LualgX
Reference

beta 0.41.0







LuaTEX

Reference
Manual

copyright: LuaTEX development team
more info: www.luatex.org
version: June 29, 2009






Contents

1 Introduction

2 Basic TEX enhancements
2.1 Introduction

22 Version information
23 Unicode text support
24 Extended tables

25  Attribute registers
251 Box attributes

2.6 Lua related primitives
2.6.1 \directlua

26.2 \latelua

263 \luaescapestring
27 New e-TEX primitives

271 \clearmarks

272 \noligs and \nokerns
273 \formatname

274 \scantextokens

275 Catcode tables

2751 \catcodetable

2752 \initcatcodetable

2753 \savecatcodetable

2.7.6 \suppressfontnotfounderror (0.11)
277 \suppresslongerror (0.36)
2738 \suppressifcsnameerror (0.36)
279 \suppressoutererror (0.36)
2710 \outputbox (0.37)

2711 Font syntax

2.8  Debugging

3 Lua general

341 Initialization

311 LuaTgX as a Lua interpreter
31.2 LuaTgX as a Lua byte compiler
313 Other commandline processing
32 Lua changes

33 Lua modules

4 LuaTgX Lua Libraries

41 The tex library

411 Internal parameter values
4111 Integer parameters

Contents

1

11
11
11
12
12
13
13
14
14
15
16
16
16
16
17
17
17
17
17
18
18
18
18
19
19
19
19

21
21
21
21
21
23
25

27
27
27
27



411.2 Dimension parameters
4113 Direction parameters
4114 Glue parameters
4115 Muglue parameters
41.1.6 Tokenlist parameters

41.2 Convert commands
413 Last item commands
414 Attribute, count, dimension, skip and token registers

415 Box registers

41.6 Math parameters

417 Special list heads

41.8 Print functions

41.8.1 tex.print

4182 tex.sprint

4183 tex.write

41.9 Helper functions

41.91 tex.round

4192 tex.scale

4193 tex.definefont

4110  Functions for dealing with primitives
4.1.101 tex.enableprimitives
41.10.2 tex.extraprimitives
41.10.3 tex.primitives

42  The token library

421 token.get_next

422 token.is_expandable
423 token.expand

4.2.4 token.is_activechar
425 token.create

4.2.6 token.command_name
427 token.command_id
4.2.8 token.csname_name
429 token.csname_id

43  The node library

431 Node handling functions
4311 node.types
4312 node.whatsits
4313 node.id

4314 node.subtype
4315 node.type

43.1.6 node.fields
4317 node.has field
43138 node.new

4319 node.free

/// g \.\
0) 2 Contents

29
29
29
30
30
30
31
31
32
33
34
34
34
35
35
36
36
36
36
36
36
37
40
40
41
41
41
41
41
42
42
42
42
43
43
43
44
44
44
44
44
44
45
45



43.1.10 node.flush_list

43111

node.copy

43112  node.copy_list
43113 node.hpack

43114 node.mlist_to_hlist
43115 node.slide

43.1.16 node.length

43117 node.count

43118 node.traverse
43119 node.traverse_id
43.1.20 node.remove

431.21

node.insert_before

431.22 node.insert_after
43123 node.first_character
43.1.24 node.ligaturing
43125 node.kerning

43.1.26 node.unprotect_glyphs
43127 node.protect_glyphs
4.3.1.28 node.last_node

43.1.29 node.write

432
43.21
4322
4323
44
441
4411
4412
45

4.6

47
471
472
473
474
475
4751
4752
4753
4754
4755
4756
476
47.6.1

Attribute handling
node.has_attribute
node.set_attribute
node.unset_attribute

The texio library

Printing functions
texio.write
texio.write_nl

The pdf library

The img library

The mplib library
mplib.new
mp:statistics
mp:execute
mp:finish

Result table
fill
outline
text
special
start_bounds, start_clip
stop_bounds, stop_clip

Subsidiary table formats
Paths and pens

45
45
45
45
46
46
46
46
47
47
47
47
47
48
48
48
48
48
48
49
49
49
49
49
50
50
50
50
50
52
56
57
57
58
58
58
59
60
60
60
61
61
61
61

9

1
Contents 3 \0

-

\
\
1

/



47.6.2
47.6.3
4764
477

47.71
47.7.2
47.73

Colors
Transforms
Dashes

Character size information

mp.char_width
mp.char_height
mp.char_depth

48  The callback library

481
4.8.1.1
4.81.2
4813
48.1.4
48.15
48.1.6
4817
48.1.8
48.1.9
4.8.1.10
4.8.1.11
4.8.1.12
48.1.13
4.8.1.14
482
4.8.21
48.211
48.21.2
48.2.2
483
4.8.3.1
48.3.2
4.8.4
4.8.41
4842
4843
4844
48.45
4.8.4.6
48.4.7
4.8.4.38
48.4.9
4.8.4.10
4.8.4.11
485

File discovery callbacks
find read file and find write_file

find_font_file
find_output_file
find_format_file
find vf file
find_ocp_file
find_map_file
find_enc_file
find_sfd_file
find_pk_file
find_data_file
find_opentype_file

find_truetype_file and find_typel_file

find_image_file

File reading callbacks

open_read_file
reader
close

General file readers

Data processing callbacks

process_input_buffer
token filter

Node list processing callbacks

buildpage_filter
pre_linebreak_filter
linebreak_filter
post_linebreak_filter
hpack_filter
vpack_filter
pre_output_£filter
hyphenate

ligaturing

kerning
mlist_to_hlist

Information reporting callbacks

// \
Oi 4 Contents
/

61
61
62
62
62
62
62
62
63
63
64
64
64
64
64
65
65
65
65
65
65
65
66
66
66
66
67
67
68
68
68
68
69
69
70
70
70
71
71
71
72
72
72
73



4851
4852
4853
4854
4855
4.8.6

48.6.1

start_run
stop_run
start_page_number
stop_page_number
show_error_hook
Font-related callbacks
define_font

49  The lua library

491
49.2

Lua bytecode registers
Lua chunk name registers

410 The kpse library

4.10.1
410.2
4103
4104
4105
4.10.6
410.7
410.8
410.9

kpse.set_program_name and kpse.new

find_file
init_prog
readable_file
expand_path
expand_var
expand_braces
show_path
var_value

411 The status library
412 The texconfig table
413 The font library

4131
413.2
4133
4134
4135
413.6
413.7
4138
4139

Loading a tfm file
Loading a vf file

The fonts array
Checking a font’s status
Defining a font directly
Projected next font id
Currently active font
Maximum font id
[terating over all fonts

414 The fontloader library (0.36)

4141
414.2
4143
4144

Getting quick information on a font
Loading an OpenType or TrueType file
Applying a ‘feature file’

Applying an ‘afm file’

415 Fontloader font tables

4151

415141
4151.2
4151.3
41514
41515

Table types
Top-level
Glyph items
map table
private table
cidinfo table

73
73
73
73
73
74
74
74
74
75
75
76
76
77
78
78
78
78
78
78
79
80
81
81
82
82
82
82
83
83
83
83
83
84
84
85
85
86
86
86
88
90
91
91

20

1
Contents 5 \0

-

\
\
1

/



415.1.6 pfminfo table

4151.7 names table

415.1.8 anchor_classes table

4151.9 gpos table

415110 gsub table

415111 ttf_tables and ttf_tab_saved tables
415112  sm table

415113 features table

415114 mm table

415115 math table

415116 validation_state table

415117 horiz_base and vert_base table
415118 altuni table

415119  vert_variants and horiz_variants table
415.1.20 mathkern table

4.151.21  kerns table

415.1.22 vkerns table

4.151.23 texdata table

4.151.24  lookups table

416  The lang library

5 Math

5.1 The current math style

511 \mathstyle

51.2 \Ustack

5.2  Unicode math characters

53  Cramped math styles

54 Math parameter settings

55 Font-based Math Parameters

56  Math spacing setting

5.7  Math accent handling

58  Math root extension

59 Math kerning in super- and subscripts

510 Scripts on horizontally extensible items like arrows
511 Extensible delimiters

512  Other Math changes

5121  Verbose versions of single-character math commands
5122  Allowed math commands in non-math modes
513 Math todo

6 Lanquages and characters, fonts and glyphs
6.1 Characters and glyphs

6.2  The main control loop

6.3 Loading patterns and exceptions

6.4  Applying hyphenation

| 6 Contents

91
93
94
94
95
95
95
96
96
97
98
99
99
99
100
100
100
100
100
101

105
105
105
105
106
107
108
109
111
112
113
113
114
114
114
114
115
115

117
117
118
119
120



6.5  Applying ligatures and kerning
6.6 Breaking paragraphs into lines

7  Font structure

7.1 Real fonts

7.2 Virtual fonts

7.21 Artificial fonts

722 Example virtual font

8 Nodes

8.1 Lua node representation

8.1.1 Auxiliary items

8.1.11 glue_spec items

8.1.1.2 attribute_list and attribute items
8113 action item

8.1.2 Main text nodes

8.1.21 hlist nodes

8.1.2.2 vlist nodes

8.1.23 rule nodes

8.1.24 ins nodes

8.1.25 mark nodes

8.1.2.6 adjust nodes

8.1.2.7 disc nodes

8.1.2.8 math nodes

8.1.29 glue nodes

8.1.210 kern nodes

8.1.2.11 penalty nodes

8.1.2.12 glyph nodes

8.1.2.13 margin_kern nodes
8.1.3 Math nodes

8.1.31 Math kernel subnodes
8.1.3.1.1 math_char and math_text_char subnodes
8.1.3.1.2 sub_box and sub_mlist subnodes
8.1.3.2 Math delimiter subnode
8.1.3.21 delim subnodes
8.1.3.3 Math core nodes

8.1.3.31 simple nodes
8.1.33.2 accent nodes
8.1.3.33 style nodes

8.1.334 choice nodes

8.1.3.35 radical nodes
8.1.3.36 fraction nodes
8.1.33.7 fence nodes
8.1.4 whatsit nodes
8.1.4.1 open nodes

121
123

125
130
132
134
134

137
137
137
137
138
138
138
139
139
139
140
140
140
140
141
141
141
141
142
142
143
143
143
143
143
144
144
144
145
145
145
146
146
146
147
147

@

// N
1
Contents 7 \0

-

\

\

1
/



8.1.4.2
8.1.43
8.1.44
8.1.45
8.1.4.6
8.1.4.7
8.1.4.8
8.1.49

write nodes
close nodes
special nodes
language nodes
local_par nodes
dir nodes
pdf_literal nodes
pdf_refobj nodes

8.1.4.10 pdf_refxform nodes

8.1.4.11

pdf_refximage nodes

8.1.4.12 pdf_annot nodes
8.1.413 pdf_start_link nodes
8.1.4.14 pdf_end_link nodes
8.1.4.15 pdf_dest nodes
8.1.4.16 pdf_thread nodes
8.1.4.17 pdf_start_thread nodes
8.1.4.18 pdf_end_thread nodes
8.1.4.19 pdf_save_pos nodes
8.1.4.20 late_lua nodes

8.1.4.21

pdf_colorstack nodes

8.1.4.22 pdf_setmatrix nodes
8.1.4.23 pdf_save nodes
8.1.4.24 pdf_restore nodes
8.1.4.25 user_defined nodes

9  Modifications

9.1
9.2
9.3
9.4
95

Changes from TEX 3.1415926
Changes from e-TpX 2.2
Changes from pdfTEX 1.40
Changes from Aleph RC4
Changes from standard web2c

10 Implementation notes

10.1
10.2
10.3
104
10.5
10.6

Primitives overlap

Memory allocation

Sparse arrays

Simple single-character csnames
Compressed format

Binary file reading

11 Known bugs and limitations

12 TODO

// \\
0: 8 Contents
/

147
147
147
148
148
148
149
149
149
149
150
150
150
150
151
151
151
152
152
152
152
152
153
153

155
155
155
155
156
157

159
159
159
159
160
160
160

161

163



1 Introduction

This book will eventually become the reference manual of LuaTEX. At the moment, it simply reports
the behaviour of the executable matching the snapshot or beta release date in the title page.

Features may come and go. The current version of LuaTEX is not meant for production and users
cannot depend on stability, nor on functionality staying the same.

Nothing is considered stable just yet. This manual therefore simply reflects the current state of
the executable. Absolutely nothing on the following pages is set in stone. When the need arises,
anything can (and will) be changed without prior notice.

If you are not willing to deal with this situation, you should wait for the stable version. Currently
we expect the first release with (some) fixed interfaces to be available sometime in the autumn
of 2008. Full stabilization will not happen soon, the TODO list is still very large.

LuaTEX consists of a number of interrelated but (still) distinguishable parts:

pdfTEX version 1.40.9

Aleph RC4 (from the TpXLive repository)

Lua 5.1.4 (4+ coco 1.1.5 + portable bytecode)

dedicated Lua libraries

various TEX extensions

parts of FontForge 2008.11.17

the MetaPost library

newly written compiled source code to glue it all together

Neither Aleph’s /O translation processes, nor tcx files, nor encTEX can be used, these encoding-related
functions are superseded by a Lua-based solution (reader callbacks). Also, some experimental pdfTEX
features are removed. These can be implemented in Lua instead.

.

. ! :
Introduction 9 \0)

Ny -



10 Introduction




2 Basic TEX enhancements

2.1 Introduction

From day one, LuaTEX has offered extra functionality when compared to the superset of pdftex and Aleph.
That has not been limited to the possibility to execute lua code via \directlua, but LuaTgX also adds
functionality via new TpX-side primitives.

However, starting with beta 0.39.0, most of that functionality will be hidden by default. When LuaTgX
0.40.0 starts up in ‘iniluatex’ mode (luatex -ini), it defines only the primitive commands known by
TEX82 and the one extra command \directlua.

As is fitting, a lua function has to be called to add the extra primitives to the user environment. The
simplest method to get access to all of the new primitive commands is by adding this line to the format
generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }
p p

But be aware, that the curly braces may not have the proper \catcode assigned to them at this early
time (giving a 'Missing number’ error), so it may be needed to put these assignments

\catcode ~\{=1
\catcode “\}=2

before the above line. More fine-grained primitives control is possible, you can look the details in
section 4.1.10. For simplicity’'s sake, this manual assumes that you have executed the lua command
given above.

2.2 Version information

There are three new primitives to test the version of LuaTgX:

primitive explanation
\luatexversion a combination of major and minor number, as in pdfTEX; the current current value
is 41

\luatexrevision the revision number, as in pdfTEX; the current value is 0

\luatexdatestamp a combination of the local date and hour when the current executable was com-
piled, the syntax is identical to \luatexrevision; the value for the executable
that generated this document is 2009062916.

The official LuaTgX version is defined follows:

e The major version is the integer result of \luatexversion divided by 100. The primitive is and
‘internal variable’, so you may need to prefix it use with \the depending on the context.
e The minor version is the two-digit result of \luatexversion modulo 100.

Basic TEX enhancements 11 /\0‘

-

\

/

1



e The revision is the given by \luatexrevision. This primitive expands to a positive integer.
e The full version number consists of the major version, minor version and revision, separated by dots.

Note that the \luatexdatestamp depends on both the compilation time and compilation place of the
current executable, it is defined in terms of the local time. The purpose of this primitive is solely to be
an aid in the development process, do not use it for anything besides debugging.

2.3 Unicode text support

Text input and output is now considered to be Unicode text, so input characters can use the full range
of Unicode (2?0 4-2'® —1 = Ox10FFFF).

Later chapters will talk of characters and glyphs. Although these are not the interchangeable, they are
closely related. During typesetting, a character is always converted to a suitable graphic representation
of that character in a specific font. However, while processing a list of to-be-typeset nodes, its contents
may still be seen as a character. Inside LuaTEX there is not yet a clear separation between the two
concepts. Until this is implemented, please do not be too harsh on us if we make errors in the usage of
the terms.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate for a
larger range of acceptable numbers. For instance, \char now accepts values between 0 and 1,114,111.
This should not be a problem for well-behaved input files, but it could create incompatibilities for input
that would have generated an error when processed by older TEX-based engines. The affected commands
with an altered initial (left of the equals sign) or secondary (right of the equals sign) value are: \char,
\lccode,\uccode, \catcode, \sfcode, \efcode, \1pcode, \rpcode, \chardef

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input files can
be pre-processed using the reader callback. This will be explained in a later chapter.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode range,
starting at the value 1,114,112 (0x110000). When the times comes to print a character c> = 1,114,112,
LuaTEX will actually print the single byte corresponding to ¢ minus 1,114,112.

Output to the terminal uses =~ notation for the lower control range (c < 32), with the exception of 71,
~7J and ""M. These are considered ‘safe’ and therefore printed as-is.

Normalization of the Unicode input can be handled by a macro package during callback processing (this
will be explained in section 4.8.2).

2.4 Extended tables

All traditional TEX and e-TEX registers can be 16 bit numbers as in Aleph. The affected commands are:

\count \marks \skipdef \unhbox
\dimen \toks \muskipdef \unvbox
\skip \countdef \toksdef \copy

\muskip \dimendef \box \unhcopy

| 12 Basic TEX enhancements



\unvcopy \dp
\wd \setbox
\ht \vsplit

The glyph properties (like \efcode) introduced in pdfTEX that deal with font expansion (hz) and char-
acter protruding are also 16 bit. Because font memory management has been rewritten, these character
properties are no longer shared among fonts instances that originate from the same metric file

2.5 Attribute registers

Attributes are a completely new concept in LuaTpX. Syntactically, they behave a lot like counters:
attributes obey TEX's nesting stack and can be used after \the etc. just like the normal \count
registers.

\attribute (16-bit number) (optional equals) (31-bit number)
\attributedef (csname) (optional equals) (16-bit number)

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value to
indicate that they are unset, that value is the lowest legal value: —"7FFFFFFF in hexadecimal, a.k.a.
—2147483647 in decimal. It follows that the value —"7FFFFFFF cannot be used as a legal attribute
value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in this ‘unset’
state in intTEX(prior to 0.37, there could not be valid negative attribute values, and the ‘unset’ value was
—1).

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact that the
numbers and values of all ‘set’ attributes are attached to all nodes created in their scope. These can
then be queried from any Lua code that deals with node processing. Future versions of LuaTEX will
probably be using specific negative attribute ids for internal use. Further information about how to use
attributes for node list processing from Lua is given in chapter 8.

2.5.1 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment can
be quite asynchronous. For example: in paragraph building, the individual line boxes are created after
the \par command has been processed, so they will receive the list of attributes that is in effect then,
not the attributes that were in effect in, say, the first or third line of the paragraph.

Similar situations happen in LuaTgX reqularly. A few of the more obvious problematic cases are dealt
with: the attributes for nodes that are created during hyphenation and ligaturing borrow their attributes
from their surrounding glyphs, and it is possible to influence box attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are unchanged
when such a box is placed, unboxed, or copied. In this respect attributes act the same as characters
that have been converted to references to glyphs in fonts. For instance, when you use attributes to
implement color support, each node carries information about its color. In that case, unless you implement
mechanisms that deal with it, applying a color to already boxed material will have no effect. Keep in

Basic TEX enhancements 13 /\0‘

-

\

/

1



mind that this incompatibility is mostly due to the fact that specials and literals are a more unnatural
approach to colors than attributes.

Many other inserted nodes, like the nodes resulting from math mode and alignments, are processed ‘out
of order’, and will have the attributes that are in effect at the precise moment of creation (which is often
later than expected). This area needs studying, and is in fact one of the reasons for a beta at this
moment.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the use of
the keyword attr. An example:

\attribute2=5
\setbox0=\hbox {Hello}
\setbox2=\hbox attrl=12 attr2=-1{Hello}

This will set the attribute list of box 2 to 1 =12, and the attributes of box 0 will be 2 =5. As you can
see, assigning a negative value causes an attribute to be ignored.

The attr keyword(s) should come before a to or spread, if that is also specified.

2.6 Lua related primitives

In order to merge Lua code with TEX input, a few new primitives are needed.

2.6.1 \directlua

The primitive \directlua is used to execute Lua code immediately. The syntax is

\directlua (general text)
\directlua name (general text) (general text)
\directlua (16-bit number) (general text)

Up until beta 0.36, there was support for multiple lua states, and to make that possible, the \di-
rectlua and \latelua command required an integer argument to be given always. Such integer
values are still accepted for the moment, although they generate a (rather pesky) warning. This
backward compatibility support will be removed starting with beta 0.41.0.

The last (general text) is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the (general text), the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a
separate chunk. In such a chunk you can use the 1ocal directive to keep your variables from interfering
with those used by the macro package.

The conversion from and to a token list means that you normally can not use Lua line comments (starting
with —=) within the argument, as there typically will be only one ‘line’, so that comment will then run
on until the end of the input. You will either need to use TEX-style line comments (starting with %), or
change the TEX category codes locally. Another possibility is to say:

// \\
/Oi 14 Basic TEX enhancements
\ /



\begingroup
\endlinechar=10
\directlua ...
\endgroup

Then Lua line comments can be used, since TEX does not replace line endings with spaces.

The name (general text) specifies the name of the Lua chunk, mainly shown in the stack backtrace
of error messages created by Lua code. The (general text) is expanded fully, thus macros can be
used to generate the chunk name, i.e.

\directlua name{\jobname:\the\inputlineno} ...

to include the name of the input file as well as the input line into the chunk name.

Likewise, the (16-bit number) designates a name of a Lua chunk, but in this case the name will be
taken from the 1lua.name array (see the documentation of the 1ua table further in this manual). This
syntax is new in version 0.36.0.

Backward compatibility note: when there is a valid name in lua.name[<16-bit number>], the
potential warning about a superfluous integer will be suppressed.

The chunk name should not start with a @, or it will be displayed as a file name (this is a quirk in the
current Lua implementation).

The \directlua command is expandable: the results of the Lua code become effective immediately.
As an example, the following input:

$\pi = \directlua{tex.print(math.pi)}$

will result in
7 = 3.1415926535898

Because the (general text) is a chunk, the normal Lua error handling is triggered if there is a problem
in the included code. The Lua error messages should be clear enough, but the contextual information is
still pretty bad. Typically, you will only see the line number of the right brace at the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up LuaTgX
pretty bad. If you are not careful while working with the node list interface, you may even end up with
assertion errors from within the TEX portion of the executable.

2.6.2 \latelua

\latelua stores Lua code in a whatsit that will be processed inside the output routine. Its intended
use is a cross between \pdfliteral and \write. Within the Lua code, you can print pdf statements
directly to the pdf file via tex.print, or you can write to other output streams via texio.write or
simply using lua’s 1/O routines.

Basic TEX enhancements 15 /\0

. @

-

\
\
1

/



\latelua (general text)
\latelua name (general text) (general text)
\latelua (16-bit number) (general text)

Up until beta 0.36, there was support for multiple lua states, and to make that possible, the \di-
rectlua and \latelua command required an integer argument to be given always. Such integer
values are still accepted for the moment, although they generate a (rather pesky) warning. This
backward compatibility support will be removed starting with beta 0.41.0.

Expansion of macros etcetera in the final <general text> is delayed until just before the whatsit
is executed (like in \write). With regard to PDF output stream \latelua behaves as \pdflit-
eral page.

The name (general text) and (16-bit number) behave in the same way as they do for \di-
rectlua

2.6.3 \luaescapestring

This primitive converts a TEX token sequence so that it can be safely used as the contents of a Lua string:
embedded backslashes, double and single quotes, and newlines and carriage returns are escaped. This
is done by prepending an extra token consisting of a backslash with category code 12, and for the line
endings, converting them to n and r respectively. The token sequence is fully expanded.

\luaescapestring (general text)

Most often, this command is not actually the best way to deal with the differences between the TEX and
Lua. In very short bits of Lua code it is often not needed, and for longer stretches of Lua code it is easier
to keep the code in a separate file and load it using Lua’'s dofile:

\directlua { dofile('mysetups.lua')}
2.7 New &e-TgX primitives

2.7.1 \clearmarks

This primitive clears a marks class completely, resetting all three connected mark texts to empty.

\clearmarks (16-bit number)

2.7.2 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is built by
LuaTEX's main control loop. They are part of a temporary trick and will be removed in the near future.
For now, you need to enable these primitives when you want to do node list processing of ‘characters’,
where TEX's normal processing would get in the way.

| 16 Basic TEX enhancements



\noligs (integer)
\nokerns (integer)

These primitives can now be implemented by overloading the ligature building and kerning functions,
i.e. by assigning dummy functions to their associated callbacks.

2.7.3 \formatname

\formatname's syntax is identical to \ jobname.

In iniTEX, the expansion is empty. Otherwise, the expansion is the value that \ jobname had during the
iniTEX run that dumped the currently loaded format.

2.7.4 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted
version of e-TEX's \scantokens. The differences are:

The last (and usually only) line does not have a \endlinechar appended

\scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

The '... while end of file ..." error tests are not executed, allowing the expansion to end on a
different grouping level or while a conditional is still incomplete.

2.7.5 Catcode tables

Catcode tables are a new feature that allows you to switch to a predefined catcode regime in a single
statement. You can have a practically unlimited number of different tables.

The subsystem is backward compatible: if you never use the following commands, your document will
not notice any difference in behavior compared to traditional TEX.

The contents of each catcode table is independent from any other catcode tables, and their contents is
stored and retrieved from the format file.

2.7.5.1 \catcodetable

\catcodetable (16-bit number)

The \catcodetable switches to a different catcode table. Such a table has to be previously created
using one of the two primitives below, or it has to be zero. Table zero is initialized by iniTEX.

2.7.5.2 \initcatcodetable

\initcatcodetable (16-bit number)

The \initcatcodetable creates a new table with catcodes identical to those defined by iniTEX:

@

// \\
Basic TEX enhancements 17 /Oi
\ /

-



0 _ escape

5 ™M return car_ret (this name may change)
9 ~Te null ignore

10 <space> space spacer

11 a-z letter

1M1 A-2Z letter

12 everything else other

14 % comment

15 =77 delete invalid_char

The new catcode table is allocated globally: it will not go away after the current group has ended. If
the supplied number is identical to the currently active table, an error is raised.

2.7.5.3 \savecatcodetable

\savecatcodetable (16-bit number)

\savecatcodetable copies the current set of catcodes to a new table with the requested number.
The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the supplied
number is the currently active table, an error is raised.

2.7.6 \suppressfontnotfounderror (0.11)

\suppressfontnotfounderror = 1

If this new integer parameter is non-zero, then LuaTEX will not complain about font metrics that are not
found. Instead it will silently skip the font assignment, making the requested csname for the font \ifx
equal to \nullfont, so that it can be tested against that without bothering the user.

2.7.7 \suppresslongerror (0.36)

\suppresslongerror = 1

If this new integer parameter is non-zero, then LuaTEX will not complain about \par commands en-
countered in contexts where that is normally prohibited (most prominently in the arguments of non-long
macros).

2.7.8 \suppressifcsnameerror (0.36)

\suppressifcsnameerror = 1

If this new integer parameter is non-zero, then LuaTEX will not complain about non-expandable commands
appearing in the middle of a \ifcsname expansion. Instead, it will keep getting expanded tokens from
the input until it encounters an \endcsname command. Use with care! This command is experimental:

| 18 Basic TEX enhancements



if the input expansion is unbalanced wrt. \csname ...\endcsname pairs, the LuaTEX process may hang
indefinitely.

2.7.9 \suppressoutererror (0.36)

\suppressoutererror = 1

If this new integer parameter is non-zero, then LuaTEX will not complain about \outer commands
encountered in contexts where that is normally prohibited.

The addition of this command coincides with a change in the LuaTEX engine: ever since the snapshot of
20060915, \outer was simply ignored. That behaviour has now reverted back to be TEX82-compatible
by default.

2.7.10 \outputbox (0.37)

\outputbox = 65535

This new integer parameter allows you to alter the number of the box that will be used to store the page
to be shipped out in. It's default value is 255, and the acceptable range is from 0 to 65535.

2.7.11 Font syntax

LuaTEX will accept a braced argument as a font name:
\font\myfont = {cmr10}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes place
inside the argument.

2.8 Debugging

If \tracingonline is larger than 2, the node list display will also print the node number of the nodes.

Basic TEX enhancements 19 /\0‘

L@

-

\

/

1



20 Basic TEX enhancements




3 Lua general

3.1 Initialization

3.1.1 LuaTgX as a Lua interpreter
There are some situations that make LuaTEX behave like a standalone Lua interpreter:

e if a -——1luaonly option is given on the commandline, or
e if the executable is named texlua (or luatexlua), or
e if the only non-option argument (file) on the commandline has the extension 1ua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options in negative
values and the rest of the commandline in the positive values, just like the Lua interpreter.

LuaTEX will exit immediately after executing the specified Lua script and is, in effect, a somewhat bulky
standalone Lua interpreter with a bunch of extra preloaded libraries.

3.1.2 LuaTgX as a Lua byte compiler
There are two situations that make LuaTEX behave like the Lua byte compiler:

e if a ——luaconly option is given on the commandline, or
e if the executable is named texluac

In this mode, LuaTEX is exactly like 1uac from the standalone Lua distribution, except that it does not
have the -1 switch, and that it accepts (but ignores) the ——1uaconly switch.

3.1.3 Other commandline processing

When the LuaTgX executable starts, it looks for the ——1ua commandline option. If there is no ——1lua
option, the commandline is interpreted in a similar fashion as in traditional pdfTEX and Aleph. But if
the option is present, LuaTEX will enter an alternative mode of commandline parsing in comparison to
the standard web2Zc programs.

In this mode, a small series of actions is taken in order. At first, it will only interpret a small subset of
the commandline directly:

--lua=s load and execute a Lua initialization script
--safer disable easily exploitable Lua commands
--nosocket disable the Lua socket library

--help display help and exit

--version display version and exit

Lua general 21 ‘



Now it searches for the requested Lua initialization script. If it can not be found using the actual name
given on the commandline, a second attempt is made by prepending the value of the environment variable
LUATEXDIR, if that variable is defined.

Then it checks the ——safer switch. You can use that to disable some Lua commands that can easily be
abused by a malicious document. At the moment, this switch nils the following functions:

library functions

os execute exec setenv rename remove tmpdir
io popen output tmpfile

1fs rmdir mkdir chdir lock touch

And it makes io.open() fail on files that are opened for anything besides reading.

Next the initialization script is loaded and executed. From within the script, the entire commandline is
available in the Lua table arg, beginning with arg[0], containing the name of the executable.

Commandline processing happens very early on. So early, in fact, that none of TEX's initializations have
taken place yet. For that reason, the tables that deal with typesetting, like tex, token, node and
pdf, are off-limits during the execution of the startup file (they are nilled). Special care is taken that
texio.write and texio.write_nl function properly, so that you can at least report your actions to
the log file when (and if) it eventually becomes opened (note that TEX does not even know its \ jobname
yet at this point). See chapter 4 for more information about the LuaTpX-specific Lua extension tables.

Everything you do in the Lua initialization script will remain visible during the rest of the run, with the
exception of the aforementioned tex, token, node and pdf tables: those will be initialized to their
documented state after the execution of the script. You should not store anything in variables or within
tables with these four global names, as they will be overwritten completely.

We recommend you use the startup file only for your own TEX-independent initializations (if you need
any), to parse the commandline, set values in the texconfig table, and register the callbacks you need.
LuaTgX will fetch some of the other commandline options from the texconfig table at the end of script
execution (see the description of the texconfig table later on in this document for more details on
which ones exactly).

Unless the texconfig table tells LuaTEX not to initialize kpathsea at all (set texconfig.kpse_init
to false for that), LuaTpX acts on three more commandline options after the initialization script is
finished:

flag meaning

--fmt=s set the format name
—--progname=s set the progname (only for kpathsea)
--ini enable iniTEX mode

In order to initialize the built-in kpathsea library properly, LuaTEX needs to know the correct progname
to use, and for that it needs to check ——progname (and --ini and --fmt, if -——progname is missing).

. 22 Lua general



3.2 Lua changes

The C coroutine (coco) patches from luajit are applied to the Lua core, the used version is 1.1.3. See
http://luajit.org/coco.html for details.

In keeping with the other TpX-like programs in TgXLive, the two Lua functions os.execute and
io.popen (as well as the two new functions os.exec and os.spawn that are explained below) take
the value of shell_escape and/or shell_escape_commands in account. Whenever LuaTEX is run
with the assumed intention to typeset a document (and by that | mean that it is called as luatex,
as opposed to texlua, and that the commandline option ——luaonly was not given), it will only run
the four functions above if the matching texmf.cnf variable(s) or their texconfig (see section 4.12)
counterparts allow execution of the requested system command. In ‘script interpreter’ runs of LuaTgX,
these settings have no effect, and all four functions function as normal. This change is new in 0.37.0.

The read("*1ine") function from the io library has been adjusted so that it is line-ending neutral:
any of LF, CR or CR+LF are acceptable line endings.

The tostring() printer for numbers has been changed so that it returns O instead of something
like 2e-5 (which confused TEX enormously) when the value is so small that TEX cannot distinquish it
from zero.

Dynamic loading of .so and .d11 files is disabled on all platforms.

luafilesystem has been extended with two extra boolean functions (isdir(filename) and is-
file(filename)) and one extra string field in its attributes table (permissions).

The string library has an extra function: string.explode(s[,m]). This function returns an array
containing the string argument s split into sub-strings based on the value of the string argument m. The
second argument is a string that is either empty (this splits the string into characters), a single character
(this splits on each occurrence of that character, possibly introducing empty strings), or a single character
followed by the plus sign + (this special version does not create empty sub-strings). The default value
formis + (multiple spaces).

Note: m is not hidden by surrounding braces (as it would be if this function was written in TEX macros).

The string library also has six extra iterators that return strings piecemeal:

string.utfvalues(s) (returns an integer value in the Unicode range)
string.utfcharacters(s) (returns a string with a single utf-8 token in it)
string.characters(s) (a string containing one byte)

string.characterpairs(s) (two strings each containing one byte) will produce an empty second
string in the string length was odd.

string.bytes(s) (a single byte value)

string.bytepairs(s) (two byte values) Will produce nil instead of a number as its second return
value if the string length was odd.

The string.characterpairs() and string.bytepairs() are useful especially in the conversion
of UTF-16 encoded data into UTF-8.

Lua general 23 /0:
\ /

-

-



Note: The string library functions £ind etc. are not Unicode-aware. In cases where this is required
(i.e. because the pattern used for searching contains characters above code point 127), the corresponding
functions from unicode.utf8 should be used.

The os library has a few extra functions and variables:

os.exec(commandline) is a variation on os.execute.

The commandline can be either a single string or a single table.

If the argument is a table: LuaTgX first checks if there is a value at integer index zero. If there is,
this is the command to be executed. Otherwise, it will use the value at integer index one. (if neither
are present, nothing at all happens).

The set of consecutive values starting at integer 1 in the table are the arguments that are passed
on to the command (the value at index 1 becomes argv[0]). The command is searched for in the
execution path, so there is normally no need to pass on a fully qualified pathname.

If the argument is a string, then it is automatically converted into a table by splitting on whitespace.
In this case, it is impossible for the command and first argument to differ from each other.

In the string argument format, whitespace can be protected by putting (part of) an argument inside
single or double quotes. One layer of quotes is interpreted by LuaTEX, and all occurrences of \", \''
or \\ within the quoted text are un-escaped. In the table format, there is no string handling taking
place.

This function normally does not return control back to the Lua script: the command will replace the
current process. However, it will return the two values nil and 'error' if there was a problem
while attempting to execute the command.

On windows, the current process is actually kept in memory until after the execution of the command
has finished. This prevents crashes in situations where TEXLua scripts are run inside integrated TEX
environments.

The original reason for this command is that it cleans out the current process before starting the new
one, making it especially useful for use in TEXLua.

os.spawn(commandline) is a returning version of os.exec, with otherwise identical calling
conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwise, it will
return the two values nil and 'error'.

os.setenv('key', 'value') This sets a variable in the environment. Passing nil instead of a
value string will remove the variable.

os.env This is a hash table containing a dump of the variables and values in the process environment
at the start of the run. It is writeable, but the actual environment is not updated automatically.
os.gettimeofday () Returns the current ‘Unix time’, but as a float. This function is not available
on the SunOS platforms, so do not use this function for portable documents.

os.times () Returns the current process times cf. the Unix C library ‘times’ call in seconds. This
function is not available on the MS Windows and SunOS platforms, so do not use this function for
portable documents.

os.tmpdir () This will create a directory in the ‘current directory’ with the name luatex . XXXXXX
where the X-es are replaced by a unique string. The function also returns this string, so you can
1fs.chdir() into it, or nil if it failed to create the directory. The user is responsible for cleaning
up at the end of the run, it does not happen automatically.

24 Lua general



e os.type This is a string that gives a global indication of the class of operating system. The possible
values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).
e os.name This is a string that gives a more precise indication of the operating system. These possible
values are not yet fixed, and for os.type values windows and msdos, the os.name values are
simply windows and msdos
The list for the type unix is more precise: 1linux, freebsd, openbsd, solaris, sunos (pre-so-
laris), hpux, irix, macosx, bsd (unknown, but bsd-like), sysv (unknown, but sysv-like), generic
(unknown).
(os.version is planned as a future extension)

In stock Lua, many things depend on the current locale. In LuaTgX, we can’t do that, because it makes
documents unportable. While LuaTgX is running if forces the following locale settings:

LC_CTYPE=C
LC_COLLATE=C
LC_NUMERIC=C

3.3 Lua modules

Some modules that are normally external to Lua are statically linked in with LuaTgX, because they offer
useful functionality:

e slnunicode, from the Selene libraries, http://luaforge.net/projects/sln. (version 1.1)
This library has been slightly extended so that the unicode.utf8. * functions also accept the first
256 values of plane 18. This is the range LuaTEX uses for raw binary output, as explained above,

e luazip, from the kepler project, http://www.keplerproject.org/luazip/. (version 1.2.1, but patched for
compilation with Lua 5.1)

e luafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/. (version
1.4.1)

e 1lpeg, by Roberto lerusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg.html. (version 0.9.0)
Note: lpeg is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mainly
means that 1peg.S cannot be used with characters above code point 127, since those characters are
encoded using two bytes, and thus 1peg.S will look for one of those two bytes when matching, not
the combination of the two.
The same is true for 1peg.R, although the latter will display an error message if used with characters
above code point 127: l.e. 1lpeg.R('ad') results in the message bad argument #1 to 'R’
(range must have two characters), since to lpeg, & is two 'characters’ (bytes), so aé totals
three.
1z1ib, by Tiago Dionizio, http://mega.ist.utl.pt/~tngd/lua/. (version 0.2)
md5, by Roberto lerusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.
luasocket, by Diego Nehab http://www.tecgraf.puc-rio.br/~diego/professional/luasocket/ (version
2.0.2).
Note: the .1lua support modules from luasocket are also preloaded inside the executable, there
are no external file dependencies.

[ 1

Lua general 25 /0
\

-

\
\
1

/



26 Lua general




4 LualgX Lua Libraries

The interfacing between TEX and Lua is facilitated by a set of library modules. The Lua libraries in this
chapter are all defined and initialized by the LuaTgX executable. Together, they allow Lua scripts to
query and change a number of TEX's internal variables, run various internal functions TEX, and set up
LuaTgX's hooks to execute Lua code.

4.1 The tex library

The tex table contains a large list of virtual internal TEX parameters that are partially writable.

The designation ‘virtual' means that these items are not properly defined in Lua, but are only frontends
that are handled by a metatable that operates on the actual TEX values. As a result, most of the Lua
table operators (like pairs and #) do not work on such items.

At the moment, it is possible to access almost every parameter that has these characteristics:
e You can use it after \the

e |t is a single token.

e Some special others, see the list below

This excludes parameters that need extra arguments, like \the\scriptfont.

The subset comprising simple integer and dimension registers are writable as well as readable (stuff like
\tracingcommands and \parindent).

4.1.1 Internal parameter values
For all the parameters in this section, it is possible to access them directly using their names as index
in the tex table, or by using one of the functions tex.get () and tex.set ().

The exact parameters and return values differ depending on the actual parameter, and so does whether
tex.set has any effect. For the parameters that can be set, it is possible to use 'global' as the first
argument to tex.set; this makes the assignment global instead of local.

tex.set (<string> n, ...)
tex.set ('global', <string> n, ...)
. = tex.get (<string> n)

4.1.1.1 Integer parameters

The integer parameters accept and return Lua numbers.

Read-write:

[

LuaTEX Lua Libraries 27 /\Oi

-



tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
.maxdeadcycles
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.

tex

adjdemerits
binoppenalty
brokenpenalty
catcodetable
clubpenalty

day
defaulthyphenchar
defaultskewchar
delimiterfactor
displaywidowpenalty
doublehyphendemerits
endlinechar
errorcontextlines
escapechar
exhyphenpenalty

fam
finalhyphendemerits
floatingpenalty
globaldefs
hangafter

hbadness
holdinginserts
hyphenpenalty
interlinepenalty
language
lastlinefit
lefthyphenmin
linepenalty
localbrokenpenalty
localinterlinepenalty
looseness

mag

month

newlinechar
outputpenalty
pausing
pdfadjustinterwordglue
pdfadjustspacing
pdfappendkern
pdfcompresslevel
pdfdecimaldigits
pdfgamma
pdfgentounicode
pdfimageapplygamma

28 LualgX Lua Libraries

tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
.tracingmacros
tex.
.tracingonline
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.

tex

tex

pdfimagegamma
pdfimagehicolor
pdfimageresolution
pdfinclusionerrorlevel
pdfminorversion
pdfobjcompresslevel
pdfoutput
pdfpagebox
pdfpkresolution
pdfprependkern
pdfprotrudechars
pdftracingfonts
pdfuniqueresname
postdisplaypenalty
predisplaydirection
predisplaypenalty
pretolerance
relpenalty
righthyphenmin
savinghyphcodes
savingvdiscards
showboxbreadth
showboxdepth

time

tolerance
tracingassigns
tracingcommands
tracinggroups
tracingifs
tracinglostchars

tracingnesting

tracingoutput
tracingpages
tracingparagraphs
tracingrestores
tracingscantokens
tracingstats
uchyph

vbadness
widowpenalty

year



Read-only:

tex
tex

.deadcycles
.insertpenalties

tex.
tex.

4.1.1.2 Dimension parameters

parshape
prevgraf

tex.

spacefactor

The dimension parameters accept Lua numbers (signifying scaled points) or strings (with included di-
mension). The result is always a number in scaled points.

Read-write:

tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.

boxmaxdepth
delimitershortfall
displayindent
displaywidth
emergencystretch
hangindent

hfuzz

hoffset

hsize
lineskiplimit
mathsurround
maxdepth
nulldelimiterspace
overfullrule

Read-only:

tex
tex
tex
tex

.pagedepth
.pagefilllstretch
.pagefillstretch
.pagefilstretch

tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.

tex.
tex.
tex.
tex.

4.1.1.3 Direction parameters

pagebottomoffset
pageheight
pageleftoffset
pagerightoffset
pagetopoffset
pagewidth
parindent
pdfdestmargin
pdfeachlinedepth
pdfeachlineheight
pdffirstlineheight
pdfhorigin
pdflastlinedepth
pdflinkmargin

pagegoal
pageshrink
pagestretch
pagetotal

The direction parameters are read-only and return a Lua string.

tex
tex

4.1.1.4 Glue parameters

.bodydir
.mathdir

tex.
tex.

pagedir
pardir

tex.

tex

tex.

tex.

pdfpageheight

.pdfpagewidth
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.

pdfpxdimen
pdfthreadmargin
pdfvorigin
predisplaysize
scriptspace
splitmaxdepth
viuzz

voffset

vsize

prevdepth

textdir

All glue parameters are read-only and return a userdata object that represents a glue_spec node.

tex

.abovedisplayshort-

skip

tex

.abovedisplayskip

tex.
tex.
skip

baselineskip
belowdisplayshort-

tex.
tex.
tex.

LuaTEX Lua Libraries 29 /‘0:

belowdisplayskip
leftskip
lineskip

-



tex.parfillskip tex.spaceskip tex.topskip
tex.parskip tex.splittopskip tex.xspaceskip
tex.rightskip tex.tabskip

4.1.1.5 Muglue parameters

All muglue parameters are read-only and return a Lua string.

tex.medmuskip tex.thinmuskip
tex.thickmuskip

4.1.1.6 Tokenlist parameters

The tokenlist parameters accept and return Lua strings. Lua strings are converted to and from token
lists using \the\toks style expansion: all category codes are either space (10) or other (12). It follows
that assigning to some of these, like ‘tex.output’, is actually useless, but it feels bad to make exceptions
in view of a coming extension that will accept full-blown token strings.

tex.errhelp tex.everyjob tex.pdfpageattr
tex.everycr tex.everymath tex.pdfpageresources
tex.everydisplay tex.everypar tex.pdfpagesattr
tex.everyeof tex.everyvbox tex.pdfpkmode
tex.everyhbox tex.output

4.1.2 Convert commands

All ‘convert’ commands are read-only and return a Lua string. The supported commands at this moment
are:

tex.AlephVersion tex.pdftexrevision
tex.Alephrevision tex.fontname (number)
tex.OmegaVersion tex.pdffontname (number)
tex.Omegarevision tex.pdffontobjnum(number)
tex.eTeXVersion tex.pdffontsize (number)
tex.eTeXrevision tex.uniformdeviate (number)
tex.formatname tex.number (number)

tex. jobname tex.romannumeral (number)
tex.luatexrevision tex.pdfpageref (number)
tex.luatexdatestamp tex.pdfxformname (number)
tex.pdfnormaldeviate tex.fontidentifier (number)

tex.pdftexbanner

If you are wondering why this list looks haphazard; these are all the cases of the ‘convert’ internal
command that do not require an argument, as well as the ones that require only a simple numeric value.

The special (lua-only) case of tex.fontidentifier returns the csname string that matches a font
id number (if there is one).

. 30 LuaTgX Lua Libraries



4.1.3 Last item commands

All ‘last item’ commands are read-only and return a number.

The supported commands at this moment are:

tex.lastpenalty tex.pdflastannot tex.eTeXversion
tex.lastkern tex.pdflastxpos tex.currentgrouplevel
tex.lastskip tex.pdflastypos tex.currentgrouptype
tex.lastnodetype tex.pdfrandomseed tex.currentiflevel
tex.inputlineno tex.pdflastlink tex.currentiftype
tex.badness tex.luatexversion tex.currentifbranch
tex.pdftexversion tex.Alephversion tex.pdflastximagecol-
tex.pdflastobj tex.Omegaversion ordepth
tex.pdflastxform tex.Alephminorversion

tex.pdflastximage tex.Omegaminorversion

tex.pdflastximagepages tex.eTeXminorversion

4.1.4 Attribute, count, dimension, skip and token registers

TeX's attributes (\attribute), counters (\count), dimensions (\dimen), skips (\skip) and token
(\toks) registers can be accessed and written to using two times five virtual sub-tables of the tex
table:

tex.attribute tex.dimen tex.toks
tex.count tex.skip

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, \skipdef, or

\toksdef control sequences as indices to these tables:

tex.count.scratchcounter = 0
enormous = tex.dimen['maxdimen']

In this case, LuaTgX looks up the value for you on the fly. You have to use a valid \countdef (or
\attributedef, or \dimendef, or \skipdef, or \toksdef), anything else will generate an error
(the intent is to eventually also allow <chardef tokens> and even macros that expand into a number).

The attribute and count registers accept and return Lua numbers.

The dimension registers accept Lua numbers (in scaled points) or strings (with an included absolute
dimension; em and ex and px are forbidden). The result is always a number in scaled points.

The token registers accept and return Lua strings. Lua strings are converted to and from token lists
using \the\toks style expansion: all category codes are either space (10) or other (12).

The skip registers accept and return glue_spec userdata node objects (see the description of the node
interface elsewhere in this manual).

As an alternative to array addressing, there are also accessor functions defined for all cases, for example,
here is the set of possibilities for \skip registers:

LuaTEX Lua Libraries 31 /‘0:



tex.setskip (<number> n, <node> s)
tex.setskip (<string> s, <node> s)
tex.setskip ('global',<number> n, <node> s)
tex.setskip ('global',<string> s, <node> s)
<node> s = tex.getskip (<number> n)
<node> s = tex.getskip (<string> s)

In the function-based interface, it is possible to define values globally by using the string 'global' as
the first function argument.

4.1.5 Box registers
The current dimensions of \box registers can be read and altered using three other virtual sub-tables :

tex.wd
tex.ht
tex.dp

Boxes are indexed by number or by name. In macro packages chardef is normally used to refer to
allocated box registers and LuaTgX is able to deal with these symbolic names.

The box size registers accept Lua numbers (in scaled points) or strings (with included dimension). The
result is always a number in scaled points.

As an alternative to array addressing, there are also three sets of accessor functions defined (like above):

tex.setboxwd (<number> n, <number> n)
tex.setboxwd('global',<number> n, <number> n)
<number> n = tex.getboxwd(<number> n)

In the function-based interface, it is possible to define values globally by using the string 'global' as
the first function argument.

It is also possible to set and query actual boxes, using the node interface as defined in the node library:
tex.box
for array access, or

tex.setbox(<number> n, <node> s)
tex.setbox('global', <number> n, <node> s)
<node> n = tex.getbox(<number> n)

for function-based access. In the function-based interface, it is possible to define values globally by
using the string 'global' as the first function argument.

Be warned that an assignment like

tex.box[0] = tex.box[2]

. 32 LuaTgX Lua Libraries



does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX commands
later on, the contents of \box0O becomes invalid as well. To prevent this from happening, always use
node.copy_list () unless you are assigning to a temporary variable:

tex.box[0] = node.copy_list(tex.box[2])

4.1.6 Math parameters

It is possible to set and query the internal math parameters using:

tex.setmath(<string> n, <string> t, <number> n)

tex.setmath('global', <string> n, <string> t, <number> n)

<number> n = tex.getmath(<string> n, <string> t)

As before an optional first parameter of 'global' indicates a global assignment.

The first string is the parameter name minus the leading ‘Umath’, and the second string is the style
name minus the trailing ‘style’.

Just to be complete, the values for the math parameter name are:

quad
overbarkern
underbarkern
radicalkern

radicaldegreebefore

stackvgap
fractionrule

fractiondenomvgap

limitabovevgap
limitbelowvgap

underdelimitervgap
overdelimitervgap

subshiftdrop
subsupshiftdown
supbottommin
spaceafterscript
ordordspacing
ordopenspacing
opordspacing
opopenspacing
binordspacing
binopenspacing
relordspacing
relopenspacing
openordspacing

axis
overbarrule
underbarrule
radicalrule

radicaldegreeafter

stacknumup
fractionnumvgap

fractiondenomdown

limitabovebgap
limitbelowbgap

underdelimiterbgap
overdelimiterbgap

supshiftdrop
subtopmax
supsubbottommax

operatorsize
overbarvgap
underbarvgap
radicalvgap

radicaldegreeraise

stackdenomdown
fractionnumup
fractiondelsize
limitabovekern
limitbelowkern

subshiftdown
supshiftup
subsupvgap

connectoroverlapmin

ordopspacing
ordclosespacing
opopspacing
opclosespacing
binopspacing
binclosespacing
relopspacing
relclosespacing
openopspacing

ordbinspacing
ordpunctspacing
opbinspacing
oppunctspacing
binbinspacing
binpunctspacing
relbinspacing
relpunctspacing
openbinspacing

LuaTEX Lua Libraries 33 /‘0:

ordrelspacing
ordinnerspacing
oprelspacing
opinnerspacing
binrelspacing
bininnerspacing
relrelspacing
relinnerspacing
openrelspacing

o

-



openopenspacing openclosespacing openpunctspacing openinnerspacing

closeordspacing closeopspacing closebinspacing closerelspacing
closeopenspacing closeclosespacing closepunctspacing closeinnerspacing
punctordspacing punctopspacing punctbinspacing  punctrelspacing
punctopenspacing punctclosespacing punctpunctspacing punctinnerspacing
innerordspacing inneropspacing innerbinspacing  innerrelspacing
inneropenspacing innerclosespacing innerpunctspacing innerinnerspacing

The values for the style parameter name are:

display crampeddisplay
text crampedtext
script crampedscript

scriptscript crampedscriptscript

4.1.7 Special list heads

The virtual table tex.1lists contains the set of internal registers that keep track of building page lists.

field description

page_ins_head circular list of pending insertions
contrib_head the recent contributions

page_head the page-so-far

hold_head used for held-over items for next page
adjust_head head of the current \adjust list

pre_adjust_head head of the current \adjust pre list

4.1.8 Print functions

The tex table also contains the three print functions that are the major interface from Lua scripting to
TeX

The arguments to these three functions are all stored in an in-memory virtual file that is fed to the TEX
scanner as the result of the expansion of \directlua.

The total amount of returnable text from a \directlua command is only limited by available system
ram. However, each separate printed string has to fit completely in TEX's input buffer.

The result of using these functions from inside callbacks is undefined at the moment.

4.1.8.1 tex.print

tex.print(<string> s, ...)
tex.print (<number> n, <string> s, ...)

. 34 LuaTgX Lua Libraries



tex.print (<table> t)
tex.print (<number> n, <table> t)

Each string argument is treated by TEX as a separate input line. If there is a table argument instead of
a list of strings, this has to be a consecutive array of strings to print (the first non-string value will stop
the printing process). This syntax was added in 0.36.

The optional parameter can be used to print the strings using the catcode regime defined by \cat-
codetable n. If n is not a valid catcode table, then it is ignored, and the currently active catcode
regime is used instead.

The very last string of the very last tex.print() command in a \directlua will not have the
\endlinechar appended, all others do.

4.1.8.2 tex.sprint

tex.sprint(<string> s, ...)

tex.sprint (<number> n, <string> s, ...)
tex.sprint(<table> t)

tex.sprint (<number> n, <table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for use as
a partial line input mechanism:

TEX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

No \endlinechar is inserted.

Trailing spaces are not removed.

Note that this does not prevent TEX itself from eating spaces as result of interpreting the line. For
example, in

before\directlua{tex.sprint ("\\relax")tex.sprint(" inbetween")}tafter
the space before inbetween will be gobbled as a result of the ‘normal’ scanning of \relax.

If there is a table argument instead of a list of strings, this has to be a consecutive array of strings to
print (the first non-string value will stop the printing process). This syntax was added in 0.36.

41.8.3 tex.write

tex.write(<string> s, ...)
tex.write(<table> t)

Each string argument is treated by TEX as a special kind of input line that makes is suitable for use as
a quick way to dump information:

e All catcodes on that line are either ‘space’ (for ' ) or ‘character’ (for all others).
e There is no \endlinechar appended.

LuaTEX Lua Libraries 35 /\Oi



If there is a table argument instead of a list of strings, this has to be a consecutive array of strings to
print (the first non-string value will stop the printing process). This syntax was added in 0.36.

4.1.9 Helper functions

4191 tex.round

<number> n = tex.round(<number> o)

Rounds Lua number o, and returns a number that is in the range of a valid TEX register value. If the
number starts out of range, it generates a ‘number to big’ error as well.

4.1.9.2 tex.scale

<number> n = tex.scale(<number> o, <number> delta)
<table> n = tex.scale(table o, <number> delta)

Multiplies the Lua numbers o and delta, and returns a rounded number that is in the range of a valid
TEX register value. In the table version, it creates a copy of the table with all numeric top—Llevel values
scaled in that manner. If the multiplied number(s) are of range, it generates ‘number to big' error(s) as
well.

41.9.3 tex.definefont

tex.definefont (<string> csname, <number> fontid)
tex.definefont (<boolean> global, <string> csname, <number> fontid)

Associates csname with the internal font number fontid. The definition is global if (and only if)
global is specified and true (the setting of globaldefs is not taken into account).

4.1.10 Functions for dealing with primitives

4.1.10.1 tex.enableprimitives

tex.enableprimitives(<string> prefix, <table> primitive names)

This function accepts a prefix string and an array of primitive names.

For each combination of ‘prefix’ and ‘name’, the tex.enableprimitives first verifies that ‘name’
is and actual primitive (it must be returned by one of the tex.extraprimitives() calls explained
above, or part of TEX82, or \directlua). If it is not, tex.enableprimitives does nothing and skips
to the next pair.

/\/0\§ 36 LuaTgX Lua Libraries



But if it is, then it will construct a csname variable by concatenating the ‘prefix’ and ‘name’, unless the
‘prefix’ is already the actual prefix of ‘name’. In the latter case, it will discard the ‘prefix’, and just use
‘name’.

Then it will check for the existence of the constructed csname. If the csname is currently undefined
(note: that is not the same as \relax), it will globally define the csname to have the meaning: run code
belonging to the primitive ‘name’. If for some reason the csname is already defined, it does nothing and
tries the next pair.

An example:
tex.enableprimitives('LuaTeX', {'formatname'})
will define \LuaTeXformatname with the same intrinsic meaning as the documented primitive \for-

matname, provided that the control sequences \LuaTeXformatname is currently undefined.

Second example:
tex.enableprimitives('Omega',tex.extraprimitives ('omega'))
will define a whole series of csnames like \Omegatextdir, \Omegapardir, etc., but it will stick with

\OmegaVersion instead of creating the doubly-prefixed \OmegaOmegaVersion.

Starting with version 0.39.0 (and this is why the above two functions are needed), LuaTgX in —--ini
mode contains only the TEX82 primitives and \directlua, no extra primitives at all.

So, if you want to have all the new functionality available using their default names, as it is now, you
will have to add

\expandafter\ifx\csname directlua\endcsname \relax \else
\directlua {tex.enableprimitives('',tex.extraprimitives ())}
\fi

near the beginning of your format generation file. Or you can choose different prefixes for different
subsets, as you see fit.

Calling some form of tex.enableprimitives() is highly important though, because if you do not,
you will end up with a TEX82-lookalike that can run lua code but not do much else. The defined csnames
are (of course) saved in the format and will be available runtime.

41.10.2 tex.extraprimitives
<table> t = tex.extraprimitives(<string> s, ...)

This function returns a list of the primitives that originate from the engine(s) given by the requested
string value(s). The possible values and their (current) return values are:

name values
tex vskip write vsize unhcopy output - / wunskip unvbox boxmaxdepth muskipdef
string toksdef floatingpenalty righthyphenmin voffset escapechar topmark splitfirstmark

LuaTEX Lua Libraries 37 /\0



core
etex

vsplit everydisplay badness xleaders textfont showlists language mathchoice topskip
abovedisplayshortskip underline tracinglostchars pagefillstretch unvcopy splitbotmark
finalhyphendemerits atopwithdelims pretolerance fi dp setlanguage ht nulldelimiterspace or
wd pagegoal advance chardef catcode mathchar scriptscriptfont mathcode leftskip
pagefilstretch delcode fontname lastkern belowdisplayshortskip tolerance mathopen
exhyphenpenalty maxdepth futurelet abovewithdelims hangindent lastskip linepenalty
everyjob xspaceskip globaldefs everypar scriptfont delimiter afterassignment firstmark
lineskiplimit lineskip def fam day iffalse textstyle end mag box belowdisplayskip ifx
errmessage exhyphenchar hss expandafter hfilneg the displaywidth mathsurround
pagedepth looseness leaders vss ithmode botmark ifinner displaystyle accent immediate
ifmmode parshape meaning abovedisplayskip medmuskip emergencystretch rightskip
mathclose hangafter hoffset aftergroup cleaders romannumeral hbadness mathbin
showboxbreadth jobname vbadness patterns nonstopmode errhelp predisplaypenalty
endlinechar mathinner lastbox showboxdepth postdisplaypenalty mathrel holdinginserts
radical mathord pagetotal everycr adjdemerits halign defaultskewchar errorcontextlines
splitmaxdepth ifcase tracingmacros moveright predisplaysize tracingrestores message ithbox
deadcycles interlinepenalty mathpunct lccode noboundary displayindent nonscript everyhbox
global penalty tracingcommands everymath nolimits noalign inputlineno pagestretch parskip
indent dimendef widowpenalty ifvbox above spaceskip middle displaylimits pausing everyvbox
iftrue moveleft mathop endcsname dimen ifcat clubpenalty splittopskip doublehyphendemerits
ifdim limits ifeof insert delimitershortfall ifodd insertpenalties tracingpages vadjust
tracingonline count ifnum edef char begingroup tracingparagraphs hyphenation uccode hfuzz
openout leqno hyphenpenalty vcenter hfil thickmuskip maxdeadcycles mkern hbox overfullrule
else hsize raise thinmuskip spacefactor input hrule left eqno parfillskip font valign dump
relax prevdepth read shipout batchmode right skipdef setbox baselineskip special mskip
endgroup uchyph binoppenalty endinput omit pagefilllstretch overwithdelims newlinechar
vfilneg time vfill span prevgraf over show vbox tracingstats year defaulthyphenchar nullfont
muskip closeout toks outer multiply tracingoutput parindent displaywidowpenalty unhbox
lefthyphenmin vtop mathaccent discretionary vfuzz overline unkern showthe showbox
uppercase lowercase closein openin errorstopmode scrollmode skewchar hyphenchar sfcode
countdef mathchardef let xdef gdef long atop scriptscriptstyle scriptstyle unpenalty noindent
copy lower kern vfil hfill hskip pageshrink crcr cr ifvoid ifvmode if number lastpenalty skip
par vrule noexpand mark ignorespaces fontdimen divide csname scriptspace outputpenalty
month delimiterfactor relpenalty brokenpenalty tabskip

directlua

unless botmarks currentiftype pagediscards mutoglue displaywidowpenalties fontcharic
fontchardp fontcharwd iffontchar eTeXVersion protected topmarks showgroups glueexpr
splitfirstmarks predisplaydirection gluetomu everyeof eTeXversion scantokens clubpenalties
savingvdiscards splitbotmarks showtokens tracingassigns dimexpr parshapedimen readline
eTeXminorversion glueshrinkorder ifdefined currentifbranch firstmarks lastnodetype marks
currentgrouplevel  interlinepenalties  muexpr  unexpanded ifcsname  parshapeindent
showifs  parshapelength  currentgrouptype  widowpenalties  splitdiscards  glueshrink
gluestretch gluestretchorder numexpr interactionmode detokenize fontcharht currentiflevel

LuaTgX Lua Libraries



pdftex

omega

aleph

luatex

savinghyphcodes lastlinefit tracingnesting tracingscantokens tracingifs tracinggroups
eTeXrevision

pdfximage pdfpxdimen pdftrailer pdfuniqueresname pdfoutput pdfgentounicode pdfoutline
pdfsetrandomseed  pdfprimitive  pdfoptionpdfminorversion  pdfendthread pdfimagehicolor
pdflastximagecolordepth pdfpkresolution pdfthreadmargin pdfimageapplygamma
pdfobjcompresslevel pdfpageheight pdfreplacefont pdffirstlineheight pdfcopyfont pdfvorigin
ifincsname pdfnormaldeviate letterspacefont pdflastximagepages ifpdfprimitive pdfcatalog
pdfignoreddimen pdfpageattr pdfgamma pdffontname pdfannot pdfnoligatures rightmarginkern
pdflastlink pdfuniformdeviate pdfstartthread pdffontsize expanded pdflastxpos pdflastypos
pdfrandomseed pdfimagegamma ifpdfabsdim pdfglyphtounicode pdffontobjnum pdftexrevision
pdfcolorstack pdfxform pdfprotrudechars ifpdfabsnum pdfcompresslevel pdfinsertht pdfstartlink
quitvmode pdfmapfile pdftracingfonts pdfpagebox pdfcreationdate pdfcolorstackinit pdfdest
pdfmovechars pdflastlinedepth pdfinclusionerrorlevel pdfinfo pdfxformname pdfpagesattr
pdflastannot pdfsave pdfhorigin pdfpagewidth pdfrefxform tagcode pdfeachlineheight pdfliteral
pdflastximage pdfimageresolution pdfdestmargin pdfobj pdfminorversion pdfeachlinedepth
pdftexversion pdflastxform pdfximagebbox pdfincludechars pdfsavepos pdfpkmode rpcode
pdfretval  pdfdecimaldigits pdfadjustspacing pdftexbanner pdflinkmargin  pdfdraftmode
pdffontexpand  pdfmapline  pdffontattr pdfnames pdfthread pdfendlink pdfrefximage
pdfrefobj pdfrestore pdfsetmatrix efcode lpcode leftmarginkern pdfpageref pdflastobj
pdfinclusioncopyfonts pdfpageresources

textdir popocplist rightghost omathchardef nullocplist localrightbox addbeforeocplist
omathchar omathcode localleftbox addafterocplist bodydir localinterlinepenalty pagedir
chardp mathdir charht charit charwd pagewidth oradical externalocp OmegaVersion ocplist
clearocplists pardir localbrokenpenalty nullocp pageheight ocptracelevel removeafterocplist
removebeforeocplist pushocplist ocp odelcode omathaccent leftghost odelimiter
pagebottomoffset Omegaminorversion Omegarevision Alephrevision boxdir AlephVersion
Alephminorversion Omegaversion Alephversion pagerightoffset

Umathcloseopspacing Umathordpunctspacing Udelimiterunder luastartup
Umathopenpunctspacing Umathordinnerspacing Umathbinclosespacing Umathlimitbelowbgap
Umathopeninnerspacing Uoverdelimiter Umathpunctpunctspacing Umathclosepunctspacing
Umathrelordspacing  Umathsupbottommin ~ Umathlimitbelowkern ~ Umathstackdenomdown
Umathfractionrule Umathpunctinnerspacing Umathcloseinnerspacing Umathopenrelspacing
Umathsupsubbottommax ~ Umathcloserelspacing ~ Umathcharnum  Umathinnerordspacing
synctex formatname Umathrelinnerspacing Umathsubtopmax suppressoutererror
Umathsubsupshiftdown Umathopbinspacing Umathordbinspacing Umathrelopspacing
Umathopenbinspacing ~ Umathoverdelimiterbgap ~ Uunderdelimiter =~ Umathclosebinspacing
Umathcodenum Umathpunctopenspacing Umathconnectoroverlapmin crampedscriptscriptstyle
Umathradicaldegreeafter luatexversion Umathfractionnumup Umathopclosespacing
Umathordclosespacing Umathoverdelimitervgap Udelcode Umathopenclosespacing attribute
Umathsubshiftdrop  Umathsubshiftdown =~ Umathpunctrelspacing  Umathradicaldegreeraise
Umathsupshiftdrop Umathpunctclosespacing Umathcloseclosespacing luatexrevision
Umathchar ~ Udelimiterover ~ Ustack ~ Umathcode  Udelcodenum  suppresslongerror
Umathbotaccent Umathaxis Umathfractionnumvgap Umathrelclosespacing
Umathpunctbinspacing luatexdatestamp Ustopdisplaymath crampedscriptstyle

LuaTEX Lua Libraries 39 /\0



latelua crampedtextstyle Umathbinrelspacing Umathopordspacing attributedef
Umathordordspacing Umathopenordspacing outputbox Ustopmath Umathpunctopspacing

Umathsubsupvgap luaescapestring Umathfractiondenomvgap Umathradicalrule
Umathunderbarrule postexhyphenchar Umathradicaldegreebefore Umathstacknumup
Umathbinopspacing Ustartdisplaymath savecatcodetable Umathbinpunctspacing
Uroot Umathoverbarkern Umathoperatorsize Uradical mathstyle
Umathopopenspacing Umathordopenspacing Umathbininnerspacing Umathinnerrelspacing
clearmarks Umathoverbarvgap Umathopenopenspacing Umathunderdelimiterbgap
Umathoverbarrule crampeddisplaystyle ifabsdim Umathlimitabovebgap Umathstackvgap
Umathinneropspacing Umathrelbinspacing Umathcloseopenspacing initcatcodetable

nokerns Umathlimitabovekern Udelimiter Umathfractiondelsize Umathunderdelimitervgap
Umathinnerbinspacing  noligs ~ Ustartmath ~ Usubscript ~ Umathaccent  pagetopoffset
catcodetable  Umathspaceafterscript  primitive ~ Umathinneropenspacing  Umathaccents
Umathordopspacing Umathopenopspacing ifabsnum scantextokens suppressifcsnameerror
suppressfontnotfounderror pageleftoffset preexhyphenchar posthyphenchar
prehyphenchar Umathinnerinnerspacing Umathinnerpunctspacing Umathinnerclosespacing
Umathpunctordspacing Umathcloseordspacing Umathrelpunctspacing Umathrelopenspacing
Umathrelrelspacing Umathbinopenspacing Umathbinbinspacing Umathbinordspacing
Umathopinnerspacing Umathoppunctspacing Umathoprelspacing Umathopopspacing
Umathordrelspacing Umathsupshiftup Umathlimitbelowvgap Umathlimitabovevgap
Umathfractiondenomdown Umathradicalvgap Umathradicalkern Umathunderbarvgap
Umathunderbarkern Umathquad Umathchardef Usuperscript ifprimitive

Note that 'luatex' does not contain directlua, as that is considered to be a core primitive, along
with all the TEX82 primitives, so it is part of the list that is returned from 'core'.

Running tex.extraprimitives () will give you the complete list of primitives that are not defined
at LuaTpX 0.39.0 —ini startup. It is exactly equivalent to tex.extraprimitives('etex', 'pdf-
tex', 'omega', 'aleph', 'luatex')

4.1.10.3 tex.primitives

<table> t = tex.primitives()

This function returns a hash table listing all primitives that LuaTEX knows about. The keys in the hash
are primitives names, the values are tables representing tokens (see section 4.2). The third value is
always zero.

4.2 The token library

The token table contains interface functions to TEX's handling of tokens. These functions are most
useful when combined with the token_filter callback, but they could be used standalone as well.

A token is represented in Lua as a small table. For the moment, this table consists of three numeric
entries:

. 40 LuaTgX Lua Libraries



index meaning description

1 command code this is a value between 0 and 130 (approximately)

2 command modifier  this is a value between 0 and 2°'

3 control sequence id for commands that are not the result of control sequences, like letters and
characters, it is zero, otherwise, it is a number pointing into the ‘equivalence
table’

4.2.1 token.get_next

token t = token.get_next()

This fetches the next input token from the current input source, without expansion.

4.2.2 token.is_expandable

<boolean> b = token.is_expandable(token t)

This tests if the token t could be expanded.

4.2.3 token.expand

token.expand ()

If a token is expandable, this will expand one level of it, so that the first token of the expansion will now
be the next token to be read by token.get_next ().

4.2.4 token.is_activechar

<boolean> b = token.is_activechar(token t)

This is a special test that is sometimes handy. Discovering whether some control sequence is the result
of an active character turned out to be very hard otherwise.

4.2.5 token.create

token t = token.create(<string> csname)
token t = token.create(<number> charcode)
token t token.create(<number> charcode, <number> catcode)

This is the token factory. If you feed it a string, then it is the name of a control sequence (without
leading backslash), and it will be looked up in the equivalence table.

./ \\\
LuaTEX Lua Libraries 41 /\Oi



If you feed it number, then this is assumed to be an input character, and an optional second number
gives its category code. This means it is possible to overrule a character’'s category code, with a few
exceptions: the category codes 0 (escape), 9 (ignored), 13 (active), 14 (comment), and 15 (invalid) cannot
occur inside a token. The values 0, 9, 14 and 15 are therefore illegal as input to token.create(), and
active characters will be resolved immediately.

Note: unknown string sequences and never defined active characters will result in a token representing
an ‘undefined control sequence’ with a near-random name. It is not possible to define brand new control
sequences using token.create!

4.2.6 token.command name

<string> commandname = token.command_name (<token> t)

This returns the name associated with the ‘command’ value of the token in LuaTgX. There is not always
a direct connection between these names and primitives. For instance, all \ifxxx tests are grouped
under if_fest, and the ‘command modifier’ defines which test is to be run.

4.2.7 token.command id

<number> i = token.command_id(<string> commandname)
This returns a number that is the inverse operation of the previous command, to be used as the first item

in a token table.

4.2.8 token.csname name

<string> csname = token.csname_name (<token> t)

This returns the name associated with the ‘equivalence table’ value of the token in LuaTgX. It returns the
string value of the command used to create the current token, or an empty string if there is no associated
control sequence.

Keep in mind that there are potentially two control sequences that return the same csname string: single
character control sequences and active characters have the same ‘name’.

4.2.9 token.csname id

<number> i = token.csname_id(<string> csname)

This returns a number that is the inverse operation of the previous command, to be used as the third
item in a token table.

\0\§ 42 LuaTgX Lua Libraries



4.3 The node library

The node library contains functions that facilitate dealing with (lists of) nodes and their values. They
allow you to create, alter, copy, delete, and insert LuaTEX node objects, the core objects within the
typesetter.

LuaTEX nodes are represented in Lua as userdata with the metadata type luatex.node. The various
parts within a node can be accessed using named fields.

Each node has at least the three fields next, id, and subtype:

e The next field returns the userdata object for the next node in a linked list of nodes, or nil, if there
is no next node.

e The id indicates TEX's ‘node type’. The field id has a numeric value for efficiency reasons, but some
of the library functions also accept a string value instead of id.

e The subtype is another number. It often gives further information about a node of a particular id,
but it is most important when dealing with ‘whatsits’, because they are differentiated solely based
on their subtype.

The other available fields depend on the id (and for ‘whatsits’, the subtype) of the node. Further
details on the various fields and their meanings are given in chapter 8.

Support for unset (alignment) nodes is partial: they can be queried and modified from Lua code, but
not created.

Nodes can be compared to each other, but: you are actually comparing indices into the node memory.
This means that equality tests can only be trusted under very limited conditions. It will not work correctly
in any situation where one of the two nodes has been freed and/or reallocated: in that case, there will
be false positives.

At the moment, memory management of nodes should still be done explicitly by the user. Nodes are not
‘seen’ by the Lua garbage collector, so you have to call the node freeing functions yourself when you
are no longer in need of a node (list). Nodes form linked lists without reference counting, so you have
to be careful that when control returns back to LuaTEX itself, you have not deleted nodes that are still
referenced from a next pointer elsewhere, and that you did not create nodes that are referenced more
than once.

There are statistics available with regards to the allocated node memory, which can be handy for tracing.
4.3.1 Node handling functions

4.3.1.1 node.types

table t = node.types()

This function returns an array that maps node id numbers to node type strings, providing an overview of
the possible top-level id types.

LuaTEX Lua Libraries 43 /\0



4.3.1.2 node.whatsits

table t = node.whatsits()

TEX's ‘whatsits’ all have the same id. The various subtypes are defined by their subtype. The function
is much like node. types, except that it provides an array of subtype mappings.

4.3.1.3 node.id
<number> id = node.id(<string> type)

This converts a single type name to its internal numeric representation.

4.3.1.4 node.subtype
<number> subtype = node.subtype(<string> type)

This converts a single whatsit name to its internal numeric representation (subtype).

4.3.1.5 node.type
<string> type = node.type(<number> id)

This converts a internal numeric representation to an external string representation.

4.3.1.6 node.fields

table t = node.fields(<number> id)
table t = node.fields(<number> id, <number> subtype)

This function returns an array of valid field names for a particular type of node. If you want to get the
valid fields for a ‘whatsit’, you have to supply the second argument also. In other cases, any given second
argument will be silently ignored.

This function accepts string id and subtype values as well.

4.3.1.7 node.has field
<boolean> t = node.has_field(<node> n, <string> field)

This function returns a boolean that is only true if n is actually a node, and it has the field.

\0\§ 44 LuaTgX Lua Libraries



4.3.1.8 node.new

<node> n = node.new(<number> id)
<node> n = node.new(<number> id, <number> subtype)

Creates a new node. All of the new node’s fields are initialized to either zero or nil except for id and
subtype (if supplied). If you want to create a new whatsit, then the second argument is required,
otherwise it need not be present. As with all node functions, this function creates a node on the TEX
level.

This function accepts string id and subtype values as well.

4.3.1.9 node.free

node.free(<node> n)

Removes the node n from TEX's memory. Be careful: no checks are done on whether this node is still
pointed to from a register or some next field: it is up to you to make sure that the internal data
structures remain correct.

4.3.1.10 node.flush_list

node.flush_list(<node> n)

Removes the node list n and the complete node list following n from TEX's memory. Be careful: no
checks are done on whether any of these nodes is still pointed to from a register or some next field: it
is up to you to make sure that the internal data structures remain correct.

4.3.1.11 node.copy

<node> m = node.copy(<node> n)

Creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node. Only the
next field is not copied.

4.3.1.12 node.copy_list
<node> m = node.copy_list(<node> n)

Creates a deep copy of the node list that starts at n.

4.3.1.13 node.hpack

./ \\
LuaTEX Lua Libraries 45 /\Oi



<node> h = node.hpack(<node> n)
<node> h = node.hpack(<node> n, <number> w, <string> info)

This function creates a new hlist by packaging the list that begins at node n into a horizontal box.
With only a single argument, this box is created using the natural width of its components. In the three
argument form, info must be either additional or exactly, and w is the additional (\hbox spread)
or exact (\hbox to) width to be used.

Caveat: at this moment, there can be unexpected side-effects to this function, like updating some of
the \marks and \inserts. Also note that the content of h is the original node list n: if you call
node.free(h) you will also free the node list itself, unless you explicitly set the list field to nil
beforehand. And in a similar way, calling node.free(n) will invalidate h as well!

4.3.1.14 node.mlist_to_hlist

<node> h = node.mlist_to_hlist(<node> n,
<string> displaytype, <boolean> penalties)

This runs the internal mlist to hlist conversion, converting the math list in n into the horizontal list h.
The interface is exactly the same as for the callback mlist_to_hlist.)

4.3.1.15 node.slide

<node> m = node.slide(<node> n)

Returns the last node of the node list that starts at n. As a side-effect, it also creates a reverse chain
of prev pointers between nodes.

4.3.1.16 node.length

<number> i = node.length(<node> n)
<number> i = node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it stops at
m instead of at the end of the list. The node m is not counted.

4.3.1.17 node.count

<number> i = node.count(<number> id, <node> n)
<number> i = node.count(<number> id, <node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n that have an matching id field.
If m is also supplied, counting stops at m instead of at the end of the list. The node m is not counted.

o, .
/\Oi 46 LuaTgX Lua Libraries



This function also accept string id's.

4.3.1.18 node.traverse

<node> t = node.traverse(<node> n)

This is an iterator that loops over the node list that starts at n.

4.3.1.19 node.traverse_id

<node> t = node.traverse_id(<number> id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching id field.

4.3.1.20 node.remove

<node> head, current = node.remove(<node> head, <node> current)

This function removes the node current from the list following head. It is your responsibility to make
sure it is really part of that list. The return values are the new head and current nodes. The returned
current is the node in the calling argument, and is only passed back as a convenience (its next field
will be cleared). The returned head is more important, because if the function is called with current
equal to head, it will be changed.

4.3.1.21 node.insert_before

<node> head, new = node.insert_before(<node> head, <node> current, <node>
new)

This function inserts the node new before current into the list following head. It is your responsibility
to make sure that current is really part of that list. The return values are the (potentially mutated)
head and the new, set up to be part of the list (with correct next field). If head is initially nil, it will
become new.

4.3.1.22 node.insert_after

<node> head, new = node.insert_after(<node> head, <node> current, <node>
new)

This function inserts the node new after current into the list following head. It is your responsibility
to make sure that current is really part of that list. The return values are the head and the new, set
up to be part of the list (with correct next field). If head is initially nil, it will become new.

LuaTgX Lua Libraries 47 |



4.3.1.23 node.first character

<node> n = node.first_character(<node> n)
<node> n node.first_character(<node> n, <node> m)

Returns the first node that is a glyph node with a subtype indicating it is a character, or nil.

4.3.1.24 node.ligaturing

<node> h, <node> t, <boolean> success = node.ligaturing(<node> n)
<node> h, <node> t, <boolean> success node.ligaturing(<node> n, <node> m)

Apply TEX-style ligaturing to the specified nodelist. The tail node m is optional. The two returned nodes
h and t are the new head and tail (both n and m can change into a new ligature).

4.3.1.25 node.kerning

<node> h, <node> t, <boolean> success = node.kerning(<node> n)
<node> h, <node> t, <boolean> success node.kerning(<node> n, <node> m)

Apply TEX-style kerning to the specified nodelist. The tail node m is optional. The two returned nodes h
and t are the head and tail (either one of these can be an inserted kern node, because special kernings
with word boundaries are possible).

4.3.1.26 node.unprotect_glyphs

node.unprotect_glyphs(<node> n)

Subtracts 256 from all glyph node subtypes. This and the next function are helpers to convert from
characters to glyphs during node processing.

4.3.1.27 node.protect_glyphs

node.protect_glyphs(<node> n)

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1, it adds
only 255. The special handling of 1 means that characters will become glyphs after subtraction of
256.

4.3.1.28 node.last_node

<node> n = node.last _node()

. 48 LuaTgX Lua Libraries



This function pops the last node from TEX's ‘current list’. It returns that node, or nil if the current list
is empty.

4.3.1.29 node.write

node.write(<node> n)

This is an experimental function that will append a node list to TEX's ‘current list’ (the node list is not
deep-copied any more since version 0.38). There is no error checking yet!

4.3.2 Attribute handling

Attributes appear as linked list of userdata objects in the attr field of individual nodes. They can be
handled individually, but it is much safer and more efficient to use the dedicated functions associated
with them.

4.3.2.1 node.has_attribute

<number> v = node.has_attribute(<node> n, <number> id)
<number> v = node.has_attribute(<node> n, <number> id, <number> val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value
matches val. It returns the value, or, if no match is found, nil.

4.3.2.2 node.set_attribute

node.set_attribute(<node> n, <number> id, <number> val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored. [needs expla-
nation]

4.3.2.3 node.unset_attribute

<number> v
<number> v

node.unset_attribute(<node> n, <number> id, <number> val)
node.unset_attribute(<node> n, <number> id)

Unsets the attribute with number id. If val is also supplied, it will only perform this operation if the
value matches val. Missing attributes or attribute-value pairs are ignored.

If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

LuaTgX Lua Libraries 49 f‘i



4.4 The texio library

This library takes care of the low-level /O interface.
4.4.1 Printing functions

4411 texio.write

texio.write(<string> target, <string> s, ...)
texio.write(<string> s, ...)

Without the target argument, writes all given strings to the same location(s) TEX writes messages to
at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes to the log and
the terminal. The optional target can be one of three possibilities: term, log or term and log.

Note: If several strings are given, and if the first of these strings is or might be one of the targets above,
the target must be specified explicitly to prevent Lua from interpreting the first string as the target.
4.41.2 texio.write_nl

texio.write_nl(<string> target, <string> s, ...)
texio.write_nl(<string> s, ...)

This function behaves like texio.write, but make sure that the given strings will appear at the
beginning of a new line. You can pass a single empty string if you only want to move to the next line.

4.5 The pdf library

This contains variables and functions that are related to the pdf backend.

pdf .h, pdf.v

The current h and v values that define the location on the output page. The values can be queried and
set using scaled points as units.

pdf.v
pdf.h

pdf.seth(), pdf.setv()

The function calls associated with pdf.h and pdf.v are

‘0\§ 50 LuaTgX Lua Libraries



pdf . setv(<number> n)
<number> n = pdf.getv()
pdf . seth(<number> n)
<number> n = pdf.geth()

pdf .print ()

A print function to write stuff to the pdf document that can be used from within a \1latelua argument.
This function is not to be used inside \directlua unless you know exactly what you are doing.

pdf.print (<string> s)
pdf .print (<string> type, <string> s)

The optional parameter can be used to mimic the behavior of \pdfliteral: the type is direct or
page.

pdf . immediateobj ()

This function creates a pdf object and immediately write it to the pdf file. It is modelled after pdfTEX’s
\immediate\pdfobj primitives. All function variants return the object number of the newly generated
object.

= pdf.immediateobj(<string> objtext)

= pdf.immediateobj("file", <string> filename)

= pdf.immediateobj("stream", <string> streamtext {, <string> attrtext})

= pdf.immediateobj("streamfile", <string> filename, {, <string> attrtext})

BB BB

The 1st version puts the objtext raw into an object. Only the object wrapper is automatically generated,
but any internal structure (like << >> dictionary markers) needs to provided by the user. The 2nd version
with keyword "file" as 1st argument puts the contents of the file with name filename raw into the
object. The 3rd version with keyword "stream" creates a stream object and puts the streamtext raw
into the stream. The stream length is automatically calculated. The optional attrtext goes into the
dictionary of that object. The 4th version with keyword "streamfile" does the same as the 3rd one,
it just reads the stream data raw from a file.

An optional first argument can be given to make the function use a previously reserved pdf object.

n = pdf.immediateobj(<integer n>, <string> objtext)
n = pdf.immediateobj(<integer n>, "file", <string> filename)
n = pdf.immediateobj(<integer n>, "stream", <string> streamtext {, <string>

attrtext})
n = pdf.immediateobj(<integer n>, "streamfile", <string> filename, {, <string>
attrtext})

LuaTgX Lua Libraries 51 ‘\0



pdf.obj()

This function creates a pdf object, which is written to the pdf file only when referenced. It is modelled
after pdfTEX's \pdfobj primitive. All function variants return the object number of the newly generated
object.

= pdf.obj(<string> objtext)

= pdf.obj("file", <string> filename)

= pdf.obj("stream", <string> streamtext {, <string> attrtextl})

= pdf.obj("streamfile", <string> filename, {, <string> attrtext})

BB BB

An optional first argument can be given to make the function use a previously reserved pdf object.

n = pdf.obj(<integer> n, <string> objtext)

n = pdf.obj(<integer> n, "file", <string> filename)

n = pdf.obj(<integer> n, "stream", <string> streamtext {, <string> attr-
text})

n = pdf.obj(<integer> n, "streamfile", <string> filename, {, <string> attr-
text})

pdf .reserveobj ()

This function creates an empty pdf object and returns its number.

n
n

pdf .reserveobj ()
pdf .reserveobj("annot")

4.6 The img library

The img library can be used as an alternative to \pdfximage and \pdfrefximage, and the associated
‘satellite’ commands like \pdfximagebbox. Image objects can also be used within virtual fonts via the
image command listed in section 7.2.

img.new

<image> var = img.new()
<image> var = img.new(image_spec)

This function creates a userdata object of type ‘image’. The image_spec argument is optional. If it is
given, it must be a table, and that table must contain a filename key. A number of other keys can also
be useful, these are explained below.

You can either say

a=img.new()

. 52 LuaTgX Lua Libraries



followed by

a.filename="foo.png"

or you can put the file name (and some or all of the other keys) into a table directly, like so:
a=img.new{filename='foo.pdf',page=1}

The generated <image> userdata object allows access to a set of user-specified values as well as a
set of values that are normally filled in and updated automatically by LuaTgX itself. Some of those are
derived from the actual image file, others are updated to reflect the pdf output status of the object.

There is one required user-specified field: the file name (filename). It can optionally be augmented
by the requested image dimensions (width, depth, height), user-specified image attributes (attr),
the requested pdf page identifier (page), the requested boundingbox (pagebox) for pdf inclusion, the
requested color space object (colorspace).

The function img.new does not access the actual image file, it just creates the <image> userdata object
and initializes some memory structures. The <image> object and its internal structures are automatically
garbage collected.

Once the image is scanned, all the values in the <image> become frozen, and you cannot change them
any more.

img.keys
<table> keys = img.keys()

This function returns a list of all the possible image_spec keys, both user-supplied and automatic ones.

field name type description

depth number the image depth for LuaTEX (in scaled points)

height number the image height for LuaTEX (in scaled points)

width number the image width for LuaTgX (in scaled points)

transform  number the image transform, integer number 0..7

attr string  the image attributes for LuaTgX

filename string  the image file name

stream string  the raw stream data for an /Xobject /Form object

page 7 the identifier for the requested image page (type is number or string, default is
the number 1)

pagebox string  the requested bounding box, one of none, media, crop, bleed, trim, art

bbox table table with 4 boundingbox dimensions 11x, 11y, urx, and ury overruling the
pagebox entry

filepath string  the full (expanded) file name of the image

colordepth  number the number of bits used by the color space
colorspace number the color space object number
imagetype string  one of pdf, png, jpg, jbig2, or nil

LuaTgX Lua Libraries 53 .\0



objnum number the pdf image object number

index number the pdf image name suffix

pages number the total number of available pages

xsize number the natural image width

ysize number the natural image height

xres number the horizontal natural image resolution (in dpi)
yres number the vertical natural image resolution (in dpi)

A running (undefined) dimension in width, height, or depth is represented as nil in Lua, so if you
want to load an image at its ‘natural’ size, you do not have to specify any of those three fields.

The stream parameter allows to fabricate an /XObject /Form object from a string giving the stream
contents, e.g., for a filled rectangle:

a.stream = "0 0 20 10 re f"

When writing the image, an /Xobject /Form object is created, like with embedded pdf file writing.
The object is written out only once. The stream key requires that also the bbox table is given. The
stream key conflicts with the filename key. The transform key works as usual also with stream.

The bbox key needs a table with four boundingbox values, e.q.:
a.bbox = {"30bp", 0, "225bp", "200bp"}

This replaces and overrules any given pagebox value; with given bbox the box dimensions coming with
an embedded pdf file are ignored. The xsize and ysize dimensions are set accordingly, when the
image is scaled. The bbox parameter is ignored for non-pdf images.

The transform allows to mirror and rotate the image in steps of 90 deq. The default value 0 gives
an unmirrored, unrotated image. Values 1-3 give counterclockwise rotation by 90, 180, or 270 degrees,
whereas with values 4-7 the image is first mirrored and then rotated counterclockwise by 90, 180, or
270 degrees. The transform operation gives the same visual result as if you would externally preprocess
the image by a graphics tool and then use it by LuaTgX. If a pdf file to be embedded already contains a
/Rotate specification, the rotation result is the combination of the /Rotate rotation followed by the
transform operation.

img.scan

<image> var = img.scan(<image> var)
<image> var img.scan(image_spec)

When you say img.scan(a) for a new image, the file is scanned, and variables such as xsize, ysize,
image type, number of pages, and the resolution are extracted. Each of the width, height, depth
fields are set up according to the image dimensions, if they were not given an explicit value already.
An image file will never be scanned more than once for a given image variable. With all subsequent
img.scan(a) calls only the dimensions are again set up (if they have been changed by the user in the
meantime).

0\§ 54 LuaTgX Lua Libraries



For ease of use, you can do right-away a
<image> a = img.scan { filename = "foo.png" }

without a prior img.new.

Nothing is written yet at this point, so you can do a=img.scan, retrieve the available info like image
width and height, and then throw away a again by saying a=nil. In that case no image object will be
reserved in the PDF, and the used memory will be cleaned up automatically.

img.copy

img.copy(<image> var)
img.copy (image_spec)

<image> var
<image> var

If you say a = b, then both variables point to the same <image> object. if you want to write out an
image with different sizes, you can do a b=img. copy(a).

Afterwards, a and b still reference the same actual image dictionary, but the dimensions for b can now
be changed from their initial values that were just copies from a.

img.write

<image> var = img.write(<image> var)
<image> var = img.write(image_spec)

By img.write(a) a pdf object number is allocated, and a whatsit node of subtype pdf_refximage
is generated and put into the output list. By this the image a is placed into the page stream, and the
image file is written out into an image stream object after the shipping of the current page is finished.

Again you can do a terse call like
img.write { filename = "foo.png" }

The <image> variable is returned in case you want it for later processing.

img.immediatewrite

<image> var = img.immediatewrite(<image> var)
<image> var = img.immediatewrite(image_spec)

By img.immediatewrite(a) a pdf object number is allocated, and the image file for image a is written
out immediately into the pdf file as an image stream object (like with \immediate\pdfximage). The
object number of the image stream dictionary is then available by the objnum key. No pdf_refximage
whatsit node is generated. You will need an img.write(a) or img.node(a) call to let the image

LuaTgX Lua Libraries 55 ’\‘i



appear on the page, or reference it by another trick; else you will have a dangling image object in the
pdf file.

Also here you can do a terse call like
a = img.immediatewrite { filename = "foo.png" }

The <image> variable is returned and you will most likely need it.

img.node

<node> n
<node> n

img.node(<image> var)
img.node (image_spec)

This function allocates a pdf object number and returns a whatsit node of subtype pdf_refximage,
filled with the image parameters width, height, depth, and objnum. Also here you can do a terse
call like:

n = img.node { filename = "foo.png" }
This example outputs an image:

node.write(img.node{filename="foo.png"})

img.types
<table> types = img.types()

This function returns a list with the supported image file type names, currently these are pdf, png, jpg,
and jbig2.

img.boxes

<table> boxes = img.boxes()

This function returns a list with the supported pdf page box names, currently these are media, crop,
bleed, trim, and art (all in lowercase letters).

4.7 The mplib library

The MetaPost library interface registers itself in the table mplib. It is based on MPLlib version 1.204.

0\§ 56 LuaTgX Lua Libraries



471 mplib.new
To create a new MetaPost instance, call
<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The argument hash can have a number of different fields, as follows:

name type description default
error_line number error line width 79
print_line number line length in ps output 100
main_memory number total memory size 5000
hash _size number hash size 16384
param_size number max. active macro parameters 150
max_in_open number max. input file nestings 10
random_seed number the initial random seed variable

interaction string the interaction mode, one of batch, errorstop
nonstop, scroll, errorstop

ini_version boolean the —ini switch true
mem_name string ——mem plain
job_name string —--jobname mpout
find_file function a function to find files only local files

The £ind_file function should be of this form:

<string> found = finder (<string> name, <string> mode, <string> type)
with:

name the requested file

mode the file mode: r or w

type the kind of file, one of: mp, mem, tfm, map, pfb, enc

Return either the full pathname of the found file, or nil if the file cannot be found.

4.7.2 mp:statistics
You can request statistics with:
<table> stats = mp:statistics()

This function returns the vital statistics for an MPLlib instance. There are four fields, giving the maximum
number of used items in each of the four statically allocated object classes:

LuaTEX Lua Libraries 57 ‘\Oi



main_memory number memory size

hash_size number hash size

param_size number simultaneous macro parameters
max_in_open number input file nesting levels

4.7.3 mp:execute

You can ask the MetaPost interpreter to run a chunk of code by calling
local rettable = mp:execute('metapost language chunk')

for various bits of MetaPost language input. Be sure to check the rettable.status (see below)
because when a fatal MetaPost error occurs the MPlib instance will become unusable thereafter.

Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey proper
syntax, like each of them is a small file. For instance, you cannot split a single statement over multiple
chunks.

In contrast with the normal standalone mpost command, there is no implied ‘input’ at the start of the
first chunk.

4.7.4 mp:finish
local rettable = mp:finish()

If for some reason you want to stop using an MPLlib instance while processing is not yet actually done,
you can call mp:finish. Eventually, used memory will be freed and open files will be closed by the
Lua garbage collector, but an explicit mp:finish is the only way to capture the final part of the output
streams.

4.7.5 Result table

The return value of mp:execute and mp:finish is a table with a few possible keys (only status is
always guaranteed to be present).

log string  output to the ‘log’ stream

term  string  output to the ‘term’ stream

error  string  output to the ‘error’ stream (only used for ‘out of memory’)
status number the return value: 0=good, 1=warning, 2=errors, 3=fatal error
fig table an array of generated figures (if any)

When status equals 3, you should stop using this MPlib instance immediately, it is no longer capable
of processing input.

If it is present, each of the entries in the £ig array is a userdata representing a figure object, and each
of those has a number of object methods you can call:

. 58 LuaTgX Lua Libraries



boundingbox
postscript

svg

objects
copy_objects
filename

width
height
depth
italcorr
charcode

function
function

function

function
function
function

function
function
function
function
function

returns the bounding box, as an array of 4 values

return a string that is the ps output of the fig. this function accepts two
optional integer arguments for specifying the values of prologues (first argu-
ment) and procset (second argument)

return a string that is the svg output of the f£ig. this function accepts an
optional integer arguments for specifying the value of prologues

returns the actual array of graphic objects in this fig

returns a deep copy of the array of graphic objects in this fig

the filename this £ig's PostScript output would have written to in standalone
mode

the charwd value

the charht value

the chardp value

the charit value

the (rounded) charcode value

NOTE: you can call fig:objects() only once for any one fig object!

When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates is larger
than the second set, the picture is empty.

Graphical objects come in various types that each have a different list of accessible values. The types
are: £ill, outline, text, start_clip, stop_clip, start_bounds, stop_bounds, special.

There is helper function (mplib.fields(obj)) to get the list of accessible values for a particular
object, but you can just as easily use the tables given below).

All graphical objects have a field type that gives the object type as a string value, that not explicit
mentioned in the tables. In the following, numbers are PostScript points represented as a floating point
number, unless stated otherwise. Field values that are of table are explained in the next section.

4.7.51 fill

path table
htap table
pen table
color table
linejoin number
miterlimit number
prescript  string
postscript  string

the list of knots

the list of knots for the reversed trajectory
knots of the pen

the object’s color

line join style (bare number)

miterlimit

the prescript text

the postscript text

The entries htap and pen are optional.

There is helper function (mplib.pen_info(obj)) that returns a table containing a bunch of vital
characteristics of the used pen (all values are floats):

LuaTEX Lua Libraries 59 ‘\Oi

-



width  number width of the pen

rx number x scale
SX number xy multiplier
sy number yx multiplier
ry number y scale
tx number x offset
ty number y offset

4.7.5.2 outline

path table the list of knots

pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)
miterlimit number miterlimit

linecap number line cap style (bare number)
dash table representation of a dash list

prescript  string  the prescript text
postscript  string the postscript text

The entry dash is optional.

4.7.5.3 text

text string  the text

font string  font tfm name

dsize number font size

color table the object’s color
width number

height number

depth number

transform  table a text transformation

prescript  string  the prescript text
postscript  string the postscript text

4.7.5.4 special

prescript string special text

\/O\i 60 LuaTgX Lua Libraries



4.7.5.5 start_bounds, start_clip

path table the list of knots

4.7.5.6 stop_bounds, stop_clip

Here are no fields available.

4.7.6 Subsidiary table formats

4.7.6.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as MPlib is concerned) are represented
by an array where each entry is a table that represents a knot.

left_type string  when present: ‘'endpoint’, but usually absent
right_type string like left_type

x_coord number X coordinate of this knot

y_coord number Y coordinate of this knot

left_x number X coordinate of the precontrol point of this knot

left_y number Y coordinate of the precontrol point of this knot

right_x number X coordinate of the postcontrol point of this knot
right_y number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra string-valued key
type with value elliptical besides the array part containing the knot list.

4.7.6.2 Colors

A color is an integer array with 0, 1, 3 or 4 values:

0 marking only no values

1 greyscale one value in the range (0,1), ‘black’ is 0

3 rgb three values in the range (0,1), ‘black’ is 0,0,0
4 cmyk four values in the range (0,1), ‘black’ is 0,0,0,1

If the color model of the internal object was uninitialized, then it was initialized to the values rep-
resenting ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the shipout.

4.7.6.3 Transforms

Each transform is a six-item array.

LuaTgX Lua Libraries 61 @



number represents x
number represents y
number represents xx
number represents yx
number represents xy
number represents yy

DOl A~ WN —

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript, where
the translation comes last.

4.7.6.4 Dashes

Each dash is two-item hash, using the same model as PostScript for the representation of the dashlist.
dashes is an array of ‘on’ and ‘off', values, and offset is the phase of the pattern.

dashes hash an array of on-off numbers
offset ~ number the starting offset value

4.7.7 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the
argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

4.7.71 mp.char_width

<number> w = mp.char_width(<string> fontname, <number> char)

4.7.7.2 mp.char_height

<number> w = mp.char_height(<string> fontname, <number> char)

4.7.7.3 mp.char_depth

<number> w = mp.char_depth(<string> fontname, <number> char)

4.8 The callback library

This library has functions that register, find and list callbacks.

. 62 LuaTgX Lua Libraries



callback.register(<string> callback_name,function callback_func)
callback.register(<string> callback_name,nil)
callback.register(<string> callback_name,false)

id, error
id, error
id, error

where the callback_name is a predefined callback name, see below. The function returns the internal
id of the callback or nil, if the callback could not be registered. In the latter case, error contains an
error message, otherwise it is nil.

LuaTEX internalizes the callback function in such a way that it does not matter if you redefine a function
accidentally.

Callback assignments are always global. You can use the special value nil instead of a function for
clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks, doing
so will prevent LuaTEX from executing whatever it would execute by default (when no callback function
is registered at all). Be warned: this may cause all sorts of grief unless you know exactly what you are
doing! This functionality is present since version 0.38.

Currently, callbacks are not dumped into the format file.
table info = callback.list()

The keys in the table are the known callback names, the value is a boolean where true means that the
callback is currently set (active).

function f = callback.find(callback_name)

If the callback is not set, callback.find returns nil.
4.8.1 File discovery callbacks

4.81.1 find read file and find write file

Your callback function should have the following conventions:

<string> actual_name = function (number id_number, <string> asked_name)
Arguments:

id_number
This number is zero for the log or \input files. For TEX's \read or \write the number is incre-
mented by one, so \read0 becomes 1.

asked_name
This is the user-supplied filename, as found by \input, \openin or \openout.

Return value:

LuaTEX Lua Libraries 63 Q/Oi



actual_name
This is the filename used. For the very first file that is read in by TEX, you have to make sure you
return an actual_name that has an extension and that is suitable for use as jobname. If you don't,
you will have to manually fix the name of the log file and output file after LuaTEX is finished, and
an eventual format filename will become mangled. That is because these file names depend on the
jobname.
You have to return nil if the file cannot be found.

4.8.1.2 find_font_file
Your callback function should have the following conventions:
<string> actual_name = function (<string> asked_name)

The asked_name is an otf or tfm font metrics file.

Return nil if the file cannot be found.

4.8.1.3 find_output_file
Your callback function should have the following conventions:
<string> actual_name = function (<string> asked_name)

The asked_name is the pdf or dvi file for writing.

4.8.1.4 find_format_file

Your callback function should have the following conventions:
<string> actual_name = function (<string> asked_name)

The asked_name is a format file for reading (the format file for writing is always opened in the current
directory).

4.8.1.5 find_vf_file

Like find_font_file, but for virtual fonts. This applies to both Aleph’s ovf files and traditional
Knuthian vf files.

4.8.1.6 find_ocp_file

Like find_font_file, but for ocp files.

. 64 LuaTgX Lua Libraries



4.8.1.7 find_map_file

Like find_font_file, but for map files.

4.8.1.8 find_enc_file

Like find_font_file, but for enc files.

4.81.9 find sfd_file

Like find font file, but for subfont definition files.

4.8.1.10 find_pk_file

Like find_font_file, but for pk bitmap files. The argument name is a bit special in this case. Its

form is

<base res>dpi/<fontname>.<actual res>pk

So you may be asked for 600dpi/manfnt.720pk. It is up to you to find a ‘reasonable’ bitmap file to

go with that specification.

4.8.1.11 find data_file

Like find_font_file, but for embedded files (\pdfobj file '...

4.8.1.12 find_opentype_file

Like find_font_file, but for OpenType font files.

4.8.1.13 find_truetype_file and find_typel_file
Your callback function should have the following conventions:

<string> actual_name = function (<string> asked_name)

I).

The asked_name is a font file. This callback is called while LuaTgX is building its internal list of
needed font files, so the actual timing may surprise you. Your return value is later fed back into the

matching read_file callback.

Strangely enough, find_typel_file is also used for OpenType (otf) fonts.

LuaTgX Lua Libraries 65



4.8.1.14 find_image_file
Your callback function should have the following conventions:
<string> actual_name = function (<string> asked_name)

The asked_name is an image file. Your return value is used to open a file from the harddisk, so make
sure you return something that is considered the name of a valid file by your operating system.

4.8.2 File reading callbacks

4.8.2.1 open_read_file

Your callback function should have the following conventions:
<table> env = function (<string> file_name)
Argument:

file_name
The filename returned by a previous find_read_file or the return value of kpse.find_file()
if there was no such callback defined.

Return value:

env
This is a table containing at least one required and one optional callback function for this file. The
required field is reader and the associated function will be called once for each new line to be read,
the optional one is close that will be called once when LuaTEX is done with the file.
LuaTEX never looks at the rest of the table, so you can use it to store your private per-file data. Both
the callback functions will receive the table as their only argument.

4.8.2.1.1 reader

LuaTgX will run this function whenever it needs a new input line from the file.

function(<table> env)
return <string> line
end

Your function should return either a string or nil. The value nil signals that the end of file has
occurred, and will make TEX call the optional close function next.

0\§ 66 LuaTgX Lua Libraries



4.8.2.1.2 close

LuaTgX will run this optional function when it decides to close the file.

function(<table> env)
return
end

Your function should not return any value.

4.8.2.2 General file readers

There is a set of callbacks for the loading of binary data files. These all use the same interface:

function(<string> name)
return <boolean> success, <string> data, <number> data_size
end

The name will normally be a full path name as it is returned by either one of the file discovery callbacks
or the internal version of kpse.find_file().

success
Return false when a fatal error occurred (e.g. when the file cannot be found, after all).
data
The bytes comprising the file.
data_size
The length of the data, in bytes.

Return an empty string and zero if the file was found but there was a reading problem.

The list of functions is as follows:

read font file ofm or tfm files

read_vf_file virtual fonts

read_ocp_file ocp files

read_map_file map files

read_enc_file encoding files

read_sfd_file subfont definition files
read_pk_file pk bitmap files

read_data_file embedded files (\pdfobj file ...)
read_truetype_file TrueType font files
read_typel_file Type1 font files

read_opentype_file OpenType font files

LuaTgX Lua Libraries 67 ®



4.8.3 Data processing callbacks

4.8.3.1 process_input_buffer

This callback allows you to change the contents of the line input buffer just before LuaTEX actually starts
looking at it.

function(<string> buffer)
return <string> adjusted_buffer
end

If you return nil, LuaTEX will pretend like your callback never happened. You can gain a small amount
of processing time from that.

This callback does not replace any internal code.

4.8.3.2 token filter

This callback allows you to replace the way LuaTgX fetches lexical tokens.

function()
return <table> token
end

The calling convention for this callback is a bit more complicated than for most other callbacks. The
function should either return a Lua table representing a valid to-be-processed token or tokenlist, or
something else like nil or an empty table.

If your Lua function does not return a table representing a valid token, it will be immediately called
again, until it eventually does return a useful token or tokenlist (or until you reset the callback value to
nil). See the description of token for some handy functions to be used in conjunction with this callback.

If your function returns a single usable token, then that token will be processed by LuaTEX immediately.
If the function returns a token list (a table consisting of a list of consecutive token tables), then that
list will be pushed to the input stack at a completely new token list level, with its token type set to
‘inserted’. In either case, the returned token(s) will not be fed back into the callback function.

Setting this callback to false has no effect (because otherwise nothing would happen, forever).

4.8.4 Node list processing callbacks

The description of nodes and node lists is in chapter 8.

. 68 LuaTgX Lua Libraries



4.8.4.1 buildpage_filter

This callback is called whenever LuaTEX is ready to move stuff to the main vertical list. You can use this
callback to do specialized manipulation of the page building stage like imposition or column balancing.

function(<string> extrainfo)
end

The string extrainfo gives some additional information about what TEX's state is with respect to the
‘current page’. The possible values are:

value explanation

alignment a (partial) alignment is being added
after_output an output routine has just finished
box a typeset box is being added
new_graf the beginning of a new paragraph
vmode_par \par was found in vertical mode
hmode_par \par was found in horizontal mode
insert an insert is added

penalty a penalty (in vertical mode)

before_display immediately before a display starts
after_display a display is finished
end LuaTgX is terminating (it's all over)

This callback does not replace any internal code.

4.8.4.2 pre_linebreak_filter

This callback is called just before LuaTgX starts converting a list of nodes into a stack of \hboxes. The
removal of a possible final skip and the subsequent insertion of \parfillskip has not happened yet
at that moment.

function(<node> head, <string> groupcode)
return true | false | <node> newhead
end

The string called groupcode identifies the nodelist's context within TEX's processing. The range
of possibilities is given in the table below, but not all of those can actually appear in pre_line-
break_filter, some are for the hpack_filter and vpack_filter callbacks that will be explained
in the next two paragraphs.

value explanation

<empty> main vertical list

hbox \hbox in horizontal mode
adjusted_hbox \hbox in vertical mode
vbox \vbox

LuaTgX Lua Libraries 69 ./0§

-



vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert

vcenter \vcenter

local_box \localleftbox or \localrightbox
split_off top of a \vsplit

split_keep remainder of a \vsplit

align_set alignment cell

fin_row alignment row

This callback does not replace any internal code.

4.8.4.3 linebreak filter

This callback replaces LuaTgX’s line breaking algorithm.

function(<node> head, <boolean> is_display)
return <node> newhead
end

The returned node is the head of the list that will be added to the main vertical list, the boolean argument
is true if this paragraph is interrupted by a following math display.

If you return something that is not a <node>, LuaTgX will apply the internal linebreak algorithm on the
list that starts at <head>. Otherwise, the <node> you return is supposed to be the head of a list of
nodes that are all allowed in vertical mode, and the last of those has to represent a hbox. Failure to do
so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up in an
unfixable ‘deadcycles loop'.

4.8.4.4 post_linebreak_filter
This callback is called just after LuaTEX has converted a list of nodes into a stack of \hboxes.

function(<node> head, <string> groupcode)
return true | false | <node> newhead
end

This callback does not replace any internal code.

4.8.4.5 hpack_filter

This callback is called when TEX is ready to start boxing some horizontal mode material. Math items
and line boxes are ignored at the moment.

.//0\§ 70 LuaTgX Lua Libraries



function(<node> head, <string> groupcode, <number> size, <string> packtype)
return true | false | <node> newhead

end
The packtype is either additional or exactly. If additional, then the size is a
\hbox spread ... argument. If exactly, then the size is a \hbox to .... In both cases,

the number is in scaled points.

This callback does not replace any internal code.

4.8.4.6 vpack_filter

This callback is called when TEX is ready to start boxing some vertical mode material. Math displays
are ignored at the moment.

This function is very similar to the hpack_filter. Besides the fact that it is called at different moments,

there is an extra variable that matches TEX's \maxdepth setting.

function(<node> head, <string> groupcode, <number> size, <string> packtype,
<number> maxdepth)

return true | false | <node> newhead
end

This callback does not replace any internal code.

4.8.4.7 pre_output_filter
This callback is called when TEX is ready to start boxing the box 255 for \output.

function(<node> head, <string> groupcode, <number> size, <string> packtype,
<number> maxdepth)

return true | false | <node> newhead
end

This callback does not replace any internal code.

4.8.4.8 hyphenate

function(<node> head, <node> tail)
end

No return values. This callback has to insert discretionary nodes in the node list it receives.

Setting this callback to false will prevent the internal discretionary insertion pass.

LuaTgX Lua Libraries 71 ;‘i

-



4.8.4.9 ligaturing

function(<node> head, <node> tail)
end
No return values. This callback has to apply ligaturing to the node list it receives.

You don’t have to worry about return values because the head node that is passed on to the callback is
guaranteed not to be a glyph_node (if need be, a temporary node will be prepended), and therefore it
cannot be affected by the mutations that take place. After the callback, the internal value of the ‘tail of
the list’ will be recalculated.

The next of head is guaranteed to be non-nil.

The next of tail is quaranteed be nil, and therefore the second callback argument can often be ignored.
It is provided for orthogonality, and because it can sometimes be handy when special processing has to
take place.

Setting this callback to false will prevent the internal ligature creation pass.

4.8.4.10 kerning

function(<node> head, <node> tail) end

No return values. This callback has to apply kerning between the nodes in the node list it receives. See
ligaturing for calling conventions.

Setting this callback to false will prevent the internal kern insertion pass.

4.8.4.11 mlist_to_hlist

This callback replaces LuaTgX's math list to node list conversion algorithm.

function(<node> head, <string> displaytype, <boolean> need_penalties)
return <node> newhead
end

The returned node is the head of the list that will be added to the vertical or horizontal list, the string
argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean argument is true
if penalties have to be inserted in this list, false otherwise.

Setting this callback to false is bad, it will almost certainly result in an endless loop.

. 72 LuaTgX Lua Libraries



4.8.5 Information reporting callbacks

4.8.5.1 start_run

function()
This callback replaces the code that prints LuaTgX's banner. Note that for successful use, this callback

has to be set in the lua initialization file, otherwise it will be seen only after the run has already started.

4.8.5.2 stop_run

function()

This callback replaces the code that prints LuaTgX's statistics and ‘output written to’ messages.

4.8.5.3 start_page_number

function()

Replaces the code that prints the [ and the page number at the begin of \shipout. This callback
will also override the printing of box information that normally takes place when \tracingoutput is
positive.

4.8.5.4 stop_page_number

function()

Replaces the code that prints the ] at the end of \shipout.

4.8.5.5 show_error_hook

function()
return
end

This callback is run from inside the TEX error function, and the idea is to allow you to do some extra
reporting on top of what TEX already does (none of the normal actions are removed). You may find some
of the values in the status table useful.

This callback does not replace any internal code.

message

LuaTgX Lua Libraries 73 |



is the formal error message TEX has given to the user. (the line after the 'I').
indicator
is either a filename (when it is a string) or a location indicator (a number) that can mean lots of
different things like a token list id or a \read number.
lineno
is the current line number.

This is an investigative item for 'testing the water’ only. The final goal is the total replacement of TEX's
error handling routines, but that needs lots of adjustments in the web source because TEX deals with
errors in a somewhat haphazard fashion. This is why the exact definition of indicator is not given
here.

4.8.6 Font-related callbacks

4.8.6.1 define_font

function(<string> name, <number> size, <number> id) return <table> font end

The string name is the filename part of the font specification, as given by the user.

The number size is a bit special:

e if it is positive, it specifies an ‘at size’ in scaled points.
e f it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of the font.

The internal structure of the font table that is to be returned is explained in chapter 7. That table is
saved internally, so you can put extra fields in the table for your later Lua code to use.

Setting this callback to false is pointless as it will prevent font loading completely but will nevertheless
generate errors.

4.9 The lua library

This library contains one read-only item:
<string> s = lua.version

This returns a LuaTgX version identifier string. The value is currently lua.version, but it is soon to be
replaced by something more elaborate.

4.9.1 Lua bytecode registers

Lua registers can be used to communicate Lua functions across Lua chunks. The accepted values for
assignments are functions and nil. Likewise, the retrieved value is either a function or nil.

0\§ 74 LuaTgX Lua Libraries



lua.bytecode[n] = function () .. end
lua.bytecode[n] O

The contents of the 1ua.bytecode array is stored inside the format file as actual Lua bytecode, so it
can also be used to preload Lua code.

Note: The function must not contain any upvalues. Currently, functions containing upvalues can be
stored (and their upvalues are set to nil), but this is an artifact of the current Lua implementation and
thus subject to change.

The associated function calls are

function f = lua.getbytecode(<number> n)
lua.setbytecode (<number> n, <function> f)

Note: Since a Lua file loaded using loadfile(filename) is essentially an anonymous function, a
complete file can be stored in a bytecode register like this:

lua.bytecode[n] = loadfile(filename)

Now all definitions (functions, variables) contained in the file can be created by executing this bytecode
register:

lua.bytecode[n] ()

Note that the path of the file is stored in the Lua bytecode to be used in stack backtraces and therefore
dumped into the format file if above code is used in iniTEX. If it contains private information, i.e. the user
name, this information is then contained in the format file as well. This should be kept in mind when
preloading files into a bytecode register in iniTEX.

4.9.2 Lua chunk name registers

There is an array of 65536 (0-65535) potential chunk names for use with the \directlua and \latelua
primitives.

lua.name [<number> n] = <string> s
<string> s = lua.name[<number n>]

If you want to unset a lua name, you can assign nil to it.

410 The kpse library

This library provides two separate, but nearly identical interfaces to the kpathsea file search functionality:
there is a ‘normal’ procedural interface that shares its kpathsea instance with LuaTgX itself, and an object
oriented interface that is completely on its own. The object oriented interface and kpse.new have been
added in LuaTgX 0.37.

LuaTgX Lua Libraries 75 /‘0§



4.10.1 kpse.set_program_name and kpse.new

Before the search library can be used at all, its database has to be initialized. There are three possi-
bilities, two of which belong to the procedural interface.

First, when LuaTgX is used to typeset documents, this initialization happens automatically and the
kpathsea executable and program names are set to luatex (that is, unless explicitly prohibited by the
user’s startup script. See section 3.1 for more details).

Second, in TEXLua mode, the initialization has to be done explicitly via the kpse.set_program_name

function, which sets the kpathsea executable (and optionally program) name.

kpse.set_program_name(<string> name)
kpse.set_program_name(<string> name, <string> progname)

The second argument controls the use of the ‘dotted’ values in the texmf.cnf configuration file, and
defaults to the first argument.

Third, if you prefer the object oriented interface, you have to call a different function. It has the same
arguments, but it returns a userdata variable.

kpse.new(<string> name)
kpse.new(<string> name, <string> progname)

local kpathsea
local kpathsea

Apart from these two functions, the calling conventions of the interfaces are identical. Depending on
the chosen interface, you either call kpse.find_file() or kpathsea:find_file(), with identical
arguments and return vales.

4102 find file

The most often used function in the library is find_file:

<string> f = kpse.find_file(<string> filename)
<string> f = kpse.find_file(<string> filename, <string> ftype)
<string> f = kpse.find_file(<string> filename, <boolean> mustexist)
<string> f = kpse.find_file(<string> filename, <string> ftype, <boolean>
mustexist)
<string> f = kpse.find_file(<string> filename, <string> ftype, <number> dpi)
Arguments:
filename
the name of the file you want to find, with or without extension.
ftype

maps to the —format argument of kpsewhich. The supported ftype values are the same as the
ones supported by the standalone kpsewhich program:

0\§ 76 LuaTgX Lua Libraries



lgfl
kal
'bitmap font'
"tfm'
'afm'
'base’
'bib'
'bst'
'cnf'
'1s-R'
"fmt'
Imapl
'mem'’
lmfl
'mfpool’
'mft'
Impl
'mppool'’

'MetaPost support'

IOCpl
'ofm'
Iopll
Iotpl
'ovE'
Iovpl

'graphic/figure'

'tex'

'TeX system documentation'

'texpool'’

'TeX system sources'
'PostScript header'
'Troff fonts'

'typel fonts'

Ivfl

'dvips config'

'ist'

'truetype fonts'
'type42 fonts'
'web2c files'

'other text files'
'other binary files'
'misc fonts'

'web'

'cweb'

'enc files'

'cmap files'
'subfont definition files'
'opentype fonts'
'pdftex config'

'lig files'
'texmfscripts'
'lua’',

'font feature files',
'cid maps',

'mlbib"',

'mlbst’',

The default type is tex. Note: this is different from kpsewhich, which tries to deduce the file type
itself from looking at the supplied extension. The last four types: 'font feature files’, 'cid maps/,
'mlbib’, ‘'mlbst’ were new additions in LuaTgX 0.40.2.

mustexist

is similar to kpsewhich's -must-exist, and the default is false. If you specify true (or a non-
zero integer), then the kpse library will search the disk as well as the 1s-R databases.

dpi

This is used for the size argument of the formats pk, gf, and bitmap font.

4.10.3 init_prog

Extra initialization for programs that need to generate bitmap fonts.

kpse.init_prog(<string> prefix, <number> base_dpi, <string> mfmode)
kpse.init_prog(<string> prefix, <number> base_dpi, <string> mfmode, <string>

fallback)

LuaTgX Lua Libraries 77 /‘0:
ow



4.10.4 readable file

Test if an (absolute) file name is a readable file
<string> f = kpse.readable_file(<string> name)

The return value is the actual absolute filename you should use, because the disk name is not always
the same as the requested name, due to aliases and system-specific handling under e.g. msdos.

Returns nil if the file does not exist or is not readable.

4.10.5 expand_path
Like kpsewhich's —expand-path:

<string> r = kpse.expand_path(<string> s)

4.10.6 expand_var
Like kpsewhich's —expand-var:

<string> r = kpse.expand_var(<string> s)

4.10.7 expand_braces

Like kpsewhich's —expand-braces:

<string> r = kpse.expand_braces(<string> s)

4.10.8 show_path

Like kpsewhich's —show-path:

<string> r = kpse.show_path(<string> ftype)

410.9 var_value

Like kpsewhich's —var-value:

<string> r = kpse.var_value(<string> s)

.78 LuaTgX Lua Libraries



411 The status library

This contains a number of run-time configuration items that you may find useful in message reporting,
as well as an iterator function that gets all of the names and values as a table.

<table> info = status.list()

The keys in the table are the known items, the value is the current value. Almost all of the values in
status are fetched through a metatable at run-time whenever they are accessed, so you cannot use
pairs on status, but you can use pairs on info, of course. If you do not need the full list, you can

also ask for a single item by using its name as an index into status.

The current list is:

key explanation

pdf_gone written pdf bytes
pdf_ptr not yet written pdf bytes
dvi_gone written dvi bytes
dvi_ptr not yet written dvi bytes

total_pages
output_file_name

number of written pages
name of the pdf or dvi file

log_name name of the log file

banner terminal display banner
var_used variable (one-word) memory in use
dyn_used token (multi-word) memory in use
str_ptr number of strings

init_str_ptr
max_strings

number of iniTEX strings
maximum allowed strings

pool_ptr string pool index
init_pool_ptr iniTEX string pool index
pool_size current size allocated for string characters

node_mem_usage
var_mem_max
fix mem max
fix_mem_end

a string giving insight into currently used nodes
number of allocated words for nodes

number of allocated words for tokens

maximum number of used tokens

cs_count number of control sequences
hash_size size of hash

hash_extra extra allowed hash
font_ptr number of active fonts

max_in_stack
max_nest_stack
max_param_stack
max_buf_stack
max_save_stack
stack_size

max used input stack entries

max used nesting stack entries
max used parameter stack entries
max used buffer position

max used save stack entries
input stack size

LuaTgX Lua Libraries



nest_size
param_size
buf_size
save_size

obj_ptr
obj_tab_size
pdf_os_cntr
pdf_os_objidx
pdf_dest_names_ptr
dest_names_size
pdf_mem_ptr
pdf_mem_size
largest_used_mark
filename

inputid
linenumber
lasterrorstring
luabytecodes
luabytecode_bytes
luastate_bytes
output_active
callbacks
indirect_callbacks

luatex_version
luatex_revision
ini_version

412 The texconfig table

nesting stack size
parameter stack size

current allocated size of the line buffer

save stack size
max pdf object pointer
pdf object table size

max pdf object stream pointer

pdf object stream index
max pdf destination pointer
pdf destination table size
max pdf memory used

pdf memory size
max referenced marks class
name of the current input file
numeric id of the current input
location in the current input file
last error string
number of active Lua bytecode registers

number of bytes in Lua bytecode registers

number of bytes in use by Lua interpreters

true if the \output routine is active

total number of executed callbacks so far

number of those that were themselves a result of other callbacks (e.g. file

readers)

the luatex version number (added in 0.38)
the luatex revision string (added in 0.38)
true if this is an iniTEX run (added in 0.38)

This is a table that is created empty. A startup Lua script could fill this table with a number of settings
that are read out by the executable after loading and executing the startup file.

key
kpse_init

shell_escape

shell_escape_commands

type
boolean

string

string

. 80 LuaTlgX Lua Libraries

default
true

explanation

false totally disables kpathsea initialisation, and
enables interpretation of the following numeric key—value
pairs. (only ever unset this if you implement all file
find callbacks!)

Use 'y' or 't' or '1' to enable \write 18 un-
conditionally, 'p' to enable the commands that are
listed in shell_escape_commands (new in 0.37)
Comma-separated list of command names that may
be executed by \write 18 even if shell_escape
is set to 'p'. Do not use spaces around commas,



separate any required command arguments by using
a space, and use the ASCII double quote (") for any
needed argument or path quoting (new in 0.37)

string_vacancies number 75000 cf. web2c docs

pool_free number 5000 cf. web2c docs

max_strings number 15000 cf. web2c docs

strings_free number 100 cf. web2c docs

nest_size number 50 cf. web2c docs

max_in_open number 15 cf. web2c docs

param_size number 60 cf. web2c docs

save_size number 4000 cf. web2c docs

stack_size number 300 cf. web2c docs

dvi_buf_size number 16384  cf. web2c docs

error_line number 79 cf. web2c docs

half error_line number 50 cf. web2c docs

max_print_line number 79 cf. web2c docs

ocp_list_size number 1000 cf. web2c docs

ocp_buf_size number 1000 cf. web2c docs

ocp_stack_size number 1000 cf. web2c docs

hash_extra number 0 cf. web2c docs

pk_dpi number 72 cf. web2c docs

trace_file_names boolean true false disables TEX's normal file open-close feedback
(the assumption is that callbacks will take care of that)

file_line_error boolean false do file:1line style error messages

halt_on_error boolean false abort run on the first encountered error

formatname string if no format name was given on the commandline, this
key will be tested first instead of simply quitting

jobname string if no input file name was given on the commandline,
this key will be tested first instead of simply giving
up

Note: the numeric values that match web2c parameters are only used if kpse_init is explicitly set to
false. In all other cases, the normal values from texmf . cnf are used.

413 The font library

The font library provides the interface into the internals of the font system, and also it contains helper
functions to load traditional TEX font metrics formats. Other font loading functionality is provided by the
fontloader library that will be discussed in the next section.

4.13.1 Loading a tfm file

<table> fnt = font.read_tfm(<string> name, <number> s)

LuaTEX Lua Libraries 81 /\0



The number is a bit special:

e if it is positive, it specifies an ‘at size’ in scaled points.
e if it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of the font.

The internal structure of the metrics font table that is returned is explained in chapter 7.

4.13.2 Loading a vf file

<table> vf_fnt = font.read_vf(<string> name, <number> s)

The meaning of the number s, and the format of the returned table is similar to the one returned by the
read_tfm() function.

4.13.3 The fonts array

The whole table of TEX fonts is accessible from Lua using a virtual array.

font.fonts[n] = { ... }
<table> f = font.fonts[n]

See chapter 7 for the structure of the tables. Because this is a virtual array, you cannot call pairs on
it, but see below for the font.each iterator.

The two metatable functions implementing the virtual array are:

<table> f = font.getfont (<number> n)
font.setfont (<number> n, <table> f)

Also note the following: assignments can only be made to fonts that have already been defined in TEX,
but have not been accessed at all since that definition. This limits the usability of the write access to
font.fonts quite a lot, a less stringent ruleset will likely be implemented later.

4.13.4 Checking a font’s status

You can test for the status of a font by calling this function:
<boolean> f = font.frozen(<number> n)

The return value is one of true (unassignable), false (can be changed) or nil (not a valid font at all).

4.13.5 Defining a font directly

You can define your own font into font.fonts by calling this function:

. 82 LuaTgX Lua Libraries



<number> i = font.define(<table> f)

The return value is the internal id number of the defined font (the index into font.fonts). If the font
creation fails, an error is raised. The table is a font structure, as explained in chapter 7.

4.13.6 Projected next font id

number i = font.nextid();

This returns the font id number that would be returned by a font.define call if it was executed at
this spot in the code flow. This is useful for virtual fonts that need to reference themselves.

4.13.7 Currently active font

<number> i = font.current();
font.current (<number> i);

This gets or sets the currently used font number.

4.13.8 Maximum font id

<number> i = font.max();

This is the largest used index in font.fonts.

4.13.9 lterating over all fonts
for i,v in font.each() do

end

This is an iterator over each of the defined TEX fonts. The first returned value is the index in font . fonts,
the second the font itself, as a Lua table. The indices are listed incrementally, but they do not always
form an array of consecutive numbers: in some cases there can be holes in the sequence.

414 The fontloader library (0.36)

This library used to be called ‘fontforge’. The library is still available under that name for now, but
that alias will be removed starting with beta 0.41.0

LuaTgX Lua Libraries 83 |



4.14.1 Getting quick information on a font

local info = fontloader.info('filename')

This function returns either nil, or a table, or an array of small tables (in the case of a TrueType
collection). The returned table(s) will contain six fairly interesting information items from the font(s)
defined by the file:

key type  explanation

fontname string the PostScript name of the font

fullname string the formal name of the font

familyname string the family name this font belongs to
weight string a string indicating the color value of the font
version string the internal font version

italicangle float the slant angle

Getting information through this function is (sometimes much) more efficient than loading the font prop-
erly, and is therefore handy when you want to create a dictionary of available fonts based on a directory
contents.

4.14.2 Loading an OpenType or TrueType file

If you want to use an OpenType font, you have to get the metric information from somewhere. Using the
fontloader library, the basic way to get that information is thus:

function load_font (filename)
local metrics = nil
local font = fontloader.open(filename)
if font then
metrics = fontloader.to_table(font)
fontloader.close(font)
end
return metrics
end

myfont = load_font('/opt/tex/texmf/fonts/data/arial.ttf')
The main function call is
f, w = fontloader.open('filename')

The first return value is a table representation of the font. The second return value is a table containing
any warnings and errors reported by fontloader while opening the font. In normal typesetting, you would
probably ignore the second argument, but it can be useful for debugging purposes.

\0\§ 84 LuaTgX Lua Libraries



For TrueType collections (when filename ends in 'ttc’), you have to use a second string argument to
specify which font you want from the collection. Use one of the fullname strings that are returned by
fontloader.info for that.

f, w = fontloader.open('filename','fullname')

The font file is parsed and partially interpreted by the font loading routines from FontForge. The file

format can be OpenType, TrueType, TrueType Collection, cff, or Type1.

There are a few advantages to this approach compared to reading the actual font file ourselves:

e The font is automatically re-encoded, so that the metrics table for TrueType and OpenType fonts
is using Unicode for the character indices.

e Many features are pre-processed into a format that is easier to handle than just the bare tables
would be.

e PostScript-based OpenType fonts do not store the character height and depth in the font file, so the
character boundingbox has to be calculated in some way.

e In the future, it may be interesting to allow Lua scripts access to the font program itself, perhaps
even creating or changing the font.

4.14.3 Applying a ‘feature file’

You can apply a feature file’ to a loaded font:
fontloader.apply_featurefile(f,'filename')

A ‘feature file’ is a textual representation of the features in an OpenType font. See http:
//www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html and http://fontforge.sourceforge
.net/featurefile.html for a more detailed description of feature files.

4.14.4 Applying an ‘afm file’

You can apply an ‘afm file’ to a loaded font:
fontloader.apply_afmfile(f,'filename')
An afm file is a textual representation of (some of) the meta information in a Type1 font. See http://www

.adobe.com/devnet/font/pdfs/5004.AFM_Spec.pdf for more information about afm files.

Note: If you fontloader.open() a Typel file named font . pfb, the library will automatically search
for and apply font.afm if it exists in the same directory as the file font.pfb. In that case, there is
no need for an explicit call to apply_afmfile().

LuaTEX Lua Libraries 85 /\Oi

-



4.15 Fontloader font tables

4.15.1 Table types

4.15.1.1 Top-level

The top-level keys in the returned table are (the explanations in this part of the documentation are not
yet finished):

key type explanation

table_version number indicates the metrics version (currently 0.3)

fontname string  PostScript font name

fullname string  official font name

familyname string  family name

weight string  weight indicator

copyright string  copyright information

filename string  the file name

version string  font version

italicangle float slant angle

units_per_em number 1000 for PostScript-based fonts, usually 2048 for
TrueType

ascent number height of ascender in units_per_em

descent number depth of descender in units_per_em

upos float

uwidth float

uniqueid number

glyphcnt number number of included glyphs

glyphs array

glyphmax number maximum used index the glyphs array

hasvmetrics number

onlybitmaps number

serifcheck number

isserif number

issans number

encodingchanged number

strokedfont number

use_typo_metrics number

weight_width_slope_only number

head_optimized_for_cleartype number

uni_interp enum unset, none, adobe, greek, japanese, trad_chi-
nese, simp_chinese, korean, ams

origname string  the file name, as supplied by the user

. 86 LualgX Lua Libraries



map
private

xuid

pfminfo

names

cidinfo

subfonts
commments
fontlog
cvt_names
anchor_classes
ttf_tables
ttf_tab_saved
kerns

vkerns

texdata

lookups

gpos

gsub

sm

features

mm

chosenname
macstyle
fondname
design_size
fontstyle_id
fontstyle_name
design_range_bottom
design_range_top
strokewidth
mark_classes
mark_class_names
creationtime
modificationtime
0s2_version
sfd_version
math
validation_state
horiz_base
vert_base
extrema_bound

table
table
string
table
table
table
array
string
string
string
table
table
table
table
table
table
table
table
table
table
table
table
string
number
string
number
number
table
number
number
float
array
array
number
number
number
number
table
table
table
table
number

LuaTgX Lua Libraries 87



4.15.1.2 Glyph items

The glyphs is an array containing the per-character information (quite a few of these are only present
if nonzero).

key type explanation

name string  the glyph name

unicode number unicode code point, or -1

boundingbox array array of four numbers

width number only for horizontal fonts

vwidth number only for vertical fonts

lsidebearing number only if nonzero and not equal to boundingbox[1]
class string  one of "automatic’, "'none", "base", "ligature’, "'mark", "component"
kerns array only for horizontal fonts, if set

vkerns array only for vertical fonts, if set

dependents array linear array of glyph name strings, only if nonempty
lookups table only if nonempty

ligatures table only if nonempty

anchors table only if set

comment string  only if set

tex_height number only if set

tex_depth number only if set

italic_correction number only if set

top_accent number only if set

is_extended_shape number only if this character is part of a math extension list
altuni table alternate Unicode items

vert_variants table

horiz_variants table

mathkern table

The kerns and vkerns are linear arrays of small hashes:

key type explanation
char string
off number

lookup string

The 1lookups is a hash, based on lookup subtable names, with the value of each key inside that a linear
array of small hashes:

key type explanation

type enum position, pair, substitution, alternate, multiple, ligature,
lcaret, kerning, vkerning, anchors, contextpos, contextsub,
chainpos, chainsub, reversesub, max, kernback, vkernback

specification table extra data

\0\§ 88 LuaTgX Lua Libraries



For the first seven values of type, there can be additional sub-information, stored in the sub-table
specification:

value type explanation

position table a table of the offset_specs type

pair table one string: paired, and an array of one or two offset_specs tables:
offsets

substitution table one string: variant

alternate table one string: components

multiple table one string: components

ligature table two strings: components, char

lcaret array linear array of numbers

Tables for offset_specs contain up to four number-valued fields: x (a horizontal offset), y (a vertical
offset), h (an advance width correction) and v (an advance height correction).

The ligatures is a linear array of small hashes:

key type explanation

lig table uses the same substructure as a single possub item
char string

components array linear array of named components

ccnt number

The anchor table is indexed by a string signifying the anchor type, which is one of

key type explanation

mark table placement mark

basechar table mark for attaching combining items to a base char
baselig  table mark for attaching combining items to a ligature
basemark table generic mark for attaching combining items to connect to
centry table cursive entry point

cexit table cursive exit point

The content of these is an short array of defined anchors, with the entry keys being the anchor names.
For all except baselig, the value is a single table with this definition:

key type explanation
X number x location
y number y location

ttf_pt_index number truetype point index, only if given

For baselig, the value is a small array of such anchor sets sets, one for each constituent item of the
ligature.

For clarification, an anchor table could for example look like this :

LuaTEX Lua Libraries 89 /\Oi



['anchor'] = {
['basemark'] = {
['Anchor-7'] = { ['x']=170, ['y']=1080 }

s

['mark'] ={
['Anchor-1'] = { ['x']=160, ['y']=810 },
['Anchor-4'] = { ['x']=160, ['y']=800 }

s

['baselig'] = {
(1] = { ['Anchor-2'] = { ['x']=160, ['y']=650 } },
[2] = { ['Anchor-2'] = { ['x']=460, ['y']=640 } }
}

}

4.15.1.3 map table

The top-level map is a list of encoding mappings. Each of those is a table itself.

key type explanation

enccount number

encmax number

backmax  number

remap table

map array non-linear array of mappings
backmap array non-linear array of backward mappings
enc table

The remap table is very small:

key type explanation
firstenc number
lastenc  number
infont number

The enc table is a bit more verbose:

key type explanation

enc_name string

char_cnt number

char_max number

unicode array of Unicode position numbers
psnames array of PostScript glyph names
builtin number

hidden number

only_1lbyte number

/\/0\§ 90 LuaTgX Lua Libraries



has_1byte
has_2byte
is_unicodebmp
is_unicodefull
is_custom
is_original
is_compact
is_japanese
is_korean
is_tradchinese
is_simplechinese
low_page
high_page
iconv_name
iso_2022_escape

number
number
number
number
number
number
number
number
number
number
number
number
number
string

string

4.15.1.4 private table

only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero
only if nonzero [name?]
only if nonzero

This is the font's private PostScript dictionary, if any. Keys and values are both strings.

4.15.1.5 cidinfo table

key type
registry string
ordering string
supplement number
version number

explanation

4.15.1.6 pfminfo table

The pfminfo table contains most of the OS/2 information:

key

pfmset
winascent_add
windescent_add
hheadascent_add
hheaddescent_add
typoascent_add
typodescent_add
subsuper_set
panose_set
hheadset

type

number
number
number
number
number
number
number
number
number
number

explanation

LuaTEX Lua Libraries 91 /\0

o

\

\

1
/



vheadset number

pimfamily number
weight number
width number
avgwidth number
firstchar number
lastchar number
fstype number
linegap number
vlinegap number
hhead_ascent number
hhead descent number
hhead_descent number
os2_typoascent number

0s2_typodescent  number
os2_typolinegap  number

0s2_winascent number
0s2_windescent number
0s2_subxsize number
0s2_subysize number
os2_subxoff number
0s2_subyoff number
0s2_supxsize number
0s2_supysize number
0s2_supxoff number
0s2_supyoff number
0s2_strikeysize  number
0os2_strikeypos number
os2_family_class number
0s2_xheight number
0s2_capheight number
os2_defaultchar number
0s2_breakchar number
0s2_vendor string
codepages table A two-number array of encoded code pages
unicoderages table A four-number array of encoded unicode ranges
panose table

The panose subtable has exactly 10 string keys:

key type  explanation

familytype string Values as in the OpenType font specification: Any, No Fit, Text and
Display, Script, Decorative, Pictorial

serifstyle string See the OpenType font specification for values

weight string id.

i 92 LuaTlgX Lua Libraries



proportion
contrast
strokevariation
armstyle
letterform
midline

xheight

string
string
string
string
string
string
string

4.15.1.7 names table

Each item has two top-level keys:

key type  explanation
lang string language for this entry

names table

id.
id.
id.
id.
id.
id.
id.

The names keys are the actual TrueType name strings. The possible keys are:

key

copyright
family
subfamily
uniqueid
fullname
version
postscriptname
trademark
manufacturer
designer
descriptor
venderurl
designerurl
license
licenseurl
idontknow
preffamilyname
prefmodifiers
compatfull
sampletext
cidfindfontname
wwsfamily
wwssubfamily

explanation

LuaTEX Lua Libraries 93 /\0

[ 2

\

\

1
/



4.15.1.8 anchor_classes table

The anchor_classes classes:

key type  explanation

name string a descriptive id of this anchor class
lookup string

type string one of mark, mkmk, curs, mklg

4.15.1.9 gpos table

Th gpos table has one array entry for each lookup. (The gpos_ prefix is somewhat redundant.)

key type  explanation

type string one of gpos_single, gpos_pair, gpos_cursive, gpos_mark2base, gpos_mark2lig-
ature, gpos_mark2mark, gpos_context, gpos_contextchain

flags table

name string

features array
subtables array

The flags table has a true value for each of the lookup flags that is actually set:

key type explanation
r2l boolean
ignorebaseglyphs boolean
ignoreligatures boolean

ignorecombiningmarks boolean

The features subtable of gpos has:

key type explanation
tag string
scripts table
ismac number (only if true)

The scripts table within features has:

key type explanation
script string
langs array of strings

The subtables table has:

key type explanation
name string

/\/0\§ 94 LuaTgX Lua Libraries



suffix string  (only if used

)
anchor_classes number (only if used)
vertical_kerning number (only if used)
kernclass table (only if used)

The kernclass with subtables table has:

key type explanation
firsts  array of strings

seconds array of strings

lookup  string associated lookup
offsets array of numbers

4.15.1.10 gsub table

This has identical layout to the gpos table, except for the type:

key type explanation
type string oneofgsub_single, gsub_multiple, gsub_alternate, gsub_ligature, gsub_con-
text, gsub_contextchain, gsub_reversecontextchain

4.15.1.11 ttf_tables and ttf_tab_saved tables

key type explanation
tag string

len number

maxlen number

data number

4.15.1.12 sm table

key type  explanation

type string one of "indic", "context’, "lig", "simple", "insert", "kern"

lookup  string

flags table a set of boolean values with the keys : "vert', "descending’, "always"

classes table an array of named classes
state table

The state table has:

key type explanation
next number
flags number

LuaTgX Lua Libraries 95 /\Oi

o



A small table that has 'mark’ and 'cur’ as possible keys, with the values being

lookup names. Only applies if the sm.type = context.

A small table that has 'mark’ and 'cur’ as possible keys, with the values strings.

Only applies if the sm.type = insert.

context table
insert table
kern table

A small array with kern data. Only applies if the sm.type = kern.

4.15.1.13 features table

key type explanation

feature number

ismutex number

default_setting number

strid number

featname table A set of mac names. macnames are like otfnames except that they also
have an "enc’ field

settings table

The settings are:

key type explanation

setting number

strid number

initially_enabled number

setname table A set of mac names. macnames are like otfnames except that they

4.15.1.14 mm table

key

axes
instance_count
positions
defweights

cdv

ndv

axismaps
named_instance_count
named_instances
apple

The axismaps:

also have an 'enc’ field

explanation
array of axis names

type
table
number
table
table
string
string
table
number
table
number

array of instance positions (#axes * instances )
array of default weights for instances

. 96 LualpX Lua Libraries



key type explanation

blends table an array of blend points
designs table an array of design values
min number
def number
max number

axisnames table a set of mac names

The named_instances is an array of instances:

key type explanation
names table a set of mac names
coords table an array of coordinates

4.15.1.15 math table

ScriptPercentScaleDown
ScriptScriptPercentScaleDown
DelimitedSubFormulaMinHeight
DisplayOperatorMinHeight
MathLeading

AxisHeight

AccentBaseHeight
FlattenedAccentBaseHeight
SubscriptShiftDown
SubscriptTopMax
SubscriptBaselineDropMin
SuperscriptShiftUp
SuperscriptShiftUpCramped
SuperscriptBottomMin
SuperscriptBaselineDropMax
SubSuperscriptGapMin
SuperscriptBottomMaxWithSubscript
SpaceAfterScript
UpperLimitGapMin
UpperLimitBaselineRiseMin
LowerLimitGapMin
LowerLimitBaselineDropMin
StackTopShiftUp
StackTopDisplayStyleShiftUp
StackBottomShiftDown
StackBottomDisplayStyleShiftDown
StackGapMin
StackDisplayStyleGapMin

LuaTEX Lua Libraries 97 /\0

-

\

\

1
/



StretchStackTopShiftUp
StretchStackBottomShiftDown
StretchStackGapAboveMin
StretchStackGapBelowMin
FractionNumeratorShiftUp
FractionNumeratorDisplayStyleShiftUp
FractionDenominatorShiftDown
FractionDenominatorDisplayStyleShiftDown
FractionNumeratorGapMin
FractionNumeratorDisplayStyleGapMin
FractionRuleThickness
FractionDenominatorGapMin
FractionDenominatorDisplayStyleGapMin
SkewedFractionHorizontalGap
SkewedFractionVerticalGap
OverbarVerticalGap
OverbarRuleThickness
OverbarExtraAscender
UnderbarVerticalGap
UnderbarRuleThickness
UnderbarExtraDescender
RadicalVerticalGap
RadicalDisplayStyleVerticalGap
RadicalRuleThickness
RadicalExtraAscender
RadicalKernBeforeDegree
RadicalKernAfterDegree
RadicalDegreeBottomRaisePercent
MinConnectorOverlap

4.15.1.16 validation_state table

key explanation
bad_ps_fontname
bad_glyph_table
bad_cff_table
bad_metrics_table
bad_cmap_table
bad_bitmaps_table
bad_gx_table
bad_ot_table
bad_os2_version
bad_sfnt_header

/\/0\5 98 LuaTgX Lua Libraries



4.15.1.17 horiz_base and vert_base table

key type explanation
tags table an array of script list tags
scripts table

The scripts subtable:

key type explanation
baseline table
default_baseline number

lang table

The lang subtable:

key type explanation
tag string  a script tag
ascent number

descent number
features table

The features points to an array of tables with the same layout except that in those nested tables, the

tag represents a language.

4.15.1.18 altuni table

An array of alternate Unicode values. Inside that array are hashes with:

key type explanation
unicode number
variant number

4.15.1.19 vert_variants and horiz_variants table

key type explanation
variants string
italic_correction number

parts table

The parts table is an array of smaller tables:

key type explanation
component string

extender  number

start number

LuaTEX Lua Libraries 99 /\0

®

-

\

\

1
/



end number
advance number

4.15.1.20 mathkern table

key type explanation
top_right table
bottom_right table
top_left table

bottom_left  table

Each of the subtables is an array of small hashes with two keys:

key type explanation
height number
kern number

4.15.1.21 kerns table

Substructure is identical to the per-glyph subtable.

4.15.1.22 vkerns table

Substructure is identical to the per-glyph subtable.

4.15.1.23 texdata table

key type  explanation
type string unset, text, math, mathext
params array 22 font numeric parameters

4.15.1.24 lookups table

Top-level 1lookups is quite different from the ones at character level. The keys in this hash are strings,
the values the actual lookups, represented as dictionary tables.

key type explanation

type number

format enum one of glyphs, class, coverage, reversecoverage
tag string

current_class array
before_class  array

/O\i 100 LuaTgX Lua Libraries



after_class
rules

array
array an array of rule items

Rule items have one common item and one specialized item:

key
lookups
glyph
class
coverage

type explanation

array a linear array of lookup names
array only if the parent’s format is glyph
array only if the parent’s format is glyph
array only if the parent’s format is glyph

reversecoverage array only if the parent’s format is glyph

A glyph table is:

key type
names string
back  string
fore string
A class table is:
key type
current array
before array
after array
coverage:

key type

current array

before array
after array
reversecoverage:
key

current
before

after
replacements

explanation

explanation
of numbers
of numbers
of numbers

explanation
of strings
of strings
of strings

type  explanation
array of strings
array of strings
array of strings
string

416 The lang library

This library provides the interface to LuaTgX's structure representing a lanquage, and the associated

functions.

LuaTgX Lua Libraries 101 /\0

-

\

\

1
/



<language> 1 = lang.new()
<language> 1 = lang.new(<number> id)

This function creates a new userdata object. An object of type <language> is the first argument to
most of the other functions in the 1ang library. These functions can also be used as if they were object
methods, using the colon syntax.

Without an argument, the next available internal id number will be assigned to this object. With argument,
an object will be created that links to the internal language with that id number.

<number> n = lang.id(<language> 1)
returns the internal \language id number this object refers to.

<string> n = lang.hyphenation(<language> 1)
lang.hyphenation(<language> 1, <string> n)

Either returns the current hyphenation exceptions for this language, or adds new ones. The syntax of
the string is explained in the next chapter, section 6.3.

lang.clear_hyphenation(<language> 1)
Clears the exception dictionary for this language.
<string> n = lang.clean(<string> o)

Creates a hyphenation key from the supplied hyphenation value. The syntax of the argument string is
explained in the next chapter, section 6.3. This function is useful if you want to do something else based
on the words in a dictionary file, like spell-checking.

<string> n = lang.patterns(<language> 1)
lang.patterns(<language> 1, <string> n)

Adds additional patterns for this language object, or returns the current set. The syntax of this string is
explained in the next chapter, section 6.3.

lang.clear_patterns(<language> 1)
Clears the pattern dictionary for this lanquage.

<number> n = lang.prehyphenchar(<language> 1)
lang.prehyphenchar(<language> 1, <number> n)

Gets or sets the ‘pre-break’ hyphen character for implicit hyphenation in this language (initially the
hyphen, decimal 45).

<number> n = lang.posthyphenchar (<language> 1)
lang.posthyphenchar (<language> 1, <number> n)

/0‘ 102 LuaTgX Lua Libraries



Gets or sets the ‘post-break’ hyphen character for implicit hyphenation in this language (initially null,
decimal 0, indicating emptiness).

<number> n = lang.preexhyphenchar(<language> 1)
lang.preexhyphenchar (<language> 1, <number> n)

Gets or sets the ‘pre-break’ hyphen character for explicit hyphenation in this language (initially null,
decimal 0, indicating emptiness).

<number> n = lang.postexhyphenchar(<language> 1)
lang.postexhyphenchar (<language> 1, <number> n)

Gets or sets the ‘post-break’ hyphen character for explicit hyphenation in this language (initially null,
decimal 0, indicating emptiness).

<boolean> success = lang.hyphenate(<node> head)
<boolean> success = lang.hyphenate(<node> head, <node> tail)

Inserts hyphenation points (discretionary nodes) in a node list. If tail is given as argument, processing
stops on that node. Currently, success is always true if head (and tail, if specified) are proper nodes,
regardless of possible other errors.

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node subtype
having the value 1. Glyph modes with different subtypes are not processed. See section 6.1 for more
details.

LuaTEX Lua Libraries 103 /\0

NJ

-

\
\
1

/



104 LuaTgX Lua Libraries



5 Math

The handling of mathematics in LuaTgX differs quite a bit from how TEX82 (and therefore pdfTEX)
handles math. First, LuaTEX adds primitives and extends some others so that Unicode input can be used
easily. Second, all of TEX82's internal special values (for example for operator spacing) have been made
accessible and changeable via control sequences. Third, there are extensions that make it easier to use
OpenType math fonts. And finally, there are some extensions that have been proposed in the past that
are now added to the engine.

5.1 The current math style

Starting with LuaTEX 0.39.0, it is possible to discover the math style that will be used for a formula in
an expandable fashion (while the math list is still being read). To make this possible, LuaTEX adds the
new primitive: \mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only
be read, not set.

5.1.1 \mathstyle

The returned value is between 0 and 7 (in math mode), or —1 (all other modes). For easy testing, the
eight math style commands have been altered so that the can be used as numeric values, so you can
write code like this:

\ifnum\mathstyle=\textstyle
\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle
\message{cramped text style}

\fi \fi

5.1.2 \Ustack

There are a few math commands in TEX where the style that will be used is not known straight from
the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would therefore
normally return wrong values for \mathstyle. To fix this, LuaTEX introduces a special prefix command:
\Ustack:

$\Ustack {a \over b}$

The \Ustack command will scan the next brace and start a new math group with the correct (numerator)
math style.

Math 105 (‘Ii)

@

-

\
\
1

/



5.2 Unicode math characters

Character handling is now extended up to the full Unicode range. The extension from 8-bit to 16-bit was
already present in Aleph by means of a set of extra primitives starting with the \o prefix, the extension
to full Unicode (the \U prefix) is compatible with XgTEX.

The math primitives from TEX and Aleph are kept as they are, except for the ones that convert from input
to math commands: mathcode, omathcode, delcode, and odelcode. These four now allow for a
21-bit character argument on the left hand side of the equals sign.

Some of the Aleph math primitives and the new LuaTgX primitives read more than one separate value.
This is shown in the tables below by a plus sign in the second column.

The input for such primitives would look like this:
\def\overbrace {\Umathaccent O 1 "23DE }
Altered TEX82 primitives:

primitive value range (in hex)
\mathcode 0-10FFFF = 0-8000
\delcode 0-10FFFF = O-FFFFFF

Unaltered:

primitive value range (in hex)
\mathchardef 0-8000

\mathchar 0-7FFF
\mathaccent O0-7FFF
\delimiter 0-7FFFFFF
\radical 0-7FFFFFF

Altered Aleph primitives:

primitive value range (in hex)
\omathcode O0-10FFFF = 0-8000000
\odelcode O0-10FFFF = 04+0-FFFFFF+FFFFFF

Unaltered:

primitive value range (in hex)
\omathchardef 0-8000000

\omathchar 0-7FFFFFF
\omathaccent 0-7FFFFFF
\odelimiter  0+0-7FFFFFF + FFFFFF
\oradical 04+0-7FFFFFF + FFFFFF

New primitives that are compatible with X3TgX:

( 0 106 Math



primitive value range (in hex)
\Umathchardef 0+0+0-74+FF+10FFFF’
\Umathcode 0-10FFFF = 04+0+0-74+FF+10FFFF'
\Udelcode 0-10FFFF = 04+-0-FF+10FFFF?
\Umathchar 04+04+0-74+FF+10FFFF
\Umathaccent 0+040-7+FF+10FFFF?
\Udelimiter 04+-0+0-7+FF4+10FFFF?
\Uradical 04-0-FF4+10FFFF?

\Umathcharnum -80000000-7FFFFFFF3
\Umathcodenum 0-10FFFF = -80000000-7FFFFFFF?3
\Udelcodenum 0-10FFFF = -80000000-7FFFFFFF3

Note 1: \Umathchardef<csname>="8"0"0 and \Umathchardef<number>="8"0"0 are also ac-
cepted.

Note 2: The new primitives that deal with delimiter-style objects do not set up a ‘large family’. Selecting
a suitable size for display purposes is expected to be dealt with by the font via the \Unathoperator-
size parameter (more information a following section).

Note 3: For these three primitives, all information is packed into a single signed integer. For the first
two (\Umathcharnum and \Umathcodenum), the lowest 21 bits are the character code, the 3 bits
above that represent the math class, and the family data is kept in the topmost bits (This means that
the values for math families 128-255 are actually negative). For \Udelcodenum there is no math class;
the math family information is stored in the bits directly on top of the character code. Using these three
commands is not as natural as using the two- and three-value commands, so unless you know exactly
what you are doing and absolutely require the speedup resulting from the faster input scanning, it is
better to use the verbose commands instead.

New primitives that exist in LuaTEX only (all of these will be explained in following sections):

primitive value range (in hex)

\Umathbotaccent 04+04+0-74+FF+10FFFF

\Umathaccents 04+-04+0+0+4+-04+-0-7+FF+10FFFF4+7+FF+10FFFF
\Uroot 0+0-FF+10FFFF?

\Uoverdelimiter 0+0-FF4+10FFFF2
\Uunderdelimiter 0+0-FF4+10FFFF2
\Udelimiterover 0+0-FF4+10FFFF2
\Udelimiterunder O0+0-FF-+10FFFF2

5.3 Cramped math styles

LuaTEX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle
\crampedtextstyle

Math 107 (0

 J

-

\
\
1

/



\crampedscriptstyle

\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as arguments
to the math parameter settings that will be added shortly.

5.4 Math parameter settings

In LuaTgX, the font dimension parameters that TEX used in math typesetting are now accessible via
primitive commands. In fact, refactoring of the math engine has resulted in many more parameters than

were accessible before.

primitive name
\Umathquad
\Unathaxis

\Umathoperatorsize
\Umathoverbarkern
\Umathoverbarrule
\Umathoverbarvgap
\Umathunderbarkern
\Umathunderbarrule
\Umathunderbarvgap
\Umathradicalkern
\Umathradicalrule
\Umathradicalvgap

\Umathradicaldegreebefore

\Umathradicaldegreeafter

\Umathradicaldegreeraise

\Unmathstackvgap
\Umathstacknumup
\Unathstackdenomdown
\Umathfractionrule
\Umathfractionnumvgap
\Unathfractionnumup
\Umathfractiondenomvgap
\Umathfractiondenomdown
\Umathfractiondelsize
\Umathlimitabovevgap
\Umathlimitabovebgap

108 Math

description

the width of 18mu’s

height of the vertical center axis of the math formula above the
baseline

minimum size of large operators in display mode

vertical clearance above the rule

the width of the rule

vertical clearance below the rule

vertical clearance below the rule

the width of the rule

vertical clearance above the rule

vertical clearance above the rule

the width of the rule

vertical clearance below the rule

the forward kern that takes place before placement of the radical
degree

the backward kern that takes place after placement of the radical
degree

this is the percentage of the total height and depth of the radical
sign that the degree is raised by. It is expressed in percents, so
60% is expressed as the integer 60.

vertical clearance between the two elements in a \atop stack
numerator shift upward in \atop stack

denominator shift downward in \atop stack

the width of the rule in a \over

vertical clearance between the numerator and the rule

numerator shift upward in \over

vertical clearance between the denominator and the rule
denominator shift downward in \over

minimum delimiter size for \. . .withdelims

vertical clearance for limits above operators

vertical baseline clearance for limits above operators



\Umathlimitabovekern
\Umathlimitbelowvgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Unathoverdelimitervgap
\Umathoverdelimiterbgap
\Umathunderdelimitervgap
\Umathunderdelimiterbgap
\Umathsubshiftdrop
\Umathsubshiftdown
\Umathsupshiftdrop
\Unathsupshiftup
\Umathsubsupshiftdown
\Unathsubtopmax

\Unathsupbottommin
\Unathsupsubbottommax
\Umathsubsupvgap

\Umathspaceafterscript
\Umathconnectoroverlapmin

space reserved at the top of the limit

vertical clearance for limits below operators

vertical baseline clearance for limits below operators

space reserved at the bottom of the limit

vertical clearance for limits above delimiters

vertical baseline clearance for limits above delimiters

vertical clearance for limits below delimiters

vertical baseline clearance for limits below delimiters

subscript drop for boxes and subformulas

subscript drop for characters

superscript drop (raise, actually) for boxes and subformulas
superscript raise for characters

subscript drop in the presence of a superscript

the top of standalone subscripts cannot be higher than this above
the baseline

the bottom of standalone superscripts cannot be less than this above
the baseline

the bottom of the superscript of a combined super- and subscript be
at least as high as this above the baseline

vertical clearance between super- and subscript

additional space added after a super- or subscript

minimum overlap between parts in an extensible recipe

Each of the parameters in this section can be set by a command like this:

\Umathquad\displaystyle=1lem

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

5.5 Font-based Math Parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have to
set each of them by hand. For this reason, LuaTgX initializes a bunch of these parameters whenever
you assign a font identifier to a math family based on either the traditional math font dimensions in
the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy and cmex), or based
on the named values in a potential MathConstants table when the font is loaded via Lua. If there is
a MathConstants table, this takes precedence over font dimensions, and in that case no attention is
paid to which family is being assigned to: the MathConstants tables in the last assigned family sets

all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names match those
using in the TEXbook. Assignments to \textfont set the values for the cramped and uncramped display
and text styles. Use \scriptfont for the script styles, and \scriptscriptfont for the scriptscript
styles (totalling eight parameters for three font sizes). In the tfm case, assignments only happen in
family 2 and family 3 (and of course only for the parameters for which there are font dimensions).

Math 109 ! 0

e ]



Besides the parameters below,

fonts, this should be set to zero.

variable

\Umathaxis
\Umathoperatorsize
\Umathfractiondelsize

\Umathfractiondenomdown

\Umathfractiondenomvgap

\Umathfractionnumup

\Umathfractionnumvgap
\Umathfractionrule
\Umathlimitabovebgap
\Umathlimitabovekern
\Umathlimitabovevgap
\Umathlimitbelowbgap
\Umathlimitbelowkern
\Umathlimitbelowvgap
\Umathoverdelimitervgap
\Umathoverdelimiterbgap
\Umathunderdelimitervgap
\Umathunderdelimiterbgap
\Umathoverbarkern
\Umathoverbarrule
\Umathoverbarvgap
\Umathquad
\Umathradicalkern
\Umathradicalrule
\Umathradicalvgap

\Umathradicaldegreebefore
\Umathradicaldegreeafter
\Umathradicaldegreeraise
\Unathspaceafterscript
\Umathstackdenomdown

\Umathstacknumup

\Umathstackvgap
\Umathsubshiftdown
\Umathsubshiftdrop
\Umathsubsupshiftdown

\Umathsubtopmax
\Umathsubsupvgap
\Unathsupbottommin
\Unathsupshiftdrop
\Umathsupshiftup

\Umathsupsubbottommax
\Umathunderbarkern
\Umathunderbarrule

110 Math

wn
-
(L=
—
(1

QQ

T,S5,S,SS, SS

Q

T,5,S,SS, SS
D’
T,5,'S,SS, SS
D’
T

S, S, SS, S8

OO0 4040400 !

D’

=
=
v
\
)
v
)
\

T,T,5'S,SS, SS

S, S, SS, S8

S, S, SS, S

’
’

TT1,5,S,SS,SS

o400
ododog

default value opentype
AxisHeight
DisplayOperatorMinHeight
01

01

FractionDenominatorDisplayStyleShiftDown

FractionDenominatorShiftDown

FractionDenominatorDisplayStyleGapMin

FractionDenominatorGapMin
FractionNumeratorDisplayStyleShiftUp
FractionNumeratorShiftUp

FractionNumeratorDisplayStyleGapMin

FractionNumeratorGapMin
FractionRuleThickness
UpperLimitBaselineRiseMin

01

UpperLimitGapMin
LowerLimitBaselineDropMin
01

LowerLimitGapMin
StretchStackGapBelowMin
StretchStackTopShiftUp
StretchStackGapAboveMin
StretchStackBottomShiftDown
OverbarExtraAscender
OverbarRuleThickness
OverbarVerticalGap
<font_size(f)>"
RadicalExtraAscender
RadicalRuleThickness
RadicalDisplayStyleVerticalGap

RadicalVerticalGap

RadicalKernBeforeDegree
RadicalKernAfterDegree
RadicalDegreeBottomRaisePercent
SpaceAfterScript
StackBottomDisplayStyleShiftDown
StackBottomShiftDown
StackTopDisplayStyleShiftUp
StackTopShiftUp
StackDisplayStyleGapMin
StackGapMin
SubscriptShiftDown
SubscriptBaselineDropMin
SubscriptShiftDownWithSuperscript®
or SubscriptShiftDown
SubscriptTopMax
SubSuperscriptGapMin
SuperscriptBottomMin
SuperscriptBaselineDropMax
SuperscriptShiftUp
SuperscriptShiftUp
SuperscriptShiftUpCramped
SuperscriptBottomMaxWithSubscript
UnderbarExtraDescender
UnderbarRuleThickness

LuaTEX also looks at the ‘space’ font dimension parameter. For math

default value tfm
axis_height

6

delim1

delim2

denom1

denom?2
3*default_rule_thickness
default_rule_thickness
num1

num2
3*default_rule_thickness
default_rule_thickness
default_rule_thickness
big_op_spacing3
big_op_spacingb
big_op_spacing1
big_op_spacing4
big_op_spacingb
big_op_spacing2
big_op_spacing
big_op_spacing3
big_op_spacing2
big_op_spacing4
default_rule_thickness
default_rule_thickness
3*default_rule_thickness
math_quad
default_rule_thickness
<not set>?
(default_rule_thickness+
(abs(math_x_height)/4))>
(default_rule_thickness+
(abs(default_rule_thickness)/4))
<not set>?

<not set>?

<not set>27
script_space*

denom1

denom?2

num1

num3
7*default_rule_thickness
3*default_rule_thickness
sub1

sub_drop

sub2

(abs(math_x_height * 4) / 5)
4*default_rule_thickness
(abs(math_x_height) / 4)
sup_drop

supl

sup2

sup3

(abs(math_x_height * 4) / 5)
default_rule_thickness
default_rule_thickness



\Unmathunderbarvgap -
\Unmathconnectoroverlapmin -

UnderbarVerticalGap 3*default_rule_thickness
MinConnectorOverlap 0>

Note 1: OpenType fonts set \Unathfractiondelsize, \Umathlimitabovekern, \Umathlim-
itbelowkern to zero and set \Umathquad to the font size of the used font, because these are not
supported in the MATH table,

Note 2: tfm fonts do not set \Umathradicalrule because TEX82 uses the height of the radical instead.
When this parameter is indeed not set when LuaTEX has to typeset a radical, a backward compatibility
mode will kick in that assumes that an oldstyle TEX font is used. Also, they do not set \Umathradi-
caldegreebefore, \Unathradicaldegreeafter, and \Unathradicaldegreeraise. These are
then automatically initialized to 5/18quad, —10/18quad, and 60.

Note 3: If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTEX has to
typeset a formula because this needs parameters from both family2 and family3. This provides a partial
backward compatibility with TEX82, but that compatibility is only partial: once the \Umathradicalv-
gap is set, it will not be recalculated any more.

Note 4: (also if tfm fonts are used) A similar situation arises wrt. \Unathspaceafterscript: it is
not set until the first time LuaTEX has to typeset a formula. This provides some backward compatibility
with TEX82. But once the \Umathspaceafterscript is set, \scriptspace will never be looked at
again.

Note 5: Tfm fonts set \Umathconnectoroverlapmin to zero because TEX82 always stacks extensibles

without any overlap.

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType
fonts. In tfm font mode, it is artificially set to one scaled point more than the initial attempt’s size, so
that always the ‘first next’ will be tried, just like in TEX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that is
expressed in a percentage instead of as a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ Opentype
Math font Cambria, but it is useful enough to be added. New in version 0.38.

5.6 Math spacing setting

Besides the parameters mentioned in the previous sections, there are also 64 new primitives to control
the math spacing table (as explained in Chapter 18 of the TEXbook). The primitive names are a simple
matter of combining two math atom types, but for completeness’ sake, here is the whole list:

\Umathbinordspacing \Umathbininnerspacing
\Unmathbinopspacing \Unmathrelordspacing
\Umathbinbinspacing \Umathrelopspacing
\Umathbinrelspacing \Umathrelbinspacing
\Umathbinopenspacing \Umathrelrelspacing
\Umathbinclosespacing \Unmathrelopenspacing

\Umathbinpunctspacing

\Umathrelclosespacing

Math 111 (0

e

\
\
1

/



\Unmathrelpunctspacing
\Umathrelinnerspacing
\Unathopenordspacing
\Umathopenopspacing
\Umathopenbinspacing
\Umathopenrelspacing
\Unathopenopenspacing
\Umathopenclosespacing
\Unmathopenpunctspacing
\Umathopeninnerspacing
\Unathcloseordspacing
\Unathcloseopspacing
\Umathclosebinspacing
\Umathcloserelspacing
\Umathcloseopenspacing
\Umathcloseclosespacing
\Umathclosepunctspacing
\Umathcloseinnerspacing

\Unmathpunctordspacing
\Umathpunctopspacing
\Unmathpunctbinspacing
\Umathpunctrelspacing
\Umathpunctopenspacing
\Umathpunctclosespacing
\Umathpunctpunctspacing
\Umathpunctinnerspacing
\Umathinnerordspacing
\Umathinneropspacing
\Unathinnerbinspacing
\Unathinnerrelspacing
\Umathinneropenspacing
\Unathinnerclosespacing
\Umathinnerpunctspacing
\Unathinnerinnerspacing

These parameters are of type \muskip, so setting a parameter can be done like this:
\Unathopordspacing\displaystyle=4mu plus 2mu

They are all initialized by initex to the values mentioned in the table in Chapter 18 of the TEXbook.

Note 1: for ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and \thick-
muskip are treated especially. In their case a pointer to the corresponding internal parameter is saved,
not the actual \muskip value. This means that any later changes to one of these three parameters will
be taken into account.

Note 2: Careful readers will realise that there are also primitives for the items marked * in the TEXbook.
These will not actually be used as those combinations of atoms cannot actually happen, but it seemed
better not to break orthogonality. They are initialized to zero.

5.7 Math accent handling

LuaTgX supports both top accents and bottom accents in math mode. For bottom accents, there is the
new primitive \Umathbotaccent. If you want to set both top and bottom accents on a single item,
there is \Umathaccents.

If a math top accent has to be placed and the accentee is a character and has a non-zero top_accent
value, then this value will be used to place the accent instead of the \skewchar kern used by TEX82.

The top_accent value represents a vertical line somewhere in the accentee. The accent will be
shifted horizontally such that its own top_accent line coincides with the one from the accentee. If
the top_accent value of the accent is zero, then half the width of the accent followed by its italic
correction is used instead.

112 Math



The vertical placement of a top accent depends on the x_height of the font of the accentee (as explained
in the TEXbook), but if value that turns out to be zero and the font had a MathConstants table, then
AccentBaseHeight is used instead.

If a math bottom accent has to be placed, the bot_accent value is checked instead of top_accent.
Because bottom accents do not exist in TEX82, the \skewchar kern is ignored.

The vertical placement of a bottom accent is straight below the accentee, no correction takes place.

LuaTEX has horizontal extensibles, and when present, these will be used by the accent commands.

5.8 Math root extension

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its syntax
is an extension of \Uradical:

\Uradical <fam integer> <char integer> <radicand>
\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by the math parameters \Umathradicaldegreebefore,
\Umathradicaldegreeafter, and \Unathradicaldegreeraise. The degree will be typeset in
\scriptscriptstyle.

5.9 Math kerning in super- and subscripts

The character fields in a lua-loaded OpenType math font can have a ‘mathkern’ table. The format of this
table is the same as the ‘mathkern’ table that is returned by the fontloader library, except that all
height and kern values have to be specified in actual scaled points.

When a super- or subscript has to be placed next to a math item, LuaTEX checks whether the super- or
subscript and the nucleus are both simple character items. If they are, and if the fonts of both character
imtes are OpenType fonts (as opposed to legacy TEX fonts), then LuaTEX will use the OpenType MATH
algorithm for deciding on the horizontal placement of the super- or subscript.

This works as follows:

The vertical position of the script is calculated.

The default horizontal position is flat next to the base character.

For superscripts, the italic correction of the base character is added.

For a superscript, two vertical values are calculated: the bottom of the script (after shifting up), and
the top of the base. For a subscript, the two values are the top of the (shifted down) script, and the
bottom of the base.

e For each of these two locations:

Math 113 (0

\
\
1

/



— find the mathkern value at this height for the base (for a subscript placement, this is the bot-
tom_right corner, for a superscript placement the top_right corner)
— find the mathkern value at this height for the script (for a subscript placement, this is the top_left
corner, for a superscript placement the bottom_left corner)
— add the found values together to get a preliminary result.
e The horizontal kern to be applied is the smallest of the two results from previous step.

The mathkern value at a specific height is the kern value that is specified by the next higher height
and kern pair, or the highest one in the character (if there is no value high enough in the character), or
simply zero (if the character has no mathkern pairs at all).

5.10 Scripts on horizontally extensible items like arrows

The new primitives \Uunderdelimiter and \Uoverdelimiter (both from 0.35) allow the placement
of a subscript or superscript on an automatically extensible item and \Udelimiterunder and \Ude-
limiterover (both from 0.37) allow the placement of an automatically extensible item as a subscript
or superscript on a nucleus.

The vertical placements are controlled by \Unathunderdelimiterbgap, \Unathunderdelimiter-
vgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit
placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable scripted
style, the subscript in \Uunderdelimiter is cramped as well.

5.11 Extensible delimiters

LuaTgX internally uses a structure that supports OpenType ‘MathVariants' as well as tfm ‘extensible
recipes’.

5.12 Other Math changes

5.12.1 Verbose versions of single-character math commands

LuaTEX defines six new primitives that have the same function as =, _, $, and $3.

primitive explanation

\Usuperscript Duplicates the functionality of ~

\Usubscript Duplicates the functionality of _

\Ustartmath Duplicates the functionality of $, when used in non-math mode.
\Ustopmath Duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath Duplicates the functionality of $$, when used in non-math mode.
\Ustopdisplaymath Duplicates the functionality of $$, when used in display math mode.

/\O/i 114 Math



All are new in version 0.38. The \Ustopmath and \Ustopdisplaymath primitives check if the current
math mode is the correct one (inline vs. displayed), but you can freely intermix the four mathon/mathoff
commands with explicit dollar sign(s).

5.12.2 Allowed math commands in non-math modes

The commands \mathchar, \omathchar, and \Umathchar and control sequences that are the result
of \mathchardef, \omathchardef, or \Unathchardef are also acceptable in the horizontal and
vertical modes. In those cases, the \textfont from the requested math family is used.

5.13 Math todo

The following items are still todo.

Pre-scripts.

Multi-story stacks.

Flattened accents for high characters (?).

Better control over the spacing around displays and handling of equation numbers.
Support for multi-line displays using MathML style alignment points.

Math 115 /\0

~e

\
\
1

/



116 Math



6 Languages and characters, fonts and glyphs

LuaTgX's internal handling of the characters and glyphs that eventually become typeset is quite different
from the way TEX82 handles those same objects. The easiest way to explain the difference is to focus
on unrestricted horizontal mode (i. e. paragraphs) and hyphenation first. Later on, it will be easy to deal
with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char_node records when they are encountered
by the main control loop. TEX attaches and processes the font information while creating those records,
so that the resulting ‘horizontal list’ contains the final forms of ligatures and implicit kerning. This
packaging is needed because we may want to get the effective width of for instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time) the
char_node records into a string array by replacing ligatures with their components and ignoring the
kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated result back
into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream. Keep in mind that
the paragraph may contain unboxed horizontal material, which then already contains ligatures and kerns
and the words therein are part of the hyphenation process.

The char_node records are somewhat misnamed, as they are glyph positions in specific fonts, and
therefore not really ‘characters’ in the linguistic sense. There is no language information inside the
char_node records. Instead, language information is passed along using language whatsit records
inside the horizontal list.

In LuaTgX, the situation is quite different. The characters you type are always converted into
glyph_node records with a special subtype to identify them as being intended as linguistic char-
acters. LuaTgX stores the needed language information in those records, but does not do any font-
related processing at the time of node creation. It only stores the index of the font.

When it becomes necessary to typeset a paragraph, LuaTEX first inserts all hyphenation points right
into the whole node list. Next, it processes all the font information in the whole list (creating ligatures
and adjusting kerning), and finally it adjusts all the subtype identifiers so that the records are ‘glyph
nodes’ from now on.

That was the broad overview. The rest of this chapter will deal with the minutiae of the new process.

6.1 Characters and glyphs

TEX82 (including pdfTEX) differentiated between char_nodes and 1ig_nodes. The former are simple
items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the same memory as
tokens did. The latter also contained a list of components, and a subtype indicating whether this ligature
was the result of a word boundary, and it was stored in the same place as other nodes like boxes and
kerns and glues.

In LuaTgX, these two types are merged into one, somewhat larger structure called a glyph_node.
Besides having the old character, font, and component fields, and the new special fields like ‘attr’
(see section 8.1.2.12), these nodes also contain:

Languages and characters, fonts and glyphs 117 /\0
e

\

\

1
/



e A subtype, split into four main types:
— character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.
— glyph, for specific font glyphs: the lowest bit (bit 0) is not set.
— ligature, for ligatures (bit 1 is set)
— ghost, for ‘ghost objects’ (bit 2 is set)
The latter two make further use of two extra fields (bits 3 and 4):
— left, for ligatures created from a left word boundary and for ghosts created from \leftghost
— right, for ligatures created from a right word boundary and for ghosts created from \right-
ghost
For ligatures, both bits can be set at the same time (in case of a single-glyph word).
e glyph_nodes of type ‘character’ also contain language data, split into four items that were current
when the node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthy-
phenmin (8 bits), and \uchyph (1 bit).

Incidentally, LuaTEX allows 32768 separate languages, and words can be 256 characters long.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from TEX82:
changes to \uchyph become effective immediately, not at the end of the current partial paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves, so there
is no longer a possible dependency on the surrounding language settings. In TEX82, a mid-paragraph
statement like \unhbox0 would process the box using the current paragraph language unless there was
a \setlanguage issued inside the box. In LuaTgX, all language variables are already frozen.

6.2 The main control loop

In LuaTEX's main loop, almost all input characters that are to be typeset are converted into glyph_node
records with subtype ‘character’, but there are a few small exceptions.

First, the \accent primitives creates nodes with subtype ‘glyph’ instead of ‘character’: one for the actual
accent and one for the accentee. The primary reason for this is that \accent in TEX82 is explicitly
dependent on the current font encoding, so it would not make much sense to attach a new meaning to the
primitive’s name, as that would invalidate many old documents and macro packages. A secondary reason
is that in TEX82, \accent prohibits hyphenation of the current word. Since in LuaTgX hyphenation
only takes place on ‘character’ nodes, it is possible to achieve the same effect.

This change of meaning did happen with \char, that now generates ‘character’ nodes, consistent with
its changed meaning in X3TEX. The changed status of \char is not yet finalized, but if it stays as it is
now, a new primitive \glyph should be added to directly insert a font glyph id.

Second, all the results of processing in math mode eventually become nodes with ‘glyph’ subtypes.

Third, the Aleph-derived commands \leftghost and \rightghost create nodes of a third subtype:
‘ghost’. These nodes are ignored completely by all further processing until the stage where inter-glyph
kerning is added.

Fourth, automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after
sensing an input character that matches the \hyphenchar in the current font. This test is wrong, in our

. 118 Languages and characters, fonts and glyphs



opinion: whether or not hyphenation takes place should not depend on the current font, it is a language
property.

In LuaTgX, it works like this: if LuaTEX senses a string of input characters that matches the value of
the new integer parameter \exhyphenchar, it will insert an explicit discretionary after that series
of nodes. Initex sets the \exhyphenchar="\-. Incidentally, this is a global parameter instead of a
language-specific one because it may be useful to change the value depending on the document structure
instead of the text language.

The only use LuaTEX has for \hyphenchar is at the check whether a word should be considered for
hyphenation at all. If the \hyphenchar of the font attached to the first character node in a word
is negative, then hyphenation of that word is abandoned immediately. This behaviour is added for
backward compatibility only, and the use of \hyphenchar=-1 as a means of preventing hyphenation
should not be used in new LuaTEX documents.

Fifth, \setlanguage no longer creates whatsits. The meaning of \setlanguage is changed so that
it is now an integer parameter like all others. That integer parameter is used in \glyph_node creation
to add language information to the glyph nodes. In conjunction, the \language primitive is extended
so that it always also updates the value of \setlanguage.

Sixth, the \noboundary command (this command prohibits word boundary processing where that would
normally take place) now does create whatsits. These whatsits are needed because the exact place of
the \noboundary command in the input stream has to be retained until after the ligature and font
processing stages.

Finally, there is no longer a main_loop label in the code. Remember that TEX82 did quite a lot
of processing while adding char_nodes to the horizontal list? For speed reasons, it handled that
processing code outside of the ‘main control’ loop, and only the first character of any ‘word’ was handled
by that ‘main control’ loop. In LuaTEX, there is no longer a need for that (all hard work is done
later), and the (now very small) bits of character-handling code have been moved back inline. When
\tracingcommands is on, this is visible because the full word is reported, instead of just the initial
character.

6.3 Loading patterns and exceptions

The hyphenation algorithm in LuaTEX is quite different from the one in TEX82, although it uses essentially
the same user input.

After expansion, the argument for \patterns has to be proper UTF-8, no \char or \chardef-ed
commands are allowed. (The current implementation is even more strict, and will reject all non-Unicode
characters, but that will be changed in the future. For now, the generated errors are a valuable tool in
discovering font-encoding specific pattern files)

Likewise, the expanded argument for \hyphenation also has to be proper UTF-8, but here a tiny little
bit of extra syntax is provided:

1. three sets of arguments in curly braces ({}{}{}) indicates a desired complex discretionary, with
arguments as in \discretionary's command in normal document input.
2. - indicates a desired simple discretionary, cf. \- and \discretionary- in normal document input.

Languages and characters, fonts and glyphs 119 /\0

e

\

\
1
/



3. Internal command names are ignored. This rule is provided especially for \discretionary, but it
also helps to deal with \relax commands that may sneak in.

4. = indicates a hyphen in the document input (but that is only useful in documents where \exhy-
phenchar is not equal to the hyphen).

The expanded argument is first converted back to a space-separated string while dropping the internal
command names. This string is then converted into a dictionary by a routine that creates key—value
pairs by converting the other listed items. It is important to note that the keys in an exception dictionary
can always be generated from the values. Here are a few examples:

value implied key (input) effect
ta-ble table ta\-ble (= ta\discretionary {-}{}{}ble)
ba{k-}{}{c}ken backen ba\discretionary {k-}{}{cl}ken

The resultant patterns and exception dictionary will be stored under the language code that is the
present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the command
is optional in the TEX-based input syntax. The underlying reason for that is that it is conceivable that a
whole dictionary of words is stored as a plain text file and loaded into LuaTgX using one of the functions
in the Lua lang library. This loading method is quite a bit faster than going through the TEX language
primitives, but some (most?) of that speed gain would be lost if it had to interpret command sequences
while doing so.

The motivation behind the e-TEX extension \savinghyphcodes was that hyphenation heavily depended
on font encodings. This is no longer true in LuaTEX, and the corresponding primitive is ignored pending
complete removal. The future semantics of \uppercase and \lowercase are still under consideration,
no changes have taken place yet.

6.4 Applying hyphenation

The internal structures LuaTgX uses for the insertion of discretionaries in words is very different from
the ones in TEX82, and that means there are some noticeable differences in handling as well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still reads
patgen-generated pattern files, but LuaTEX uses a finite state hash to match the patterns against the
word to be hyphenated. This algorithm is based on the ‘libhnj library used by OpenOffice, which in
turn is inspired by TEX. The memory allocation for this new implementation is completely dynamic, so
the web2c setting for trie_size is ignored.

Differences between LuaTgX and TpX82 that are a direct result of that:
e LualgX happily hyphenates the full Unicode character range.

e Pattern and exception dictionary size is limited by the available memory only, all allocations are
done dynamically. The trie-related settings in texmf . cnf are ignored.

/0‘ 120 Languages and characters, fonts and glyphs
e



o Because there is no ‘trie preparation’ stage, language patterns never become frozen. This means that
the primitive \patterns (and its Lua counterpart lang.patterns) can be used at any time, not
only in initex.

e Only the string representation of \patterns and \hyphenation is stored in the format file. At
format load time, they are simply re-evaluated. It follows that there is no real reason to preload
languages in the format file. In fact, it is usually not a good idea to do so. It is much smarter to load
patterns no sooner than the first time they are actually needed.

e LuaTpX uses the language-specific variables \prehyphenchar and \posthyphenchar in the
creation of implicit discretionaries, instead of TEX82's \hyphenchar, and the values of the lan-
guage-specific variables \preexhyphenchar and \postexhyphenchar for explicit discretionaries
(instead of TEX82's empty discretionary).

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usually the
preceding one, but the following one for the items inserted at the left-hand side of a word).

Word boundaries are no longer implied by font switches, but by language switches. One word can have
two separate fonts and still be hyphenated correctly (but it can not have two different lanquages, the
\setlanguage command forces a word boundary).

All languages start out with \prehyphenchar="\-, \posthyphenchar=0, \preexhyphenchar=0
and \postexhyphenchar=0. When you assign the values of one of these four parameters, you are
actually changing the settings for the current \language, this behavior is compatible with \patterns
and \hyphenation.

LuaTEX also hyphenates the first word in a paragraph.

Words can be up to 256 characters long (up from 64 in TEX82). Longer words generate an error right now,
but eventually either the limitation will be removed or perhaps it will become possible to silently ignore
the excess characters (this is what happens in TEX82, but there the behaviour cannot be controlled).

If you are using the Lua function lang.hyphenate, you should be aware that this function expects to
receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’, ‘ligature’, or
‘ghost’ nodes, nor does it know how to deal with kerning. In the near future, it will be able to skip over
‘ghost’ nodes, and we may add a less fuzzy function you can call as well.

The hyphenation exception dictionary is maintained as key-value hash, and that is also dynamic, so the
hyph_size setting is not used either.

A technical paper detailing the new algorithm will be released as a separate document.

6.5 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTEX will process the list to
convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two stages: first
all ligatures are processed, then all kerning information is applied to the result list. But those two
stages are somewhat dependent on each other: If the used font makes it possible to do so, the ligaturing
stage adds virtual ‘character’ nodes to the word boundaries in the list. While doing so, it removes and
interprets noboundary nodes. The kerning stage deletes those word boundary items after it is done

Languages and characters, fonts and glyphs 121 /\0

\
\

1
/

e



with them, and it does the same for ‘ghost’ nodes. Finally, at the end of the kerning stage, all remaining
‘character’ nodes are converted to ‘glyph’ nodes.

This work separation is worth mentioning because, if you overrule from Lua only one of the two callbacks
related to font handling, then you have to make sure you perform the tasks normally done by LuaTgX
itself in order to make sure that the other, non-overruled, routine continues to function properly.

Work in this area is not yet complete, but most of the possible cases are handled by our rewritten
ligaturing engine. We are working hard to make sure all of the possible inputs will become supported
soon.

For example, take the word office, hyphenated of-fice, using a ‘normal’ font with all the f-i
ligatures:

Initial: {oHfH{fH{it{c}H{e}

After hyphenation:  {o}{f}{{-},{},{FH{fH{it{c}He}
First ligature stage:  {o}{{f}{-},{f},{f£}{it{c}H{e}
Final result: {oH{LEH -}, {fi}, {ffitHcHe}

That's bad enough, but if there was a hyphenation point between the £ and the i: of-f-ice, the final
result should be:

{oH{{£}H{-3,
{{£H{-},
{i},
{£fi}},
{{££}{-},
{i},
{ffi}}H{cH{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level discretionary
that resulted from the first hyphenation point. And this is only a simple case.

As of 0.39.0, the solution in LuaTEX is not as smart as all this. It essentially creates the following set of
items for of-f-ice:

{o{{£}H{-3,
{fi},
{ffil}},

{{£}{-},
{1} b
{fi}H{cHe}

This is not perfect (because the off-ice hyphenation will never be chosen), but luckily three-item
ligatures with multiple embedded hyphenation points are extremely rare indeed: even this example was
artificially created. A full, perfect solution is possible, but is low on the agenda now that at least office
can be hyphenated properly again.

/0‘ 122 Languages and characters, fonts and glyphs
’ (]



6.6 Breaking paragraphs into lines

This code is still almost unchanged, but because of the above-mentioned changes with respect to discre-
tionaries and ligatures, line breaking will potentially be different from traditional TEX. The actual line
breaking code is still based on the TEX82 algorithms, and it does not expect there to be discretionaries
inside of discretionaries.

But that situation is now fairly common in LuaTgX, due to the changes to the ligaturing mechanism.
And also, the LuaTgX discretionary nodes are implemented slightly different from the TEX82 nodes: the
no_break text is now embedded inside the disc node, where previously these nodes kept their place in
the horizontal list (the discretionary node contained a counter indicating how many nodes to skip).

The combined effect of these two differences is that LuaTEX does not always use all of the potential
breakpoints in a paragraph, especially when fonts with many ligatures are used.

Languages and characters, fonts and glyphs 123 /\Oi

\

/

@



124 Languages and characters, fonts and glyphs



7 Font structure

All TEX fonts are represented to Lua code as tables, and internally as C structures. All keys in the
table below are saved in the internal font structure if they are present in the table returned by the de-
fine_font callback, or if they result from the normal tfm/vf reading routines if there is no define_font
callback defined.

The column ‘from vf' means that this key will be created by the font.read_vf () routine, ‘from tfm’
means that the key will be created by the font.read_tfm() routine, and ‘used’ means whether or not
the LuaTgX engine itself will do something with the key.

The top-level keys in the table are as follows:

key from vf from tfm wused value type description

name yes yes yes  string metric (file) name

area no yes yes  string (directory) location, typically empty

used no yes yes  boolean used already? (initial: false)

characters yes yes yes  table the defined glyphs of this font

checksum yes yes no number default: 0

designsize no yes yes  number expected size (default: 655360 ==
10pt)

direction no yes yes  number
default: 0 (LTR)

encodingbytes no no yes  number default: depends on format

encodingname no no yes  string encoding name

fonts yes no yes  table locally used fonts

fullname no no yes  string actual (PostScript) name

header yes no no string header comments, if any

hyphenchar no no yes  number default: TeX's \hyphenchar

parameters no yes yes  hash default: 7 parameters, all zero

size no yes yes  number loaded (at) size. (default: same as de-
signsize)

skewchar no no yes  number default: TeX's \skewchar

type yes no yes  string basic type of this font

format no no yes  string disk format type

embedding no no yes  string pdf inclusion

filename no no yes  string disk file name

tounicode no yes yes  number if 1, LuaTgX assumes per-glyph touni-
code entries are present in the font

stretch no no yes  number the ‘stretch’ value from \pdffontex-
pand

shrink no no yes  number the ‘shrink’ value from \pdffontex-
pand

step no no yes  number the ‘step’ value from \pdffontexpand

Font structure 125 /\Of
AN ®

-



auto_expand

expansion_factor

attributes
cache

no

no

no
no

no

no

no
no

yes

no

yes
yes

boolean
number

string
string

the ‘autoexpand’ keyword from \pdf-
fontexpand

the actual expansion factor of an ex-
panded font

the \pdffontattr

this key controls caching of the lua table
on the tex end. yes: use a reference to
the table that is passed to LuaTEX (this
is the default). no: don't store the table
reference, don't cache any lua data for
this font. renew: don't store the table
reference, but save a reference to the
table that is created at the first access
to one of its fields in font.fonts. (new in
0.40.0, before that caching was always

yes)

The key name is always required. The keys stretch, shrink, step and optionally auto_expand
only have meaning when used together: they can be used to replace a post-loading \pdffontexpand
command. The expansion_factor is value that can be present inside a font in font.fonts. It is
the actual expansion factor (a value between —-shrink and stretch, with step step) of a font that
was automatically generated by the font expansion algorithm. The key attributes can be used to
replace \pdffontattr. The key used is set by the engine when a font is actively in use, this makes
sure that the font’s definition is written to the output file (dvi or pdf). The tfm reader sets it to false. The
direction is a number signalling the ‘normal’ direction for this font. There are sixteen possibilities:

number meaning number

0

~N O O WN -

LT
LL
LB
LR
RT
RL
RB
RR

8

9

10
11
12
13
14
15

meaning

1T
TL
B
TR
BT
BL
BB
BR

These are Omega-style direction abbreviations: the first character indicates the ‘first’ edge of the char-
acter glyphs (the edge that is seen first in the writing direction), the second the ‘top’ side.

The parameters is a hash with mixed key types. There are seven possible string keys, as well as a
number of integer indices (these start from 8 up). The seven strings are actually used instead of the

bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

name

slant

126 Font structure

internal remapped number
1



space
space_stretch
space_shrink
x_height

quad
extra_space

N O O~ Wi

The keys type, format, embedding, fullname and filename are used to embed OpenType fonts
in the result pdf

The characters table is a list of character hashes indexed by an integer number. The number is the
‘internal code’ TEX knows this character by.

Two very special string indexes can be used also: 1eft_boundary is a virtual character whose ligatures
and kerns are used to handle word boundary processing. right_boundary is similar but not actually
used for anything (yet!).

Other index keys are ignored.

Each character hash itself is a hash. For example, here is the character f' (decimal 102) in the font
cmr10 at 10 points:

[102] = {
['width'] = 200250,
['height'] = 455111,
['depth'] = O,
['italic'] = 50973,
['kerns'] = {
[63] 50973,
[93] = 50973,
[39] = 50973,
[33] = 50973,
[41] 50973

1,
['ligatures'] = {
[102] = {
['char']
['type'l =

1
O =
[=Y

},

[108] = {
['char']
['type'l]l =

1
O =
w

},

[105] = {
['char']
['type'l =

1o
O =
N

Font structure 127 /\0‘1

-



}

Of course a more compact is also possible, but keep in mind that reserved words cannot be used compact

and in LuaTEX we often have a type key.

[102] = {
iiéatures = {
[102] = {
char = 11,
['type'] =
+,
+
+

0

The following top-level keys can be present inside a character hash:

key

width

height

depth

italic
top_accent
bot_accent
left_protruding
right_protruding
expansion_factor

tounicode

next
extensible

vert_variants
horiz_variants
kerns
ligatures

commands
name

128 Font structure

from vf from tfm

yes
no
no
no

no
no
no
no
no

no

no
no

no
no
no
no

yes
no

yes
yes
yes
yes

no
no
no
no
no

no

yes
yes

no
no
yes
yes

no
no

used
yes
yes
yes
yes

maybe
maybe
maybe
maybe
maybe

maybe

yes
yes

yes
yes
yes
yes

yes
no

value type
number
number
number
number

number
number
number
number
number

string

number
table

table
table
table
table

array
string

description

character’s width, in sp (default 0)
character’s height, in sp (default 0)
character’s depth, in sp (default 0)
character’s italic correction, in sp (de-
fault zero)
character’s top accent alignment place,
in sp (default zero)

character's bottom accent alignment
place, in sp (default zero)

character’s \1pcode

character’'s \rpcode

character’'s \efcode

character’'s Unicode equivalent(s), in
UTF-16BE hexadecimal format

the ‘next larger’ character index

the constituent parts of an extensible
recipe

constituent parts of a vertical variant
set

constituent parts of a horizontal vari-
ant set

kerning information

ligaturing information
virtual font commands

the character (PostScript) name



index no no yes  number the (OpenType or TrueType) font glyph

index
used no yes yes  boolean typeset already (default: false)?
mathkern no no yes  table math cut-in specifications

The values of top_accent, bot_accent and mathkern are used only for math accent and superscript
placement, see the 105math chapter in this manual for details.

The values of left_protruding and right_protruding are used only when \pdfprotrudechars
is non-zero.

Whether or not expansion_factor is used depends on the font's global expansion settings, as well
as on the value of \pdfadjustspacing.

The usage of tounicode is this: if this font specifies a tounicode=1 at the top level, then LuaTEX will
construct a /ToUnicode entry for the pdf font (or font subset) based on the character-level tounicode
strings, where they are available. If a character does not have a sensible Unicode equivalent, do not
provide a string either (no empty strings).

If the font-level tounicode is not set, then LuaTEX will build up /ToUnicode based on the TEX code
points you used, and any character-level tounicodes will be ignored. At the moment, the string format
is exactly the format that is expected by Adobe CMap files (utf-16BE in hexadecimal encoding), minus

the enclosing angle brackets. This may change in the future. Small example: the tounicode for a fi
ligature would be 00660069.

The presence of extensible will overrule next, if that is also present. It in in turn can be overruled
by vert_variants.

The extensible table is very simple:

key type description

top number ‘top’ character index

mid number ‘middle’ character index
bot number ‘bottom’ character index
rep number ‘repeatable’ character index

The horiz_variants and vert_variants are arrays of components. Each of those components is
itself a hash of up to five keys:

key type explanation
component number The character index (note that this is an encoding number, not a name).
extender number One (1) if this part is repeatable, zero (0) otherwise.

start number Maximum overlap at the starting side (in scaled points).
end number Maximum overlap at the ending side (in scaled points).
advance number Total advance width of this item (can be zero or missing, then the natural size

of the glyph for character component is used).

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either a non-
negative integer or the string value right_boundary), with the values the kerning to be applied, in
scaled points.

Font structure 129 /\0‘

-

\
1



The ligatures table is a hash indexed by character index (and ‘character index’ is defined as either
a non-negative integer or the string value right_boundary), with the values being yet another small
hash, with two fields:

key  type description
type number the type of this ligature command, default 0
char number the character index of the resultant ligature

The char field in a ligature is required.

The type field inside a ligature is the numerical or string value of one of the eight possible ligature
types supported by TEX. When TEX inserts a new ligature, it puts the new glyph in the middle of the
left and right glyphs. The original left and right glyphs can optionally be retained, and when at least
one of them is kept, it is also possible to move the new ‘insertion point’ forward one or two places. The
glyph that ends up to the right of the insertion point will become the next ‘left’.

textual (Knuth) number string result
l+r=:n 0 =: In
L+ r=n 1 =:| [nr
l+r|=:n 2 |=: |Ln
L+r|=]n 3 [=:1 [lnr
L+ r=]>n 5 =:|> njr
L+ r|=>n 6 |=:> [n
L+ r|=>n 7 [=:1>  Lnr
L+ r|=>>n 1" [=:1>> In|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature replaces
both original glyphs. In this table the | indicates the final insertion point.

The commands array is explained below.

7.1 Real fonts

Whether or not a TEX font is a ‘real’ font that should be written to the pdf document is decided by
the type value in the top-level font structure. If the value is real, then this is a proper font, and the
inclusion mechanism will attempt to add the needed font object definitions to the pdf.

Values for type:

value description
real this is a base font
virtual this is a virtual font

The actions to be taken depend on a number of different variables:

/\O.f 130 Font structure



o Whether the used font fits in an 8-bit encoding scheme or not
e The type of the disk font file
e The level of embedding requested

A font that uses anything other than an 8-bit encoding vector has to be written to the pdf in a different
way.

The rule is: if the font table has encodingbytes set to 2, then this is a wide font, in all other cases it
isn't. The value 2 is the default for OpenType and TrueType fonts loaded via Lua. For Type1 fonts, you
have to set encodingbytes to 2 explicitly. For pk bitmap fonts, wide font encoding is not supported
at all.

If no special care is needed, LuaTEX currently falls back to the mapfile-based solution used by pdfTEX
and dvips. This behaviour will be removed in the future, when the existing code becomes integrated in
the new subsystem.

But if this is a ‘wide’ font, then the new subsystem kicks in, and some extra fields have to be present in
the font structure. In this case, LuaTEX does not use a map file at all.

The extra fields are: format, embedding, fullname, cidinfo (as explained above), filename, and
the index key in the separate characters.

Values for format are:

value description

typel this is a PostScript Type1 font

type3 this is a bitmapped (pk) font

truetype this is a TrueType or TrueType-based OpenType font
opentype this is a PostScript-based OpenType font

(type3 fonts are provided for backward compatibility only, and do not support the new wide encoding
options.)

Values for embedding are:

value description

no don’t embed the font at all

subset include and atttempt to subset the font
full include this font in its entirety

It is not possible to artificially modify the transformation matrix for the font at the moment.

The other fields are used as follows: The fullname will be the PostScript/pdf font name. The cidinfo
will be used as the character set (the CID /Ordering and /Registry keys). The filename points
to the actual font file. If you include the full path in the £ilename or if the file is in the local directory,
LuaTEX will run a little bit more efficient because it will not have to re-run the find_xxx_file callback
in that case.

Be careful: when mixing old and new fonts in one document, it is possible to create PostScript name
clashes that can result in printing errors. When this happens, you have to change the fullname of the
font.

Font structure 131 /\0
e

-

\
!



Typeset strings are written out in a wide format using 2 bytes per glyph, using the index key in the
character information as value. The overall effect is like having an encoding based on numbers instead of
traditional (PostScript) name-based reencoding. The way to get the correct index numbers for Typel
fonts is by loading the font via fontloader.open; use the table indices as index fields.

This type of reencoding means that there is no longer a clear connection between the text in your input
file and the strings in the output pdf file. Dealing with this is high on the agenda.

7.2 Virtual fonts

You have to take the following steps if you want LuaTEX to treat the returned table from define_font
as a virtual font:

e Set the top-level key type to virtual.
e Make sure there is at least one valid entry in fonts (see below).
e (Give a commands array to every character (see below).

The presence of the toplevel type key with the specific value virtual will trigger handling of the rest
of the special virtual font fields in the table, but the mere existence of 'type’ is enough to prevent LuaTEX
from looking for a virtual font on its own.

Therefore, this also works ‘in reverse’: if you are absolutely certain that a font is not a virtual font,
assigning the value base or real to type will inhibit LuaTEX from looking for a virtual font file,
thereby saving you a disk search.

The fonts is another Lua array. The values are one- or two-key hashes themselves, each entry indi-
cating one of the base fonts in a virtual font. In case your font is referring to itself, you can use the
font.nextid () function which returns the index of the next to be defined font which is probably the
currently defined one.

An example makes this easy to understand

fonts = {
{ name = 'ptmr8a', size = 655360 1},
{ name = 'psyr', size = 600000 },
{id =38}

}

says that the first referenced font (index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second
is psyr loaded at a little over 9pt. The third one is previously defined font that is known to LuaTEX as
fontid ‘38’

The array index numbers are used by the character command definitions that are part of each character.

The commands array is a hash where each item is another small array, with the first entry representing
a command and the extra items being the parameters to that command. The allowed commands and their
arguments are:

1 . 132 Font structure
\\\ /.



command name
font
char

node

slot
push
nop

pop
rule
down
right
special
image

comment

arguments
1
1

_ _, 2, a2 NN OO ON

any

arg type
number
number

node

number

2 numbers
number
number
string
image

any

description

select a new font from the local fonts table

typeset this character number from the current font, and move
right by the character’s width

output this node (list), and move right by the width of this
list

a shortcut for the combination of a font and char command
save current position

do nothing

pop position

output a rule ht* wd, and move right.

move down on the page

move right on the page

output a \special command

output an image (the argument can be either an <image>
variable or an image_spec table)

the arguments of this command are ignored

Here is a rather elaborate glyph commands example:

commands = {
{'push'},

{'right', 5000},
{'font', 3%},
{'char', 97},

{'pop'},

{'down', -200000},
{'special', 'pdf: 1 0 0 rg'}
{'rule', 500000, 20000}
{'special','pdf: 0 g'}

-- remember where we are

-- move right about 0.08pt

-- select the fonts[3] entry

-- place character 97 (ASCII 'a')
-- go all the way back

-- move upwards by about 3pt

-- switch to red color

-—- draw a bar

-- back to black

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual font
is essentially only a re-encoding, then you do usually not have create an explicit font’ command in the

array.

Rules inside of commands arrays are built up using only two dimensions: they do not have depth. For
correct vertical placement, an extra down command may be needed

Regardless of the amount of movement you create within the commands, the output pointer will always
move by exactly the width that was given in the width key of the character hash. Any movements that
take place inside the commands array are ignored on the upper level.

Font structure 133 /\Oi.

-



7.2.1 Artificial fonts

Even in a ‘real’ font, there can be virtual characters. When LuaTgX encounters a commands field inside
a character when it becomes time to typeset the character, it will interpret the commands, just like for a
true virtual character. In this case, if you have created no ‘fonts’ array, then the default (and only) ‘base’
font is taken to be the current font itself. In practice, this means that you can create virtual duplicates
of existing characters which is useful if you want to create composite characters.

Note: this feature does not work the other way around. There can not be ‘real’ characters in a virtual
font! You cannot use this technique for font re-encoding either; you need a truly virtual font for that
(because characters that are already present cannot be altered)

7.2.2 Example virtual font
Finally, here is a plain TEX input file with a virtual font demonstration:

\directlua {
callback.register('define_font',
function (name,size)

if name == 'cmr10-red' then
f = font.read_tfm('cmrl0',size)
f.name = 'cmrlO-red'
f.type = 'virtual'
f.fonts = {{ name = 'cmr10', size = size }}

for i,v in pairs(f.characters) do
if (string.char(i)):find('[tacohanshartmut]') then
v.commands = {
{'special','pdf: 1 0 0 rg'},
{'char',i},
{'special','pdf: 0 g'},
}
else
v.commands = {{'char',i}}
end
end
else
f = font.read_tfm(name,size)
end
return f
end

/\0‘ 134 Font structure



\font\myfont = cmri0-red at 10pt \myfont This is a line of text \par
\font\myfontx= cmrl0 at 10pt \myfontx Here is another line of text \par

Font structure 135 /\0“

-



136 Font structure



8 Nodes

8.1 Lua node representation

TeX's nodes are represented in Lua as userdata object with a variable set of fields. In the following
syntax tables, such the type of such a userdata object is represented as (node).

The current return value of node.types() is: hlist (0), vlist (1), rule (2), ins (3), mark (4),
adjust (5), disc (7), whatsit (8), math (9), glue (10), kern (11), penalty (12), unset (13), style
(14), choice (15), noad (16), op (17), bin (18), rel (19), open (20), close (21), punct (22), inner
(23), radical (24), fraction (25), under (26), over (27), accent (28), vcenter (29), fence (30),
math_char (31), sub_box (32), sub_mlist (33), math_text_char (34), delim (35), margin_kern
(36), glyph (37), align_record (38), pseudo_file (39), pseudo_line (40), page_insert (41),
split_insert (42), expr_stack (43), nested_list (44), span (45), attribute (46), glue_spec
(47), attribute_list (48), action (49), temp (50), align_stack (51), movement_stack (52),
if_stack (53), unhyphenated (54), hyphenated (55), delta (56), passive (57), shape (58), fake
(100), but as already mentioned, the math and alignment nodes in this list are not supported at the
moment. The useful list is described in the next sections.

8.1.1 Auxiliary items

A few node-typed userdata objects do not occur in the ‘normal’ list of nodes, but can be pointed to from
within that list. They are not quite the same as regular nodes, but it is easier for the library routines to
treat them as if they were.

8.1.1.1 glue_spec items

Skips are about the only type of data objects in traditional TEX that are not a simple value. The structure
that represents the glue components of a skip is called a glue_spec, and it has the following accessible
fields:

key type explanation
width number
stretch number
stretch_order number
shrink number

shrink_order  number

These objects are reference counted, so there is actually an extra field named ref _count as well. This
item type will likely disappear in the future, and the glue fields themselves will become part of the nodes
referencing glue items.

Nodes 137 /\0‘.

-



8.1.1.2 attribute_list and attribute items

The newly introduced attribute registers are non-trivial, because the value that is attached to a node is
essentially a sparse array of key-value pairs.

It is generally easiest to deal with attribute lists and attributes by using the dedicated functions in the
node library, but for completeness, here is the low-level interface.

An attribute_list item is used as a head pointer for a list of attribute items. It has only one

user-visible field:

field type explanation
next <node> pointer to the first attribute

A normal node’s attribute field will point to an item of type attribute_list, and the next field in
that item will point to the first defined ‘attribute’ item, whose next will point to the second ‘attribute’
item, etc.

Valid fields in attribute items:
field type explanation
next <node> pointer to the next attribute

number number the attribute type id
value number the attribute value

8.1.1.3 action item

Valid fields: action_type, named_id, action_id, file, new_window, data, ref_count

These are a special kind of item that only appears inside pdf start link objects.

field type explanation
action_type number

action_id number or string

named_id number

file string

new_window  number

data string

ref count number

8.1.2 Main text nodes

These are the nodes that comprise actual typesetting commands.

A few fields are present in all nodes regardless of their type, these are:

field type explanation
next <node> The next node in a list, or nil

\0" 138 Nodes



id number  The node’s type (id) number
subtype number The node subtype identifier

The subtype is sometimes just a stub entry. Not all nodes actually use the subtype, but this way you
can be sure that all nodes accept it as a valid field name, and that is often handy in node list traversal.
In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field called
prev. That last field is always present, but only initialized on explicit request: when the function
node.slide() is called, it will set up the prev fields to be a backwards pointer in the argument node
list.

8.1.2.1 hlist nodes

Valid fields: attr, width, depth, height, dir, shift, glue_order, glue_sign, glue_set, 1list

field type explanation

subtype number  unused

attr <node> The head of the associated attribute list

width number

height number

depth number

shift number a displacement perpendicular to the character progression direction
glue_order number a number in the range 0-4, indicating the glue order
glue_set number  the calculated glue ratio

glue_sign  number

list <node> the body of this list

dir string the direction of this box. see 8.1.4.7

8.1.2.2 vlist nodes

Valid fields: As for hlist, except that ‘shift’ is a displacement perpendicular to the line progression
direction.

8.1.2.3 rule nodes

Valid fields: attr, width, depth, height, dir

field type explanation

subtype number unused

attr <node>

width number  the width of the rule; the special value —1073741824 is used for ‘running’ glue
dimensions

height number the height of the rule (can be negative)

Nodes 139 0,

-



depth number  the depth of the rule (can be negative)
dir string the direction of this rule. see 8.1.4.7

8.1.2.4 ins nodes

Valid fields: attr, cost, depth, height, spec, 1list

field type explanation

subtype number the insertion class

attr <node>

cost number  the penalty associated with this insert

height  number

depth number

list <node> the body of this insert

spec <node> a pointer to the \splittopskip glue spec

8.1.2.5 mark nodes

Valid fields: attr, class, mark

field type explanation

subtype number unused

attr <node>

class number  the mark class

mark table a table representing a token list

8.1.2.6 adjust nodes

Valid fields: attr, 1list

field type explanation
subtype number 0 = normal, 1 = ‘pre’
attr <node>

list <node> adjusted material

8.1.2.7 disc nodes

Valid fields: attr, pre, post, replace

field type explanation
subtype number indicates the source of a discretionary. 0 = the \discretionary command, 1
= the \~- command, 2 = added automatically following a -, 3 = added by the

® 140 Nodes



attr
pre
post
replace

hyphenation algorithm (simple), 4 = added by the hyphenation algorithm (hard
first item), 5 = added by the hyphenation algorithm (hard, second item)
<node>
<node> pointer to the pre-break text
<node> pointer to the post-break text
<node> pointer to the no-break text

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere.

8.1.2.8 math nodes

Valid fields: attr, surround

field
subtype
attr
surround

type explanation
number 0 = ‘on’, 1 = ‘off
<node>

number  width of the \mathsurround kern

8.1.2.9 glue nodes

Valid fields: attr, spec, leader

field
subtype

attr

spec
leader

8.1.2.10

type explanation

number 0 = \skip, 1-18 = internal glue parameters, 100 = \leaders, 101 = \clead-
ers, 102 = \xleaders

<node>

<node> pointer to a glue_spec item

<node> pointer to a box or rule for leaders

kern nodes

Valid fields: attr, kern

field
subtype
attr
kern

8.1.2.11

type explanation

number 0 = from font, 1 = from \kern or \/, 2 = from \accent
<node>

number

penalty nodes

Valid fields: attr, penalty

Nodes 141 /\0‘.

-



field type explanation
subtype number not used
attr <node>

penalty number

8.1.2.12 glyph nodes

Valid fields: attr, char, font, lang, left, right, uchyph, components, xoffset, yoffset

field type explanation
subtype number  bitfield
attr <node>

char number

font number

lang number

left number

right number

uchyph boolean

components <node> pointer to ligature components
xoffset number

yoffset number

Valid bits for the subtype field are:

bit meaning
character
glyph
ligature
ghost

left

right

O~ WN = O

See section 6.1 for a detailed description of the subtype field.

8.1.2.13 margin_kern nodes

Valid fields: attr, width, glyph

field type explanation

subtype number 0 = left side, 1 = right side
attr <node>

width number

glyph <node>

/\Ob 142 Nodes



8.1.3 Math nodes

These are the so—called ‘noad’s and the nodes that are specifically associated with math processing.
Most of these nodes contain sub-nodes so that the list of possible fields is actually quite small. First,
the subnodes:

8.1.3.1 Math kernel subnodes

Many object fields in math mode are either simple characters in a specific family or math lists or node
lists. There are four associated subnodes that represent these cases (in the following node descriptions
these are indicated by the word <kernel>).

The next and prev fields for these subnodes are unused.

8.1.3.1.1 math_char and math_text_char subnodes

Valid fields: attr, fam, char

field type explanation
attr <node>
char number
fam  number

The math_char is the simplest subnode field, it contains the character and family for a single glyph ob-
ject. The math_text_char is a special case that you will not normally encounter, it arises temporarily
during math list conversion (its sole function is to suppress a following italic correction).

8.1.3.1.2 sub_box and sub_mlist subnodes

Valid fields: attr, 1ist

field type explanation
attr <node>
list <node>

These two subnode types are used for subsidiary list items. For sub_box, the 1ist points to a ‘normal’
vbox or hbox. For sub_mlist, the 1ist points to a math list that is yet to be converted.

8.1.3.2 Math delimiter subnode

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next and prev
fields are unused.

Nodes 143 /\0

-

\

[



8.1.3.2.1 delim subnodes

Valid fields: attr, small_fam, small_char, large_fam, large_char

field type explanation
attr <node>
small char number
small_fam number
large_char number
large_fam  number

The fields 1large_char and large_fam can be zero, in that case the font that is sed for the small_fam
is expected to provide the large version as an extension to the small_char.

8.1.3.3 Math core nodes
First, there are the objects (the TEXbook calls then ‘atoms’) that are associated with the simple math

objects: Ord, Op, Bin, Rel, Open, Close, Punct, Inner, Over, Under, Vcent. These all have the same
fields, and they are combined into a single node type with separate subtypes for differentiation.

8.1.3.3.1 simple nodes

Valid fields: attr, nucleus, sub, sup

field type explanation
subtype number see below
attr <node>

nucleus <kernel>

sub <kernel>

sup <kernel>

Operators are a bit special because they occupy three subtypes. subtype.

number node sub type

0 Ord

1 Op, \displaylimits
2 Op, \limits

3 Op, \nolimits

4 Bin

® 144 Nodes



5 Rel

6 Open
7 Close
8 Punct
9 Inner

10 Under
11 Over

12 Vcent

8.1.3.3.2 accent nodes

Valid fields: attr, nucleus, sub, sup, accent, bot_accent

field type explanation
attr <node>

nucleus <kernel>

sub <kernel>

sup <kernel>

accent <kernel>

bot_accent <kernel>

8.1.3.3.3 style nodes

Valid fields: attr, style

field type  explanation
style string contains the style

There are eight possibilities for the string value: one of ‘display’, ‘text’, ‘script’, or ‘scriptscript’. Each of
these can have a trailing ' to signify ‘cramped’ styles.

8.1.3.3.4 choice nodes

Valid fields: attr, display, text, script, scriptscript

Nodes 145 /\0.

-



field type explanation

attr <node>
display <node>
text <node>
script <node>

scriptscript <node>

8.1.3.3.5 radical nodes

Valid fields: attr, nucleus, sub, sup, left, degree

field type explanation
attr <node>

nucleus <kernel>

sub <kernel>

sup <kernel>

left <delim>

degree <kernel> Only set by \Uroot

8.1.3.3.6 fraction nodes

Valid fields: attr, width, num, denom, left, right

field type explanation
attr <node>

width number

num <kernel>

denom <kernel>

left <delim>

right <delim>

8.1.3.3.7 fence nodes

Valid fields: attr, delim

field type explanation

subtype number 1 =\left ,2 =\middle , 3 = \right
attr <node>

delim <delim>

/\0’ 146 Nodes



8.1.4 whatsit nodes

Whatsit nodes come in many subtypes that you can ask for by running node.whatsits(): write
(1), close (2), special (3), local_par (6), dir (7), pdf_literal (8), pdf _refobj (10), pdf_re-
fxform (12), pdf _refximage (14), pdf _annot (15), pdf_start_link (16), pdf_end_link (17),
pdf_dest (19), pdf _thread (20), pdf _start_thread (21), pdf _end_thread (22), pdf _save_pos
(23), pdf _thread_data (24), pdf _link_data (25), open (0), late_lua (35), fake (100), pdf_col-
orstack (39), pdf_save (41), cancel_boundary (43), close_lua (36), pdf_setmatrix (40),
pdf_restore (42), user_defined (44),

8.1.4.1 open nodes

Valid fields: attr, stream, name, area, ext

field type explanation

attr <node>

stream number TEX's stream id number

name string file name

ext string file extension

area string file area (this may become obsolete)

8.1.4.2 write nodes

Valid fields: attr, stream, data

field type explanation

attr <node>

stream number TgX's stream id number

data table a table representing the token list to be written

8.1.4.3 close nodes

Valid fields: attr, stream

field type explanation
attr <node>
stream number TgX's stream id number

8.1.4.4 special nodes

Valid fields: attr, data

Nodes 147 /\0’

-



field type explanation
attr <node>
data string the \special information

8.1.4.5 language nodes

LuaTEX does not have language whatsits any more. All language information is already present inside
the glyph nodes themselves. This whatsit subtype will be removed in the next release.

8.1.4.6 local_par nodes

Valid fields: attr, pen_inter, pen_broken, dir, box_left, box_left_width, box_right,
box_right_width

field type explanation

attr <node>

pen_inter number interline penalty

pen_broken number  broken penalty

dir string the direction of this par. see 8.1.4.7
box_left <node> the \localleftbox
box_left_width  number width of the \localleftbox
box_right <node> the \localrightbox

box_right_width number width of the \localrightbox

8.1.4.7 dir nodes

Valid fields: attr, dir, level, dvi_ptr, dvi_h

field type explanation

attr <node>

dir string the direction (but see below)

level number  nesting level of this direction whatsit
dvi_ptr number a saved dvi buffer byte offset

dir_h number a saved dvi position

A note on dir strings. Direction specifiers are three-letter combinations of T, B, R, and L.

These are built up out of three separate items:

e the first is the direction of the ‘top’ of paragraphs.
e the second is the direction of the 'start’ of lines.
e the third is the direction of the 'top’ of glyphs.

Each of the three items can have 4 separate values, but the directions of the first and second items
always have to be perpendicular to each other, which limits the total to 16.

/\0’ 148 Nodes



Inside actual dir whatsit nodes, the representation of dir is not a three-letter but a four-letter combi-
nation. The first character in this case is always either + or -, indicating whether the value is pushed
or popped from the direction stack.

8.1.4.8 pdf_literal nodes

Valid fields: attr, mode, data

field type explanation

attr <node>

mode number the ‘mode’ setting of this literal
data string the \pdfliteral information

8.1.4.9 pdf_refobj nodes

Valid fields: attr, objnum

field type explanation
attr <node>
objnum number the referenced pdf object number

8.1.4.10 pdf_refxform nodes
Valid fields: attr, width, height, depth, objnum.

field type explanation

attr <node>

width  number

height number

depth  number

objnum number the referenced pdf object number

Be aware that pdf _refxform nodes have dimensions that are used by LuaTgX.

8.1.4.11 pdf_refximage nodes
Valid fields: attr, width, height, depth, objnum

field type explanation
attr <node>
width  number
height number

Nodes 149 /\0,

-



depth  number
objnum number the referenced pdf object number

Be aware that pdf _refximage nodes have dimensions that are used by LuaTgX.

8.1.4.12 pdf_annot nodes
Valid fields: attr, width, height, depth, objnum, data

field type explanation

attr <node>

width  number

height number

depth  number

objnum number the referenced pdf object number
data string the annotation data

8.1.4.13 pdf_start_link nodes

Valid fields: attr, width, height, depth, objnum, 1ink_attr, action

field type explanation

attr <node>

width number

height number

depth number

objnum number  the referenced pdf object number
link _attr table the link attribute token list
action <node> the action to perform

8.1.4.14 pdf_end_link nodes

Valid fields: attr

field type explanation
attr <node>

8.1.4.15 pdf_dest nodes
Valid fields: attr, width, height, depth, named_id, dest_id, dest_type, xyz_zoom, objnum

field type explanation
attr <node>

150 Nodes



width number
height number
depth number
named_id  number
dest_id number or string
dest_type number
Xyz_zoom  number
objnum number

is the dest_id a string value?
the destination id
type of destination

the pdf object number

8.1.4.16 pdf_thread nodes

Valid fields: attr, width, height, depth, named_id, thread_id, thread_attr

field type

attr <node>

width number
height number

depth number
named_id number
tread_id number or string

thread_attr number

explanation

is the tread_id a string value?
the thread id
extra thread information

8.1.4.17 pdf_start_thread nodes

Valid fields: attr, width, height, depth, named_id, thread_id, thread_attr

field type

attr <node>

width number
height number

depth number
named_id number
tread_id number or string

thread_attr number

explanation

is the tread_id a string value?
the thread id
extra thread information

8.1.4.18 pdf_end_thread nodes

Valid fields: attr

field type
attr <node>

explanation

Nodes 151 /\0

-

®
/l



8.1.4.19 pdf_save_pos nodes

Valid fields: attr

field type explanation
attr <node>

8.1.4.20 late_lua nodes

Valid fields: attr, reg, data, name

field type explanation

attr <node>

data string data to execute

name string the name to use for lua error reporting

8.1.4.21 pdf_colorstack nodes

Valid fields: attr, stack, cmd, data

field type explanation

attr <node>

stack number colorstack id number
cmd number command to execute
data  string data

8.1.4.22 pdf_setmatrix nodes

Valid fields: attr, data

field type explanation
attr <node>
data string data

8.1.4.23 pdf_save nodes

Valid fields: attr

field type explanation
attr <node>

/\0’ 152 Nodes



8.1.4.24 pdf_restore nodes

Valid fields: attr

field type explanation
attr <node>

8.1.4.25 user_defined nodes

User-defined whatsit nodes can only be created and handled from Lua code.

In effect, they are an

extension to the extension mechanism. The LuaTgX engine will simply step over such whatsits without

ever looking at the contents.

Valid fields: attr, user_id, type, value

field type explanation
attr <node>
user_id number id number
type number  type of the value
value number

string

<node>

table

The type can have one of five distinct values:

value explanation

97 the value is an attribute node list

100  the value is a number
110 the value is a node list

115  the value is a string

116 the value is a token list in Lua table form

Nodes 153 /\0

Ny -

®



Nodes



9 Modifications

Besides the expected changes caused by new functionality, there are a number of not-so-expected
changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often than not, a
change necessary to clean up the internal interfaces.

9.1 Changes from TEX 3.1415926

e See chapter 6 for many small changes related to paragraph building, language handling, and hy-
phenation. Most important change: adding a brace group in the middle of a word (like in of{}fice)
does not prevent ligature creation.

There is no pool file, all strings are embedded during compilation.

plus 1 £i1111 does not generate an error. The extra ‘l' is simply typeset.

The \endlinechar can be either added (values 0 or more), or not (negative values). If it is added,
the character is always decimal 13 a/k/a ~"M a/k/a carriage return (This change may be temporary).

9.2 Changes from e-TEX 2.2

e The &-TgX functionality is always present and enabled (but see below about TEXXeT), so the
prepended asterisk or —etex switch for iniTEX is not needed.
o TEXXeT is not present, so the primitives

\TeXXeTstate
\beginR
\beginL
\endR

\endL

are missing.

e Some of the tracing information that is output by e-TEX's \tracingassigns and \tracingre-
stores is not there.

e Register management in LualTEX uses the Aleph model, so the maximum value is 65535 and the

implementation uses a flat array instead of the mixed flat&Gsparse model from e-TgX.
savinghyphcodes is a no-op. See chapter 6 for details.
When kpathsea is used to find files, LuaTEX uses the ofm file format to search for font metrics. In
turn, this means that LuaTgX looks at the OFMFONTS configuration variable (like Omega and Aleph)
instead of TFMFONTS (like TEX and pdfTgX). Likewise for virtual fonts (LuaTEX uses the variable
OVFFONTS instead of VFFONTS).

9.3 Changes from pdfTEX 1.40

Modifications 155 :0’

-



The (experimental) support for snap nodes has been removed, because it is much more natural to
build this functionality on top of node processing and attributes. The associated primitives that are
now gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

The (experimental) support for specialized spacing around nodes has also been removed. The asso-
clated primitives that are now gone are: \pdfadjustinterwordglue, \pdfprependkern, and
\pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode, \shbscode,
\knbccode, and \knaccode.

A number of ‘utility functions’ is removed:

\pdfelapsedtime \pdffilesize \pdfstrcmp
\pdfescapehex \pdflastmatch \pdfunescapehex
\pdfescapename \pdfmatch

\pdfescapestring \pdfmdfivesum

\pdffiledump \pdfresettimer

\pdffilemoddate \pdfshellescape

A few other experimental primitives are also provided without the extra pdf prefix, so they can also
be called like this:

\primitive \ifabsnum

\ifprimitive \ifabsdim

The \pdftexversion is set to 200.

The PNG transparency fix from 1.40.6 is not applied (high-level support is pending)

LFS (pdf Files larger than 2GiB) support is not working yet.

9.4 Changes from Aleph RC4

The input translations from Aleph are not implemented, the related primitives are not available:

\DefaultInputMode \noDefaultInputTranslation
\noDefaultInputMode \noInputTranslation
\noInputMode \InputTranslation
\InputMode \DefaultOutputTranslation
\DefaultOutputMode \noDefaultOutputTranslation
\noDefaultOutputMode \noQutputTranslation
\noOutputMode \OutputTranslation
\OQutputMode

\DefaultInputTranslation

A small series of bounds checking fixes to \ocp and \ocplist has been added to prevent the system
from crashing due to array indexes running out of bounds.

The \hoffset bug when \pagedir TRT is fixed, removing the need for an explicit fix to \hoffset
A bug causing \famn to fail for family numbers above 15 is fixed.

Some bits of Aleph assumed O and null were identical. This resulted for instance in a bug that
sometimes caused an eternal loop when trying to \show a box.

A fair amount of other minor bugs are fixed as well, most of these related to \tracingcommands
output.

156 Modifications



The number of possible fonts, ocps and ocplists is smaller than their maximum Aleph value (around
5000 fonts and 30000 ocps / ocplists).

The internal function scan_dir () has been renamed to scan_direction() to prevent a naming
clash.

e The 7 notation can come in five and six item repetitions also, to insert characters that do not fit in
the BMP.

Glues immediately after direction change commands are not legal breakpoints.

The \ocp and \ocplist statistics at the end of a run are only printed if OCP’s are actually used.

9.5 Changes from standard web2c

e There is no mltex
There is no enctex
The following commandline switches are silently ignored, even in non-Lua mode:

-8bit
-translate-file=TCXNAME
-mltex

-enc

—-etex

\openout whatsits are not written to the log file.

Some of the so-called web2c extensions are hard to set up in non-kpse mode because texmf.cnf is
not read: shell-escape is off (but that is not a problem because of Lua’s os.execute), and the
paranoia checks on openin and openout do not happen (however, it is easy for a Lua script to do
this itself by overloading io.open).

e The "E’ option does not do anything useful.

Y o\4
Modifications 157 | |

-



158 Modifications



10 Implementation notes

10.1 Primitives overlap
The primitives

\pdfpagewidth \pagewidth
\pdfpageheight \pageheight

\fontcharwd \charwd
\fontcharht \charht
\fontchardp \chardp
\fontcharic \charit

are all aliases of each other.

10.2 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two separate
arrays. Each of these will grow dynamically when needed.

The texmf.cnf settings related to main memory are no longer used (these are: main_memory,
mem_bot, extra_mem_top and extra_mem_bot). ‘Out of main memory’ errors can still occur, but the
limiting factor is now the amount of RAM in your system, not a predefined limit.

Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant code now
lives in the C file luanode. c, and basically uses a dozen or so avail lists instead of a doubly-linked
model. An extra function layer is added so that the code can ask for nodes by type instead of directly
requisitioning a certain amount of memory words.

Because of the split into two arrays and the resulting differences in the data structures, some of the
Pascal web macros have been duplicated. For instance, there are now vlink and vinfo as well as
link and info. All access to the variable memory array is now hidden behind a macro called vmem.

The implementation of the growth of two arrays (via reallocation) introduces a potential pitfall: the
memory arrays should never be used as the left hand side of a statement that can modify the array in
question.

The input line buffer and pool size are now also reallocated when needed, and the texmf . cnf settings
buf_size and pool_size are silently ignored.

10.3 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode tables are now sparse
arrays that are implemented in C. They are no longer part of the TEX ‘equivalence table’ and because

// .
Implementation notes 159 i‘i

-



each had 1.1 million entries with a few memory words each, this makes a major difference in memory
usage.

These assignments do not yet show up when using the etex tracing routines \tracingassigns and
\tracingrestores (code simply not written yet).

A side-effect of the current implementation is that \global is now more expensive in terms of processing
than non-global assignments.

See mathcodes.c and textcodes.c if you are interested in the details.

Also, the glyph ids within a font are now managed by means of a sparse array and glyph ids can go up
to index 221 —1.

10.4 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in the hash
just like the multiletter csnames.

The code that displays control sequences explicitly checks if the length is one when it has to decide
whether or not to add a trailing space.

10.5 Compressed format

The format is passed through zlib, allowing it to shrink to roughly half of the size it would have had in
uncompressed form. This takes a bit more CPU cycles but much less disk 1/O, so it should still be faster.

10.6 Binary file reading

All of the internal code is changed in such a way that if one of the read_xxx_file callbacks is not set,
then the file is read by a C function using basically the same convention as the callback: a single read
into a buffer big enough to hold the entire file contents. While this uses more memory than the previous
code (that mostly used getc calls), it can be quite a bit faster (depending on your /O subsystem).

/\Oi 160 Implementation notes



11 Known bugs and limitations

The bugs below are going to be fixed eventually.

The top ones will be fixed soon, but in the later items either the actual problem is hard to find, or the
code that causes the bug is going to be replaced by a new subsystem soon anyway, or it may not be
worth the hassle and the limitations will eventually be documented.

e The current linebreaking implementation still does not yet take all possible breakpoints into account
where ligatures are involved in the process. This means that line breaks may change in future versions
of LuaTEX, in situations where exotic fonts (with ligatures with 3 parts or more) are combined with
languages with exotic hyphenation patterns (where multiple hyphenation points can happen within
one such ligature).

e tex.print() and tex.sprint () do not work if \directlua is used in an otp file (in the output
of an expression rule).

e When used inside \directlua, pdf.print() should create a literal node instead of flushing
immediately.

o Not all of Aleph’s direction commands are handled properly in pdf mode, and especially the vertical
scripts support is missing almost completely (only TRT and TLT are routinely tested).

e Node pointers are not always checked for validity, so if you make a mistake in the node list processing,
LuaTEX may terminate itself with an assertion error or ‘Emergency stop'.

e In dvi generation mode, using a \textdir switch inside the preamble of a \halign results in
overprinted text in the dvi file, because the column width is not taken into account during the final
placement phase (this is a bug inherited from Aleph). Also, Aleph apparently dislikes having more
than one non-grouped \textdir command in a single lined paragraph.

/// \.
Known bugs and limitations 161 /\Oi

-



162 Known bugs and limitations



12 TODO

On top of the ‘normal’ extensions that are planned, there are some more specific small feature requests.
Whether these will all be included is not certain yet. New requests are welcome but should fit into
our ideas, i.e. no new hard coded solutions. Beware, this is not the roadmap, which is somewhat more
ambitious.

Implement the TEX primitive \dimension, cf. \number.

Do something about \withoutpt and/or a new register type \real?

Create callback for the automatic creation of missing characters in fonts.

Do boxes with dual baselines.

Make the number of the output box configurable.

Switch all the node lists to a double-linked list.

Finish the interface from Lua to TEX's internals, specially the hash and equivalence table (a small
subpart is implementing \csname lookups for tex.box access).

Use of Type1C for embedded PostScript font subsets in traditional 8-bit encodings.
Support font reencoding of 8-bit fonts via char index instead of via map files.
Attempt to parse ofm level O fonts that are masquerading as level 1.

//// \Q
TODO 163 0

-



164 TODO



	Introduction
	Basic TEX enhancements
	Introduction
	Version information
	UNICODE text support
	Extended tables
	Attribute registers
	Box attributes

	LUA related primitives
	\directlua
	\latelua
	\luaescapestring

	New ETEX primitives
	\clearmarks
	\noligs and \nokerns
	\formatname
	\scantextokens
	Catcode tables
	\suppressfontnotfounderror (0.11)
	\suppresslongerror (0.36)
	\suppressifcsnameerror (0.36)
	\suppressoutererror (0.36)
	\outputbox (0.37)
	Font syntax

	Debugging

	LUA general
	Initialization
	LUATEX as a LUA interpreter
	LUATEX as a LUA byte compiler
	Other commandline processing

	LUA changes
	LUA modules

	LUATEX LUA Libraries
	The tex library
	Internal parameter values
	Convert commands
	Last item commands
	Attribute, count, dimension, skip and token registers
	Box registers
	Math parameters
	Special list heads
	Print functions
	Helper functions
	Functions for dealing with primitives 

	The token library
	token.get_next
	token.is_expandable
	token.expand
	token.is_activechar
	token.create
	token.command_name
	token.command_id
	token.csname_name
	token.csname_id

	The node library
	Node handling functions
	Attribute handling

	The texio library
	Printing functions

	The pdf library
	The img library
	The mplib library
	mplib.new
	mp:statistics
	mp:execute
	mp:finish
	Result table
	Subsidiary table formats
	Character size information

	The callback library
	File discovery callbacks
	File reading callbacks
	Data processing callbacks
	Node list processing callbacks
	Information reporting callbacks
	Font-related callbacks

	The lua library
	LUA bytecode registers
	LUA chunk name registers

	The kpse library
	kpse.set_program_name and kpse.new
	find_file
	init_prog
	readable_file
	expand_path
	expand_var
	expand_braces
	show_path
	var_value

	The status library
	The texconfig table
	The font library
	Loading a TFM file
	Loading a VF file
	The fonts array
	Checking a font's status
	Defining a font directly
	Projected next font id
	Currently active font
	Maximum font id
	Iterating over all fonts

	The fontloader library (0.36)
	Getting quick information on a font
	Loading an OPENTYPE or TRUETYPE file
	Applying a 'feature file'
	Applying an 'AFM file'

	Fontloader font tables
	Table types

	The lang library

	Math
	The current math style
	\mathstyle
	Ustack

	Unicode math characters
	Cramped math styles
	Math parameter settings
	Font-based Math Parameters
	Math spacing setting
	Math accent handling
	Math root extension
	Math kerning in super- and subscripts
	Scripts on horizontally extensible items like arrows
	Extensible delimiters
	Other Math changes
	Verbose versions of single-character math commands
	Allowed math commands in non-math modes

	Math todo

	Languages and characters, fonts and glyphs
	Characters and glyphs
	The main control loop
	Loading patterns and exceptions
	Applying hyphenation
	Applying ligatures and kerning
	Breaking paragraphs into lines

	Font structure
	Real fonts
	Virtual fonts
	Artificial fonts
	Example virtual font


	Nodes
	LUA node representation
	Auxiliary items
	Main text nodes
	Math nodes
	whatsit nodes


	Modifications
	Changes from TEX 3.1415926
	Changes from ETEX 2.2
	Changes from PDFTEX 1.40
	Changes from ALEPH RC4
	Changes from standard WEBC 

	Implementation notes
	Primitives overlap
	Memory allocation
	Sparse arrays
	Simple single-character csnames
	Compressed format
	Binary file reading

	Known bugs and limitations
	TODO

