contain up to four number-valued fields: x (a horizontal offset), y (a
vertical offset), h (an advance width correction) and v (an advance height correction).

The ligatures is a linear array of small hashes:

key type explanation

lig table uses the same substructure as a single item in the lookups table ex-
plained above

char string

components array linear array of named components

cent number

The anchor table is indexed by a string signifying the anchor type, which is one of

key type explanation

mark table placement mark

basechar table mark for attaching combining items to a base char
baselig table mark for attaching combining items to a ligature
basemark table generic mark for attaching combining items to connect to
centry table cursive entry point

cexit table cursive exit point

The content of these is a short array of defined anchors, with the entry keys being the anchor
names. For all except baselig, the value is a single table with this definition:

key type explanation
X number x location
y number v location

ttf pt index number truetype pointindex, only if given

For baselig, the value is a small array of such anchor sets sets, one for each constituent item
of the ligature.
For clarification, an anchor table could for example look like this :

['anchor'] = {
['basemark'] = {

['Anchor-7'] = { ['x']=170, ['y']=1080 }

b

['mark'] ={
['Anchor-1'] = { ['x']=160, ['y']=810 },
['Anchor-4'] = { ['x']=160, ['y']=800 }

}

['baselig'] = {
[1] = { ['Anchor-2'] = { ['x']=160, ['y']=650 } },
[2] = { ['Anchor-2'] = { ['x']=460, ['y']=640 } }
}

}

Note: The baselig table can be sparse!

\0/‘, 206 The fontloader

11.6.3 map table

The top-level map is a list of encoding mappings. Each of those is a table itself.

key type

enccount number
encmax number
backmax number

remap table
map array
backmap array
enc table

The remap table is very small:

key type

firstenc number
lastenc number
infont number

explanation

non-linear array of mappings
non-linear array of backward mappings

explanation

The enc table is a bit more verbose:

key

enc_name

char _cnt
char_max
unicode
psnames
builtin

hidden

only lbyte
has_lbyte

has 2byte

is unicodebmp
is unicodefull
is custom

is original

is compact

is japanese

is korean

is _tradchinese
is simplechinese
low page

high page
iconv_name

iso 2022 escape

type
string
number
number
array
array
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
string
string

explanation

of Unicode position numbers
of PostScript glyph names

only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero

The fontloader 207

11.6.4 private table

This is the font’s private PostScript dictionary, if any. Keys and values are both strings.

11.6.5 cidinfo table

key type explanation
registry string

ordering string

supplement number

version number

11.6.6 pfminfo table

The pfminfo table contains most of the OS/2 information:

key type explanation
pfmset number
winascent add number
windescent add number

hheadascent add number
hheaddescent add number

typoascent add number
typodescent add number
subsuper_set number
panose set number
hheadset number
vheadset number
pfmfamily number
weight number
width number
avgwidth number
firstchar number
lastchar number
fstype number
linegap number
vlinegap number
hhead ascent number
hhead descent number

0s2_typoascent number
0s2 typodescent number
0s2 typolinegap number

0s2 winascent number
0s2 windescent number
0s2 subxsize number
0s2 subysize number

\0/‘, 208 The fontloader

0s2_subxoff number

0s2 subyoff number
0S2 supxsize number
0s2 _supysize number
0s2 supxoff number
0s2 supyoff number

0s2 strikeysize number
0s2 strikeypos number
0s2 family class number

0s2 xheight number

0s2 capheight number

0s2 defaultchar number

0s2 _breakchar number

0s2 _vendor string

codepages table A two-number array of encoded code pages
unicoderages table A four-number array of encoded unicode ranges
panose table

The panose subtable has exactly 10 string keys:

key type

familytype string
serifstyle string
weight string
proportion string
contrast string
strokevariation string
armstyle string
letterform string
midline string
xheight string

11.6.7 names table

explanation

Values as in the OpenType font specification: Any, No Fit, Text and
Display, Script, Decorative, Pictorial

See the OpenType font specification for values
idem

idem

idem

idem

idem

idem

idem

idem

Each item has two top-level keys:

key type explanation
lang string language for this entry

names table

The names keys are the actual TrueType name strings. The possible keys are:

key explanation

copyright
family
subfamily

The fontloader 209 |

uniqueid
fullname
version
postscriptname
trademark
manufacturer
designer
descriptor
venderurl
designerurl
license
licenseurl
idontknow
preffamilyname
prefmodifiers
compatfull
sampletext
cidfindfontname
wwsTamily
wwssubfamily

11.6.8 anchor _classes table
The anchor classes classes:

key type explanation

name string a descriptive id of this anchor class
lookup string

type string one of mark, mkmk, curs, mklg

11.6.9 gpos table
The gpos table has one array entry for each lookup. (The gpos prefix is somewhat redundant.)

key type explanation

type string one of gpos_single, gpos pair, gpos cursive, gpos _mark2base,
gpos_mark2ligature, gpos _mark2mark, gpos context,
gpos_contextchain

flags table

name string

features array

subtables array

The flags table has a true value for each of the lookup flags that is actually set:

key type explanation
ra21 boolean

\0/‘, 210 The fontloader

ignorebaseglyphs boolean

ignoreligatures boolean
ignorecombiningmarks boolean
mark class string

The features subtable items of gpos have:

key type explanation
tag string
scripts table

The scripts table within features has:

key type explanation
script string
langs array of strings

The subtables table has:

key type explanation
name string

suffix string (only if used)
anchor classes number (only if used)
vertical kerning number (only if used)
kernclass table (only if used)

The kernclass with subtables table has:

key type explanation

firsts array of strings

seconds array of strings

lookup string or array associated lookup(s)
offsets array of numbers

Note: the kernclass (as far as we can see) always has one entry so it could be one level deep
instead. Also the seconds start at [2] which is close to the fontforge internals so we keep that
too.

11.6.10 gsub table
This has identical layout to the gpos table, except for the type:

key type explanation
type string one of gsub single, gsub multiple, gsub alternate, gsub ligature,
gsub_context, gsub_contextchain, gsub reversecontextchain

11.6.11 ttf tables and ttf tab_saved tables

key type explanation
tag string

The fontloader 211 [0/‘,

len number
maxlen number
data number

11.6.12 mm table

key type explanation

axes table array of axis names

instance count number

positions table array of instance positions (#axes * instances)
defweights table array of default weights for instances

cdv string

ndv string

axismaps table

The axismaps:

key type explanation

blends table an array of blend points
designs table an array of design values
min number

def number

max number

11.6.13 mark classes table

The keys in this table are mark class names, and the values are a space-separated string of glyph
names in this class.

11.6.14 math table

ScriptPercentScaleDown
ScriptScriptPercentScaleDown
DelimitedSubFormulaMinHeight
DisplayOperatorMinHeight
MathLeading

AxisHeight

AccentBaseHeight
FlattenedAccentBaseHeight
SubscriptShiftDown
SubscriptTopMax
SubscriptBaselineDropMin
SuperscriptShiftUp
SuperscriptShiftUpCramped
SuperscriptBottomMin
SuperscriptBaselineDropMax

\0/‘, 212 The fontloader

SubSuperscriptGapMin
SuperscriptBottomMaxWithSubscript
SpaceAfterScript
UpperLimitGapMin
UpperLimitBaselineRiseMin
LowerLimitGapMin
LowerLimitBaselineDropMin
StackTopShiftUp
StackTopDisplayStyleShiftUp
StackBottomShiftDown
StackBottomDisplayStyleShiftDown
StackGapMin
StackDisplayStyleGapMin
StretchStackTopShiftUp
StretchStackBottomShiftDown
StretchStackGapAboveMin
StretchStackGapBelowMin
FractionNumeratorShiftUp

FractionNumeratorDisplayStyleShiftUp

FractionDenominatorShiftDown

FractionDenominatorDisplayStyleShiftDown

FractionNumeratorGapMin

FractionNumeratorDisplayStyleGapMin

FractionRuleThickness
FractionDenominatorGapMin

FractionDenominatorDisplayStyleGapMin

SkewedFractionHorizontalGap
SkewedFractionVerticalGap
OverbarVerticalGap
OverbarRuleThickness
OverbarExtraAscender
UnderbarVerticalGap
UnderbarRuleThickness
UnderbarExtraDescender
RadicalVerticalGap
RadicalDisplayStyleVerticalGap
RadicalRuleThickness
RadicalExtraAscender
RadicalKernBeforeDegree
RadicalKernAfterDegree
RadicalDegreeBottomRaisePercent
MinConnectorOverlap
FractionDelimiterSize
FractionDelimiterDisplayStyleSize

The fontloader 213

11.6.15 validation_state table

key explanation
bad ps fontname
bad glyph table
bad cff table

bad metrics table
bad cmap_ table
bad bitmaps table
bad gx table
bad ot table

bad 0s2 version
bad sfnt header

11.6.16 horiz_base and vert_base table

key type explanation
tags table an array of script list tags
scripts table

The scripts subtable:

key type explanation
baseline table

default baseline number

lang table

The lang subtable:

key type explanation
tag string a script tag
ascent number

descent number
features table

The features points to an array of tables with the same layout except that in those nested tables,
the tag represents a language.

11.6.17 altuni table

An array of alternate Unicode values. Inside that array are hashes with:

key type explanation
unicode number this glyph is also used for this unicode
variant number the alternative is driven by this unicode selector

\0/‘, 214 The fontloader

11.6.18 vert variants and horiz_variants table

key type explanation
variants string
italic_correction number

parts table

The parts table is an array of smaller tables:

key type explanation
component string
extender number

start number
end number
advance number

11.6.19 mathkern table

key type explanation
top right table
bottom right table
top_left table

bottom left table
Each of the subtables is an array of small hashes with two keys:

key type explanation
height number
kern number

11.6.20 kerns table

Substructure is identical to the per-glyph subtable.

11.6.21 vkerns table

Substructure is identical to the per-glyph subtable.

11.6.22 texdata table

key type explanation
type string unset, text, math, mathext
params array 22 fontnumeric parameters

11.6.23 lookups table

Top-level lookups is quite different from the ones at character level. The keys in this hash are
strings, the values the actual lookups, represented as dictionary tables.
The fontloader 215 [0/‘,

key

type

format

tag

current class
before class
after class
rules

Rule items have

key
lookups
glyphs
class
coverage

type explanation

string

enum one of glyphs, class, coverage, reversecoverage
string

array

array

array

array an array of rule items

one common item and one specialized item:

type explanation

array a linear array of lookup names

array only if the parent’s format is glyphs
array only if the parent’s format is class
array only if the parent’s format is coverage

reversecoverage array only ifthe parent’s format is reversecoverage

A glyph table is:

key type explanation

names string
back string
fore string

A class table is:

key type

current array
before array
after array

explanation
of numbers
of numbers
of numbers

coverage:
key type explanation
current array of strings

before array of strings

after array of strings
reversecoverage:

key type explanation
current array of strings
before array of strings
after array of strings
replacements string

\0/‘, 216 The fontloader

12 The backend libraries

12.1 The pdf library

This library contains variables and functions that are related to the pdf backend. You can find
more details about the expected values to setters in section 2.2.

12.1.1 mapfile, mapline

pdf.mapfile(<string> map file)
pdf.mapline(<string> map line)

These two functions can be used to replace primitives \pdfmapfile and \pdfmapline inher-
ited from pdfTEX. They expect a string as only parameter and have no return value. The first
character in a map line can be -, + or = which means as much as remove, add or replace this
line.

12.1.2 [set|get][catalog|info|names|trailer]

These functions complement the corresponding pdf backend token lists dealing with metadata.
The value types are strings and they are written out to the pdf file directly after the token
registers.

12.1.3 [set|get][pageattributes|pageresources|pagesattributes]

These functions complement the corresponding pdf backend token lists dealing with page re-
sources. The variables have no interaction with the corresponding pdf backend token register.
They are written out to the pdf file directly after the token registers.

12.1.4 [set|get][xformattributes|xformresources]

These functions complement the corresponding pdf backend token lists dealing with reuseable
boxes and images. The variables have no interaction with the corresponding pdf backend token
register. They are written out to the pdf file directly after the token registers.

12.1.5 getversion and [set|get]lminorversion

The version is frozen in the binary but you can set the minor version. What minor version you
set depends on what pdf features you use. This is out of control of LuaTgX.

12.1.6 getcreationdate

This function returns a string with the date in the format that ends up in the pdf file, in this case
it’'s: D:20171127092133+01'00".

The backend libraries 217 |

12.1.7 [set|get]linclusionerrorlevel, [set|get]ignoreunknownimages

These variable control how error in included image are treated. They are modeled after the
pdfTEX equivalents.

12.1.8 [set|get]suppressoptionalinfo

This bitset determnines what kind of info gets flushes. By default we flush all.

12.1.9 [set|get]trailerid

You can set your own trailer id. This has to be a valid array string with checksums.

12.1.10 [set]|get]compresslevel

These two functions set the level of compression. The minimum value is 0, the maximum is 9.

12.1.11 [set|get]objcompresslevel

These two functions set the level of compression. The minimum value is 0, the maximum is 9.

12.1.12 [set|get]lgentounicode

This flag enables tounicode generation (like in pdfTEX).

12.1.13 [set|get]omitcidset

This flag disables inclusion of a so called CIDSet which can be handy when aiming at some of
the many pdf substandards.

12.1.14 [set|get]decimaldigits

These two functions set the accuracy of floats written to the pdffile. You can set any value but
the backend will not go below 3 and above 6.

12.1.15 [set|get]pkresolution

These setter takes two arguments: the resolution and an optional zero or one that indicates if
this is a fixed one. The getter returns these two values.

12.1.16 getlast[obj|link|annot] and getretval

These status variables are similar to the ones traditionally used in the backend interface at the
TEX end.

0/‘[218 The backend libraries

12.1.17 maxobjnum and objtype, fontname, fontobjnum, fontsize,
xformname

These (and some other) introspective helpers were moved from the the tex namespace to the
pdf namespace but kept their original names. They are mostly used when you construct pdf
objects yourself and need for instance information about a (to be) embedded font.

12.1.18 [set|get]origin
This one is used to set the horizonal and/or vertical offset, a traditional backend property.

pdf.setorigin() -- sets both to Opt
pdf.setorigin(tex.sp("1in")) -- sets both to 1lin
pdf.setorigin(tex.sp("1lin"),tex.sp("1in"))

The counterpart of this function returns two values.

12.1.19 [set|get]imageresolution

These two functions relate to the imageresolution that is used when the image itself doesn’t
provide a non-zero x or y resolution.

12.1.20 [set|get][link|dest|thread|xform]margin

These functions can be used to set and retrieve the margins that are added to the natural bound-
ing boxes of the respective objects.

12.1.21 get[pos|hpos|vpos]

These function get current location on the output page, measured from its lower left corner. The
values return scaled points as units.

local h, v = pdf.getpos()

12.1.22 [has|get]lmatrix

The current matrix transformation is available via the getmatrix command, which returns 6
values: sx, rx, ry, sy, tx, and ty. The hasmatrix function returns true when a matrix is applied.

if pdf.hasmatrix() then
local sx, rx, ry, sy, tx, ty = pdf.getmatrix()
-- do something useful or not

end

The backend libraries 219 | 0/‘[

12.1.23 print

You can print string to the pdf document from within a within a \latelua call. This function is
not to be used inside \directlua unless you know exactly what you are doing.

pdf.print(<string> s)
pdf.print(<string> type, <string> s)

The optional parameter can be used to mimic the behavior of pdf literals: the type is direct or
page.

12.1.24 immediateobj

This function creates a pdf object and immediately writes it to the pdf file. It is modelled after
pdfTEX’s \immediate \pdfobj primitives. All function variants return the object number of the
newly generated object.

<number> n =
pdf.immediateobj (<string> objtext)
<number> n =
pdf.immediateobj ("file", <string> filename)
<number> n =
pdf.immediateobj ("stream", <string> streamtext, <string> attrtext)
<number> n =
pdf.immediateobj ("streamfile", <string> filename, <string> attrtext)

The first version puts the objtext raw into an object. Only the object wrapper is automatically
generated, but any internal structure (like << >> dictionary markers) needs to provided by the
user. The second version with keyword file as first argument puts the contents of the file
with name filename raw into the object. The third version with keyword stream creates a
stream object and puts the streamtext raw into the stream. The stream length is automatically
calculated. The optional attrtext goes into the dictionary of that object. The fourth version
with keyword streamfile does the same as the third one, it just reads the stream data raw from
a file.

An optional first argument can be given to make the function use a previously reserved pdf
object.

<number> n =

pdf.immediateobj(<integer> n, <string> objtext)
<number> n =

pdf.immediateobj (<integer> n, "file", <string> filename)
<number> n =

pdf.immediateobj (<integer> n, "stream", <string> streamtext, <string> attr-
text)
<number> n =

pdf.immediateobj (<integer> n, "streamfile", <string> filename, <string> at-
trtext)

\0/‘, 220 The backend libraries

12.1.25 obj

This function creates a pdf object, which is written to the pdf file only when referenced, e.g., by
refobj ().

All function variants return the object number of the newly generated object, and there are two
separate calling modes. The first mode is modelled after pdfTgX’s \pdfobj primitive.

<number> n =

pdf.obj(<string> objtext)
<number> n

(

(

<number> n

pdf.obj("streamfile", <string> filename, <string> attrtext)

pdf.obj("file", <string> filename)
<number> n =
pdf.obj("stream", <string> streamtext, <string> attrtext)

An optional first argument can be given to make the function use a previously reserved pdf
object.

<number> n =
pdf.obj(<integer> n, <string> objtext)
<number> n =
pdf.obj(<integer> n, "file", <string> filename)
<number> n =
(

pdf.obj(<integer> n, "stream", <string> streamtext, <string> attrtext)
<number> n
pdf.obj(<integer> n, "streamfile", <string> filename, <string> attrtext)

The second mode accepts a single argument table with key-value pairs.

<number> n = pdf.obj {

type = <string>,
immmediate = <boolean>,
objnum = <number>,
attr = <string>,
compresslevel = <number>,
objcompression = <boolean>,
file = <string>,
string = <string>

}

The type field can have the values raw and stream, this field is required, the others are optional
(within constraints).

Note: this mode makes obj look more flexible than it actually is: the constraints from the sep-
arate parameter version still apply, so for example you can’t have both string and file at the
same time.

The backend libraries 221 | 0/‘[

12.1.26 refobj

This function, the Lua version of the \pdfrefobj primitive, references an object by its object
number, so that the object will be written out.

pdf.refobj(<integer> n)

This function works in both the \directlua and \latelua environment. Inside \directlua a
new whatsit node ‘pdf refobj’ is created, which will be marked for flushing during page output
and the object is then written directly after the page, when also the resources objects are written
out. Inside \latelua the object will be marked for flushing.

This function has no return values.

12.1.27 reserveobj
This function creates an empty pdf object and returns its number.

<number> n = pdf.reserveobj()
<number> n pdf.reserveobj("annot")

12.1.28 registerannot

This function adds an object number to the /Annots array for the current page without doing
anything else. This function can only be used from within \latelua.

pdf.registerannot (<number> objnum)

12.1.29 newcolorstack

This function allocates a new color stack and returns it’s id. The arguments are the same as for
the similar backend extension primitive.

pdf.newcolorstack("® g","page",true) -- page|direct|origin

12.1.30 setfontattributes

This function will force some additional code into the font resource. It can for instance be used
to add a custom ToUnicode vector to a bitmap file.

pdf.setfontattributes(<number> font id, <string> pdf code)

12.2 The pdfscanner library

The pdfscanner library allows interpretation of pdf content streams and /ToUnicode (cmap)
streams. You can get those streams from the epdf library, as explained in an earlier section.
There is only a single top-level function in this library:

0/‘[222 The backend libraries

pdfscanner.scan (<Object> stream, <table> operatortable, <table> info)

The first argument, stream, should be either a pdf stream object, or a pdf array of pdf stream
objects (those options comprise the possible return values of <Page>:getContents() and <0b-
ject>:getStream() in the epdf library).

The second argument, operatortable, should be a Lua table where the keys are pdf operator
name strings and the values are Lua functions (defined by you) that are used to process those
operators. The functions are called whenever the scanner finds one of these pdf operators in
the content stream(s). The functions are called with two arguments: the scanner object itself,
and the info table that was passed are the third argument to pdfscanner.scan.

Internally, pdfscanner.scan loops over the pdf operators in the stream(s), collecting operands
on an internal stack until it finds a pdf operator. If that pdf operator’s name exists in opera-
tortable, then the associated function is executed. After the function has run (or when there is
no function to execute) the internal operand stack is cleared in preparation for the next operator,
and processing continues.

The scanner argument to the processing functions is needed because it offers various methods
to get the actual operands from the internal operand stack.

A simple example of processing a pdf’s document stream could look like this:

function Do (scanner, info)
local val scanner:pop()
local name val[2] -- val[l] == 'name'
local resources = info.resources
local xobject resources:lookup("X0Object"):getDict():Llookup(name)
print (info.space ..'Use XObject '.. name)
if xobject and xobject:isStream() then
local dict = xobject:getStream():getDict()
if dict then
local name = dict:lookup("Subtype")
if name:getName() == "Form" then
local newinfo = {
space = info.space .. " ",
resources = dict:lookup("Resources"):getDict()
}
pdfscanner.scan(xobject, operatortable, newinfo)
end
end
end
end

operatortable = { Do = Do }

doc
pagenum

epdf.open(arg[1])
1

while pagenum <= doc:getNumPages() do

The backend libraries 223 |

local page = doc:getCatalog():getPage(pagenum)
local info = {

space =)
resources = page:getResourceDict()

}

print('Page ' .. pagenum)

pdfscanner.scan(page:getContents(), operatortable, info)
pagenum = pagenum + 1
end

This example iterates over all the actual content in the pdf, and prints out the found X0Object
names. While the code demonstrates quite some of the epdf functions, let’s focus on the type
pdfscanner specific code instead.

From the bottom up, the following line runs the scanner with the pdf page’s top-level content.
pdfscanner.scan(page:getContents(), operatortable, info)

The third argument, info, contains two entries: space is used to indent the printed output, and
resources is needed so that embedded XForms can find their own content.

The second argument, operatortable defines a processing function for a single pdf operator,
Do.

The function Do prints the name of the current XObject, and then starts a new scanner for that
object’s content stream, under the condition that the XObject is in fact a /Form. That nested
scanner is called with new info argument with an updated space value so that the indentation
of the output nicely nests, and with an new resources field to help the next iteration down to
properly process any other, embedded X0Objects.

Of course, this is not a very useful example in practise, but for the purpose of demonstrating
pdfscanner, it is just long enough. It makes use of only one scanner method: scanner:pop().
That function pops the top operand of the internal stack, and returns a Lua table where the
object at index one is a string representing the type of the operand, and object two is its value.

The list of possible operand types and associated Lua value types is:

integer <number>

real <number>
boolean <boolean>
name <string>
operator <string>
string <string>
array <table>
dict <table>

In case of integer or real, the value is always a Lua (floating point) number.
In case of name, the leading slash is always stripped.

In case of string, please bear in mind that pdf actually supports different types of strings (with
different encodings) in different parts of the pdf document, so may need to reencode some of the

\0/‘, 224 The backend libraries

results; pdfscanner always outputs the byte stream without reencoding anything. pdfscanner
does not differentiate between literal strings and hexadecimal strings (the hexadecimal values
are decoded), and it treats the stream data for inline images as a string that is the single operand
for EI.

In case of array, the table content is a list of pop return values and in case of dict, the table
keys are pdf name strings and the values are pop return values.

There are few more methods defined that you can ask scanner:

pop as explained above

popNumber return only the value of a real or integer
popName return only the value of a name

popString return only the value of a string
popArray return only the value of a array

popDict return only the value of a dict
popBool return only the value of a boolean
done abort further processing of this scan() call

The popXXX are convenience functions, and come in handy when you know the type of the
operands beforehand (which you usually do, in pdf). For example, the Do function could have
used local name = scanner:popName() instead, because the single operand to the Do operator
is always a pdf name object.

The done function allows you to abort processing of a stream once you have learned everything
you want to learn. This comes in handy while parsing /ToUnicode, because there usually is
trailing garbage that you are not interested in. Without done, processing only end at the end of
the stream, possibly wasting cpu cycles.

12.3 The epdf library

The epdf library provides Lua bindings to many pdf access functions that are defined by the
poppler pdf viewer library (written in C++ by Kristian Hggsberg, based on xpdf by Derek Noon-
burg). Within LuaTgX xpdf functionality is being used since long time to embed pdf files. The
epdf library allows to scrutinize an external pdf file. It gives access to its document structure:
catalog, cross-reference table, individual pages, objects, annotations, info, and metadata. The
epdf library only provides read-only access. At some point we might decide to limit the interface
to a reasonable subset.

The following functions will be removed in a next version. This is partly due to a change in the
api of the used library and partly due to the fact that write access is not needed at all.

Annot getAppearance gone
getBorder gone
AnnotBorderStyle getWidth gone
Array incRef gone
decRef gone
add will go
Attribute setRevision will go

The backend libraries 225 ! 0

setHidden will go
setFormattedValue will go

EmbFile save will go
Dict incRef gone
decRef gone
add will go
set will go
remove will go
Object initBool will go
initInt will go
initReal will go
initString will go
initName will go
initNull will go
initArray will go
initDict will go
initStream will go
initRef will go
initCmd will go
initError will go
initEOF will go
dictAdd will go
dictSet will go
streamReset will go
StructElement setRevision will go
appendChild will go
appendAttribute will go
StructTreeRoot appendChild will go

For a start, a pdf file is opened by epdf.open() with file name, e.g.:
doc = epdf.open("foo.pdf")

This normally returns a PDFDoc userdata variable; but if the file could not be opened successfully,
instead of a fatal error just the value nil is returned.

All Lua functions in the epdf library are named after the poppler functions listed in the poppler
header files for the various classes, e.g., files PDFDoc.h, Dict.h, and Array.h. These files can
be found in the poppler subdirectory within the LuaTgX sources. Which functions are already
implemented in the epdf library can be found in the LuaTgX source file lepdflib. cc. For using
the epdf library, knowledge of the pdf file architecture is indispensable.

There are many different userdata types defined by the epdf library, currently these are An-
notBorderStyle, AnnotBorder, Annots, Annot, Array, Attribute, Catalog, Dict, EmbFile,
GString, LinkDest, Links, Link, ObjectStream, Object, PDFDoc, PDFRectangle, Page, Ref,
Stream, StructElement, StructTreeRoot TextSpan, XRefEntry and XRef.

All these userdata names and the Lua access functions closely resemble the classes naming
from the poppler header files, including the choice of mixed upper and lower case letters. The

\0/‘, 226 The backend libraries

Lua function calls use object-oriented syntax, e.g., the following calls return the Page object for
page 1:

pageref
pageobj

doc:getCatalog() :getPageRef (1)
doc:getXRef():fetch(pageref.num, pageref.gen)

But writing such chained calls is risky, as an intermediate function may return nil on error.
Therefore between function calls there should be Lua type checks (e.g., against nil) done.
If a non-object item is requested (for instance a Dict item by calling page:getPieceInfo(),
cf. Page.h) but not available, the Lua functions return nil (without error). If a function should
return an Object, but it’s not existing, a Null object is returned instead, also without error. This
is in-line with poppler behavior.

All library objects havea gc metamethod for garbage collection. The tostring metamethod
gives the type name for each object.

These are the object constructors:

<PDFDoc> = epdf.open(<string> PDF filename)

<Annot> = epdf.Annot(<XRef>, <Dict>, <Catalog>, <Ref>)

<Annots> = epdf.Annots(<XRef>, <Catalog>, <Object>)

<Array> = epdf.Array(<XRef>)

<Attribute> = epdf.Attribute(<Type>,<Object>)| epdf.Attribute(<string>, <int>,
<Object>)

<Dict> = epdf.Dict(<XRef>)

<Object> = epdf.0bject() |epdf.0bject(<Type>) |epdf.0bject(<0bject Type>,<string>) |
<PDFRectangle> = epdf.PDFRectangle()

There is a new API for the Object constructors: the old init<ObjType> constructors are still
present but they are deprecated. They will disappear after the next TgXLive. The functions
StructElement Type, Object Type, Attribute Type and AttributeOwner Type return a hash
table {<string>,<integer>}. The hash table Object Type is useful for the epdf.0bject(<0b-
ject Type>,<string>) Object constructor, where <Object Type> is an integer.

Annot methods:

<boolean> = <Annot>:1is0K()

<boolean> = <Annot>:match(<Ref>)

<Object> = <Annot>:getAppearance() -- gone
<AnnotBorder> = <Annot>:getBorder() -- gone

AnnotBorderStyle methods (gone):
<number> = <AnnotBorderStyle>:getWidth() -- gone

Annots methods:

<integer> = <Annots>:getNumAnnots()
<Annot> = <Annots>:getAnnot(<integer>)

Array methods:

The backend libraries 227 | 0/‘[

<Array>:incRef () -- gone
<Array>:decRef() -- gone
<Array>:add(<Object>) -- will go

<integer> = <Array>:getLength()

<0Object> = <Array>:get(<integer>)
<0Object> = <Array>:getNF(<integer>)
<string> = <Array>:getString(<integer>)

Attribute methods:

<boolean> = <Attribute>:isOk()

<integer> = <Attribute>:getType()

<integer> = <Attribute>:getOwner()

<string> = <Attribute>:getTypeName()

<string> = <Attribute>:getOwnerName()

<Object> = <Attribute>:getValue()

<Object> = <Attribute>:getDefaultValue

<string> = <Attribute>:getName()

<integer> = <Attribute>:getRevision()
<Attribute>:setRevision(<unsigned integer>) -- will go

<boolean> = <Attribute>:isHidden()
<Attribute>:setHidden(<boolean>) -- will go

<string> = <Attribute>:getFormattedValue()

<string> = <Attribute>:setFormattedValue(<string>) -- will go

Catalog methods:

<boolean> = <Catalog>:isO0K()

<integer> = <Catalog>:getNumPages()

<Page> = <Catalog>:getPage(<integer>)

<Ref> = <Catalog>:getPageRef(<integer>)

<string> = <Catalog>:getBaseURI()

<string> = <Catalog>:readMetadata()

<Object> = <Catalog>:getStructTreeRoot()

<integer> = <Catalog>:findPage(<integer> object number, <integer> object gener-

ation)

<LinkDest> = <Catalog>:findDest(<string> name)

<Object> = <Catalog>:getDests()

<integer> = <Catalog>:numEmbeddedFiles()

<EmbFile> = <Catalog>:embeddedFile(<integer>)

<integer> = <Catalog>:num]S()

<string> = <Catalog>:get]S(<integer>)

<Object> = <Catalog>:getOutline()

<Object> = <Catalog>:getAcroForm()

EmbFile methods:

<integer>

<EmbFile>:

size()

228 The backend libraries

<string>
<string>
<string>
<string>
<boolean>
<string>
<string>
<Object>
<boolean>

<EmbFile>:
<EmbFile>:
<EmbFile>:
<EmbFile>
<EmbFile>:
<EmbFile>:
<EmbFile>:
<EmbFile>:
<EmbFile>:

FileSpec methods:

<boolean>
<string>
<string>
<string>
<EmbFile>

<FileSpec>:
<FileSpec>:
<FileSpec>:
<FileSpec>:
<FileSpec>:

Dict methods:

<integer>
<boolean>
<Object>
<Object>
<integer>
<string>
<Object>
<Object>
<boolean>

<Dict>:incR
<Dict>:decR
<Dict>:add(
<Dict>:set(
<Dict>:remo
<Dict>:getlL
<Dict>:is(<
<Dict>:1look
<Dict>:1look
<Dict>:1look

modDate()
createDate()
checksum()

:mimeType()

is0k()

name() -- not (yet) implemented
description() -- not (yet) implemented
streamObject() -- not (yet) implemented
save() -- will go

isOk()

getFileName()
getFileNameForPlatform()
getDescription()
getEmbeddedFile()

ef() -- will go
ef() -- will go
<string>, <Object>) -- will go
<string>, <Object>) -- will go
ve(<string>) -- will go
ength()

string>)

up(<string>)

upNF (<string>)

upInt(<string>, <string>)

<Dict>:getKey(<integer>)

<Dict>:getV
<Dict>:getV

al(<integer>)
alNF(<integer>)

<Dict>:hasKey(<string>)

LinkDest methods:

<boolean>
<integer>
<string>
<boolean>
<integer>
<Ref>
<number>
<number>
<number>
<number>
<number>

<LinkDest>:
= <LinkDest>:
<LinkDest>:
= <LinkDest>:
= <LinkDest>:
<LinkDest>:
<LinkDest>:
<LinkDest>:
<LinkDest>:
<LinkDest>:
<LinkDest>:

is0K()
getKind()
getKindName()
isPageRef ()
getPageNum()
getPageRef ()
getLeft()
getBottom()
getRight()
getTop()
getZoom()

The backend libraries 229

<boolean> = <LinkDest>:getChangelLeft()
<boolean> = <LinkDest>:getChangeTop()
<boolean> = <LinkDest>:getChangeZoom()

Links methods:
<integer> = <Links>:getNumLinks()

Object methods:

<Object>:initBool(<boolean>) -- will
<Object>:initInt(<integer>) -- will
<0Object>:initReal (<number>) -- will
<Object>:initString(<string>) -- will
<Object>:initName(<string>) -- will
<Object>:initNull() -- will
<Object>:initArray(<XRef>) -- will
<Object>:initDict (<XRef>) -- will
<Object>:initStream(<Stream>) -- will
<Object>:initRef(<integer> object number,
<integer> object generation) -- will
<Object>:initCmd(<string>) -- will
<Object>:initError() -- will
<0Object>:initEOF() -- will

<Object> = <0Object>:fetch(<XRef>)
<integer> = <0Object>:getType()
<string> = <Object>:getTypeName()
<boolean> = <Object>:isBool()
<boolean> = <0Object>:isInt()
<boolean> = <Object>:isReal()
<boolean> = <0bject>:isNum()
<boolean> = <0bject>:isString()
<boolean> = <0Object>:isName()
<boolean> = <Object>:isNull()
<boolean> = <0bject>:isArray()
<boolean> = <0Object>:isDict()
<boolean> = <Object>:isStream()
<boolean> = <0bject>:isRef()
<boolean> = <0bject>:isCmd()
<boolean> = <Object>:isError()
<boolean> = <0bject>:isEOF()
<boolean> = <0Object>:isNone()
<boolean> = <0Object>:getBool()
<integer> = <0Object>:getInt()

<number> = <0Object>:getReal()
<number> = <0Object>:getNum()
<string> = <Object>:getString()
<string> = <0Object>:getName()

i 230 The backend libraries

<Array>
<Dict>
<Stream>
<Ref>
<integer>
<integer>
<string>
<integer>

<Object>
<Object>
<integer>

<Object>
<Object>
<string>
<Object>
<Object>
<boolean>

<integer>
<integer>

<integer>

<Dict>

<Object>:
<0Object>:
<Object>:
:getRef()
<0Object>:
<Object>:
<Object>:
<0Object>:
<Object>:
<Object>:
<0Object>:
<Object>:
<Object>:
<0Object>:
<Object>:
<Object>:
<0Object>:
<Object>:
<Object>:
<0Object>:
<Object>:
<Object>:
<Object>:
<Object>:
<Object>:
<Object>:

<Object>

Page methods:

<boolean>
<integer>

<boolean>
<number>
<number>
<number>
<number>

<integer>
<string>
<Dict>
<Dict>
<Stream>
<Dict>

getArray()
getDict()
getStream()

getRefNum()

getRefGen()

getCmd()
arrayGetLength()
arrayAdd(<Object>)
arrayGet(<integer>)
arrayGetNF (<integer>)
dictGetLength(<integer>)
dictAdd(<string>, <Object>)
dictSet(<string>, <Object>)
dictLookup(<string>)
dictLookupNF(<string>)
dictgetKey(<integer>)
dictgetVal(<integer>)
dictgetValNF(<integer>)
streamIs(<string>)
streamReset ()
streamGetChar()
streamLookChar()
streamGetPos ()
streamSetPos(<integer>)
streamGetDict ()

= <Page>:1s0k()

= <Page>:getNum()
<PDFRectangle> = <Page>:getMediaBox()
<PDFRectangle> = <Page>:getCropBox()

= <Page>:isCropped()

= <Page>:getMediaWidth()

= <Page>:getMediaHeight()
= <Page>:getCropWidth()

= <Page>:getCropHeight ()
<PDFRectangle> = <Page>:getBleedBox()
<PDFRectangle> = <Page>:getTrimBox()
<PDFRectangle> = <Page>:getArtBox()

= <Page>:getRotate()

= <Page>:getLastModified()
= <Page>:getBoxColorInfo()
= <Page>:getGroup()

= <Page>:getMetadata()

= <Page>:getPieceInfo()

- will go

- will go
- will go

- will go

The backend libraries 231

<Dict> = <Page>:getSeparationInfo()
<Dict> = <Page>:getResourceDict()
<Object> = <Page>:getAnnots()

<Links> = <Page>:getLinks(<Catalog>)
<Object> = <Page>:getContents()

PDFDoc methods:

<boolean> = <PDFDoc>:1is0k()
<integer> = <PDFDoc>:getErrorCode()
<string> = <PDFDoc>:getErrorCodeName()
<string> = <PDFDoc>:getFileName()
<XRef> = <PDFDoc>:getXRef()
<Catalog> = <PDFDoc>:getCatalog()
<number> = <PDFDoc>:getPageMediaWidth()
<number> = <PDFDoc>:getPageMediaHeight()
<number> = <PDFDoc>:getPageCropWidth()
<number> = <PDFDoc>:getPageCropHeight()
<integer> = <PDFDoc>:getNumPages()
<string> = <PDFDoc>:readMetadata()
<Object> = <PDFDoc>:getStructTreeRoot()
<integer> = <PDFDoc>:findPage(<integer> object number,
<integer> object generation)
<Links> = <PDFDoc>:getLinks(<integer>)
<LinkDest> = <PDFDoc>:findDest(<string>)
<boolean> = <PDFDoc>:isEncrypted()
<boolean> = <PDFDoc>:okToPrint()
<boolean> = <PDFDoc>:okToChange()
<boolean> = <PDFDoc>:okToCopy()
<boolean> = <PDFDoc>:o0kToAddNotes()
<boolean> = <PDFDoc>:islLinearized()
<Object> = <PDFDoc>:getDocInfo()
<Object> = <PDFDoc>:getDocInfoNF()
<integer> = <PDFDoc>:getPDFMajorVersion()
<integer> = <PDFDoc>:getPDFMinorVersion()

PDFRectangle methods:

<boolean> <PDFRectangle>:isValid() -- setindex/newindex will go

Stream methods:

<integer> = <Stream>:getKind()
<string> = <Stream>:getKindName()
= <Stream>:reset()
= <Stream>:close()
<integer> = <Stream>:getChar()
<integer> = <Stream>:lookChar()

232 The backend libraries

<integer> = <Stream>:getRawChar()

<integer> = <Stream>:getUnfilteredChar()
= <Stream>:unfilteredReset()

<integer> = <Stream>:getPos()

<boolean> = <Stream>:isBinary()

<Stream> = <Stream>:getUndecodedStream()

<Dict> = <Stream>:getDict()

StructElement methods:

<string> = <StructElement>:getTypeName()
<integer> = <StructElement>:getType()
<boolean> = <StructElement>:1is0k()
<boolean> = <StructElement>:isBlock()
<boolean> = <StructElement>:isInline()
<boolean> = <StructElement>:isGrouping()
<boolean> = <StructElement>:isContent()
<boolean> = <StructElement>:isObjectRef()
<integer> = <StructElement>:getMCID()
<Ref> = <StructElement>:getObjectRef ()
<Ref> = <StructElement>:getParentRef()
<boolean> = <StructElement>:hasPageRef ()
<Ref> = <StructElement>:getPageRef ()
<StructTreeRoot> = <StructElement>:getStructTreeRoot()
<string> = <StructElement>:getID()
<string> = <StructElement>:getLanguage()
<integer> = <StructElement>:getRevision()
<StructElement>:setRevision(<unsigned integer>) -- will go
<string> = <StructElement>:getTitle()
<string> = <StructElement>:getExpandedAbbr()
<integer> = <StructElement>:getNumChildren()
<StructElement> = <StructElement>:getChild()
= <StructElement>:appendChild<StructElement>) -- will go
<integer> = <StructElement>:getNumAttributes()
<Attribute> = <StructElement>:getAttribute(<integer>)
<string> = <StructElement>:appendAttribute(<Attribute>) -- will go
<Attribute> = <StructElement>:findAttribute(<Attribute::Type>,
boolean,Attribute: :Owner)
<string> = <StructElement>:getAltText()
<string> = <StructElement>:getActualText()
<string> = <StructElement>:getText(<boolean>)
<table> = <StructElement>:getTextSpans()

StructTreeRoot methods:

<StructElement> = <StructTreeRoot>:findParentElement
<PDFDoc> = <StructTreeRoot>:getDoc
<Dict> = <StructTreeRoot>:getRoleMap

The backend libraries 233 |

<Dict>
<integer>

<StructElement>

<StructElement>

= <StructTreeRoot>:getClassMap

= <StructTreeRoot>:getNumChildren
<StructTreeRoot>:getChild
<StructTreeRoot>:appendChild
<StructTreeRoot>:findParentElement

TextSpan han only one method:

<string> =

XRef methods:

<boolean>
<integer>
<boolean>
<boolean>
<boolean>
<boolean>
<boolean>
<boolean>
<boolean>
<boolean>
<boolean>
<Object>

<Object>

<Object>
<Object>
<integer>
<integer>
<integer>
<integer>
<Object>

There is an experimental function epdf.openMemStream that takes three arguments:

stream this is a (in low level Lua speak) light userdata object, i.e. a pointer to a sequence of
bytes

length this is the length of the stream in bytes

name this is a unique identifier that is used for hashing the stream, so that multiple doesn’t

<TestSpan>:getText()

<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:

<XRef>

<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:
<XRef>:

isOk()

getErrorCode()
isEncrypted()
okToPrint ()
okToPrintHighRes ()
okToChange()

okToCopy ()

okToAddNotes ()
okToFillForm()
okToAccessibility()
okToAssemble()
getCatalog()
:fetch(<integer> object number,
<integer> object generation)
getDocInfo()
getDocInfoNF()
getNumObjects ()
getRootNum()
getRootGen()

getSize()

getTrailerDict()

use more memory

Instead of a light userdata stream you can also pass a Lua string, in which case the given length

is (at most) the string length.

The function returns a epdf object and a string. The string can be used in the img library instead
of a filename. You need to prevent garbage collection of the object when you use it as image (for

instance by storing it somewhere).

.]
0/‘[234 The backend libraries

-- will go

Both the memory stream and it’s use in the image library is experimental and can change. In
case you wonder where this can be used: when you use the swiglib library for graphicmagick,
it can return such a userdata object. This permits conversion in memory and passing the result
directly to the backend. This might save some runtime in one-pass workflows. This feature is
currently not meant for production and we might come up with a better implementation.

// .
The backend libraries 235 ! 0

. ({

\

0 ‘

\ /
N

236 The backend libraries

	Introduction
	1 Basic TEX enhancements
	1.1 Introduction
	1.2 Version information
	1.2.1 luatexbanner, luatexversion and luatexrevision
	1.2.2 formatname

	1.3 UNICODE text support
	1.3.1 Extended ranges
	1.3.2 Uchar

	1.4 Extended tables
	1.5 Attributes
	1.5.1 Attribute registers
	1.5.2 Box attributes

	1.6 LUA related primitives
	1.6.1 directlua
	1.6.2 latelua
	1.6.3 luaescapestring
	1.6.4 luafunction

	1.7 Alignments
	1.7.1 \alignmark
	1.7.2 \aligntab

	1.8 Catcode tables
	1.8.1 catcodetable
	1.8.2 initcatcodetable
	1.8.3 savecatcodetable

	1.9 Suppressing errors
	1.9.1 suppressfontnotfounderror
	1.9.2 suppresslongerror
	1.9.3 suppressifcsnameerror
	1.9.4 suppressoutererror
	1.9.5 suppressmathparerror
	1.9.6 suppressprimitiveerror

	1.10 Math
	1.10.1 Extensions
	1.10.2 matheqnogapstep

	1.11 Fonts
	1.11.1 Font syntax
	1.11.2 fontid
	1.11.3 setfontid
	1.11.4 noligs and nokerns
	1.11.5 nospaces

	1.12 Tokens, commands and strings
	1.12.1 scantextokens
	1.12.2 toksapp, tokspre, etoksapp and etokspre
	1.12.3 csstring, begincsname and lastnamedcs
	1.12.4 clearmarks
	1.12.5 letcharcode

	1.13 Boxes, rules and leaders
	1.13.1 outputbox
	1.13.2 vpack, hpack and tpack
	1.13.3 vsplit
	1.13.4 Images and Forms
	1.13.5 nohrule and novrule
	1.13.6 gleaders

	1.14 Languages
	1.14.1 hyphenationmin
	1.14.2 boundary, noboundary, protrusionboundary and wordboundary

	1.15 Control and debugging
	1.15.1 Tracing
	1.15.2 outputmode and draftmode

	1.16 Files
	1.16.1 File syntax
	1.16.2 Writing to file

	2 Modifications
	2.1 The merged engines
	2.1.1 The need for change
	2.1.2 Changes from TEX 3.1415926
	2.1.3 Changes from ETEX 2.2
	2.1.4 Changes from PDFTEX 1.40
	2.1.5 Changes from ALEPH RC4
	2.1.6 Changes from standard WEBC

	2.2 The backend primitives pdf*
	2.3 Directions
	2.4 Implementation notes
	2.4.1 Memory allocation
	2.4.2 Sparse arrays
	2.4.3 Simple single-character csnames
	2.4.4 Compressed format
	2.4.5 Binary file reading
	2.4.6 Tabs and spaces

	3 LUA general
	3.1 Initialization
	3.1.1 LUATEX as a LUA interpreter
	3.1.2 LUATEX as a LUA byte compiler
	3.1.3 Other commandline processing

	3.2 LUA behaviour
	3.3 LUA modules
	3.4 Testing

	4 Languages, characters, fonts and glyphs
	4.1 Characters and glyphs
	4.2 The main control loop
	4.3 Loading patterns and exceptions
	4.4 Applying hyphenation
	4.5 Applying ligatures and kerning
	4.6 Breaking paragraphs into lines
	4.7 The lang library

	5 Font structure
	5.1 The font tables
	5.2 Real fonts
	5.3 Virtual fonts
	5.3.1 The structure
	5.3.2 Artificial fonts
	5.3.3 Example virtual font

	5.4 The font library
	5.4.1 Loading a TFM file
	5.4.2 Loading a VF file
	5.4.3 The fonts array
	5.4.4 Checking a font's status
	5.4.5 Defining a font directly
	5.4.6 Extending a font
	5.4.7 Projected next font id
	5.4.8 Font id
	5.4.9 Currently active font
	5.4.10 Maximum font id
	5.4.11 Iterating over all fonts

	6 Math
	6.1 The current math style
	6.1.1 mathstyle
	6.1.2 Ustack

	6.2 Unicode math characters
	6.3 Cramped math styles
	6.4 Math parameter settings
	6.5 Skips around display math
	6.6 Font-based Math Parameters
	6.7 Nolimit correction
	6.8 Math italic mess
	6.9 Script boxes
	6.10 Unscaled fences
	6.11 Math spacing setting
	6.12 Math accent handling
	6.13 Math root extension
	6.14 Math kerning in super- and subscripts
	6.15 Scripts on horizontally extensible items like arrows
	6.16 Extracting values
	6.17 fractions
	6.18 Last lines
	6.19 Other Math changes
	6.19.1 Verbose versions of single-character math commands
	6.19.2 Script commands Unosuperscript and Unosubscript
	6.19.3 Allowed math commands in non-math modes

	6.20 Math surrounding skips
	6.20.1 Delimiters: Uleft, Umiddle and Uright
	6.20.2 Fixed scripts
	6.20.3 Penalties: mathpenaltiesmode
	6.20.4 Tracing
	6.20.5 Math options

	7 Nodes
	7.1 LUA node representation
	7.1.1 Attributes
	7.1.2 Main text nodes
	7.1.3 Math nodes
	7.1.4 whatsit nodes

	7.2 The node library
	7.2.1 Node handling functions
	7.2.2 Glue handling
	7.2.3 Attribute handling

	7.3 Two access models

	8 LUATEX LUA callbacks
	8.1 Registering callbacks
	8.2 File discovery callbacks
	8.2.1 find_read_file and find_write_file
	8.2.2 find_font_file
	8.2.3 find_output_file
	8.2.4 find_format_file
	8.2.5 find_vf_file
	8.2.6 find_map_file
	8.2.7 find_enc_file
	8.2.8 find_sfd_file
	8.2.9 find_pk_file
	8.2.10 find_data_file
	8.2.11 find_opentype_file
	8.2.12 find_truetype_file and find_type1_file
	8.2.13 find_image_file
	8.2.14 File reading callbacks
	8.2.15 open_read_file
	8.2.16 General file readers

	8.3 Data processing callbacks
	8.3.1 process_input_buffer
	8.3.2 process_output_buffer
	8.3.3 process_jobname

	8.4 Node list processing callbacks
	8.4.1 contribute_filter
	8.4.2 buildpage_filter
	8.4.3 build_page_insert
	8.4.4 pre_linebreak_filter
	8.4.5 linebreak_filter
	8.4.6 append_to_vlist_filter
	8.4.7 post_linebreak_filter
	8.4.8 hpack_filter
	8.4.9 vpack_filter
	8.4.10 hpack_quality
	8.4.11 vpack_quality
	8.4.12 process_rule
	8.4.13 pre_output_filter
	8.4.14 hyphenate
	8.4.15 ligaturing
	8.4.16 kerning
	8.4.17 insert_local_par
	8.4.18 mlist_to_hlist

	8.5 Information reporting callbacks
	8.5.1 pre_dump
	8.5.2 start_run
	8.5.3 stop_run
	8.5.4 start_page_number
	8.5.5 stop_page_number
	8.5.6 show_error_hook
	8.5.7 show_error_message
	8.5.8 show_lua_error_hook
	8.5.9 start_file
	8.5.10 stop_file
	8.5.11 call_edit
	8.5.12 finish_synctex_callback

	8.6 PDF-related callbacks
	8.6.1 finish_pdffile
	8.6.2 finish_pdfpage

	8.7 Font-related callbacks
	8.7.1 define_font
	8.7.2 glyph_not_found

	9 The TEX related libraries
	9.1 The lua library
	9.1.1 LUA version
	9.1.2 LUA bytecode registers
	9.1.3 LUA chunk name registers

	9.2 The status library
	9.3 The tex library
	9.3.1 Internal parameter values
	9.3.2 Convert commands
	9.3.3 Last item commands
	9.3.4 Attribute, count, dimension, skip and token registers
	9.3.5 Character code registers
	9.3.6 Box registers
	9.3.7 Math parameters
	9.3.8 Special list heads
	9.3.9 Semantic nest levels
	9.3.10 Print functions
	9.3.11 Helper functions
	9.3.12 Functions for dealing with primitives
	9.3.13 Core functionality interfaces
	9.3.14 Functions related to synctex

	9.4 The texconfig table
	9.5 The texio library
	9.5.1 texio.write
	9.5.2 texio.write_nl
	9.5.3 texio.setescape

	9.6 The token library
	9.6.1 The scanner
	9.6.2 Macros
	9.6.3 Pushing back
	9.6.4 Nota bene

	9.7 The kpse library
	9.7.1 kpse.set_program_name and kpse.new
	9.7.2 find_file
	9.7.3 lookup
	9.7.4 init_prog
	9.7.5 readable_file
	9.7.6 expand_path
	9.7.7 expand_var
	9.7.8 expand_braces
	9.7.9 show_path
	9.7.10 var_value
	9.7.11 version

	10 The graphic libraries
	10.1 The img library
	10.1.1 new
	10.1.2 keys
	10.1.3 scan
	10.1.4 copy
	10.1.5 write
	10.1.6 immediatewrite
	10.1.7 node
	10.1.8 types
	10.1.9 boxes

	10.2 The mplib library
	10.2.1 new
	10.2.2 mp:statistics
	10.2.3 mp:execute
	10.2.4 mp:finish
	10.2.5 Result table
	10.2.6 Subsidiary table formats
	10.2.7 Character size information

	11 The fontloader
	11.1 Getting quick information on a font
	11.2 Loading an OPENTYPE or TRUETYPE file
	11.3 Applying a 'feature file'
	11.4 Applying an 'AFM file'
	11.5 Fontloader font tables
	11.6 Table types
	11.6.1 Top-level
	11.6.2 Glyph items
	11.6.3 map table
	11.6.4 private table
	11.6.5 cidinfo table
	11.6.6 pfminfo table
	11.6.7 names table
	11.6.8 anchor_classes table
	11.6.9 gpos table
	11.6.10 gsub table
	11.6.11 ttf_tables and ttf_tab_saved tables
	11.6.12 mm table
	11.6.13 mark_classes table
	11.6.14 math table
	11.6.15 validation_state table
	11.6.16 horiz_base and vert_base table
	11.6.17 altuni table
	11.6.18 vert_variants and horiz_variants table
	11.6.19 mathkern table
	11.6.20 kerns table
	11.6.21 vkerns table
	11.6.22 texdata table
	11.6.23 lookups table

	12 The backend libraries
	12.1 The pdf library
	12.1.1 mapfile, mapline
	12.1.2 [set|get][catalog|info|names|trailer]
	12.1.3 [set|get][pageattributes|pageresources|pagesattributes]
	12.1.4 [set|get][xformattributes|xformresources]
	12.1.5 getversion and [set|get]minorversion
	12.1.6 getcreationdate
	12.1.7 [set|get]inclusionerrorlevel, [set|get]ignoreunknownimages
	12.1.8 [set|get]suppressoptionalinfo
	12.1.9 [set|get]trailerid
	12.1.10 [set|get]compresslevel
	12.1.11 [set|get]objcompresslevel
	12.1.12 [set|get]gentounicode
	12.1.13 [set|get]omitcidset
	12.1.14 [set|get]decimaldigits
	12.1.15 [set|get]pkresolution
	12.1.16 getlast[obj|link|annot] and getretval
	12.1.17 maxobjnum and objtype, fontname, fontobjnum, fontsize, xformname
	12.1.18 [set|get]origin
	12.1.19 [set|get]imageresolution
	12.1.20 [set|get][link|dest|thread|xform]margin
	12.1.21 get[pos|hpos|vpos]
	12.1.22 [has|get]matrix
	12.1.23 print
	12.1.24 immediateobj
	12.1.25 obj
	12.1.26 refobj
	12.1.27 reserveobj
	12.1.28 registerannot
	12.1.29 newcolorstack
	12.1.30 setfontattributes

	12.2 The pdfscanner library
	12.3 The epdf library

