

LualgX
Reference
Manual

copyright : LuaTgX development team
more info : www.luatex.org
version : March 2, 2019

Contents

Introduction
1 Preamble
2 Basic TgX enhancements
2.1 Introduction
2.1.1 Primitive behaviour
2.1.2 Version information
2.2 UNICODE text support
2.2.1 Extended ranges
2.2.2 \Uchar
2.2.3 Extended tables
2.3 Attributes
2.3.1 Nodes
2.3.2 Attribute registers
2.3.3 Box attributes
2.4 LUA related primitives
2.4.1 \directlua
2.4.2 \latelua and \lateluafunction
2.4.3 \luaescapestring
2.4.4 \luafunction, \luafunctioncall and \luadef
2.4.5 \luabytecode and \luabytecodecall
2.5 Catcode tables
2.5.1 Catcodes
2.5.2 \catcodetable
2.5.3 \initcatcodetable
2.5.4 \savecatcodetable
2.6 Suppressing errors
2.6.1 \suppressfontnotfounderror
2.6.2 \suppresslongerror
2.6.3 \suppressifcsnameerror
2.6.4 \suppressoutererror
2.6.5 \suppressmathparerror
2.6.6 \suppressprimitiveerror
2.7 Fonts
2.7.1 Font syntax
2.7.2 \fontid and \setfontid
2.7.3 \noligs and \nokerns
2.7.4 \hospaces
2.8 Tokens, commands and strings
2.8.1 \scantextokens
2.8.2
\xtoksapp, \xtokspre
2.8.3

\toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,

\csstring, \begincsname and \lastnamedcs

13
17

19
19
19
19
20
20
21
21
21
21
22
22
23
23
25
25
25
26
27
27
27
27
27
28
28
28
28
28
28
29
29
29
29
29
30
30
30

30
31

2.9

2.10

2.11

2.12

2.13

3.2

3.3

2.8.4 \clearmarks

2.8.5 \alignmark and \aligntab
2.8.6 \letcharcode

2.8.7 \glet

2.8.8 \expanded, \immediateassignment and \immediateassigned
2.8.9 \ifcondition

Boxes, rules and leaders

2.9.1 \outputbox

2.9.2 \vpack, \hpack and \tpack
2.9.3 \vsplit

2.9.4 Images and reused box objects
2.9.5 \nohrule and \novrule

2.9.6 \gleaders

Languages

2.10.1 \hyphenationmin

2.10.2 \boundary, \noboundary, \protrusionboundary and \wordboundary
Control and debugging

2.11.1 Tracing

2.11.2 \outputmode

2.11.3 \draftmode

Files

2.12.1 File syntax

2.12.2 Writing to file

Math

Modifications

The merged engines

3.1.1 The need for change

3.1.2 Changes from TgX 3.1415926
3.1.3 Changes from &-TgX 2.2

3.1.4 Changes from PDFTgEX 1.40
3.1.5 Changes from ALEPH RC4
3.1.6 Changes from standard WEB2C

The backend primitives

3.2.1 Less primitives

3.2.2 \pdfextension, \pdfvariable and \pdffeedback
3.2.3 Defaults

3.2.4 Backward compatibility

Directions

3.3.1 Four directions

3.3.2 How it works

3.3.3 Controlling glue with \breakafterdirmode

3.3.4 Controling parshapes with \shapemode

3.3.5 Symbols or numbers

31
31
31
32
32
33
34
34
34
34
34
35
35
35
35
35
36
36
36
36
36
36
37
37

39
39
39
39
40
40
42
43
44
44
44
49
50
51
51
51
53
53
54

3.4

4.1

4.2

4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Implementation notes

3.4.1 Memory allocation

3.4.2 Sparse arrays

3.4.3 Simple single-character csnames
3.4.4 The compressed format file

3.4.5 Binary file reading

3.4.6 Tabs and spaces

Using LUATEX

Initialization

4.1.1 LUATEX as a LUA interpreter
4.1.2 LUATEX as a LUA byte compiler
4.1.3 Other commandline processing
LUA behaviour

4.2.1 The LUA version

4.2.2 Integration in the TDS ecosystem
4.2.3 Loading libraries

4.2.4 Executing programs

4.2.5 Multibyte string functions

4.2.6 Extra os library functions

4.2.7 Binary input from files with fio
4.2.8 Binary input from strings with sio
4.2.9 Hashes conform sha2

4.2.10 Locales

LUA modules

Testing

Languages, characters, fonts and glyphs
Introduction

Characters, glyphs and discretionaries
The main control loop

Loading patterns and exceptions
Applying hyphenation

Applying ligatures and kerning
Breaking paragraphs into lines

The lang library

5.8.1 new and id

5.8.2 hyphenation

5.8.3 clear _hyphenation and clean
5.8.4 patterns and clear patterns
5.8.5 hyphenationmin

5.8.6 [pre|post][ex]|]lhyphenchar
5.8.7 hyphenate

5.8.8 [set|get]lhjcode

55
55
55
55
56
56
56

57
57
57
57
57
60
60
60
60
61
61
62
64
64
64
65
65
65

67
67
67
73
75
77
79
81
81
81
82
82
82
82
82
83
83

6.1
6.2
6.3

6.4
6.5

7.1
7.2
7.3

7.4

7.5

7.6

Font structure
The font tables
Real fonts
Virtual fonts

6.3.1
6.3.2
6.3.3

The structure
Artificial fonts
Example virtual font

The vf library
The font library

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9

Math

Loading a TFM file
Loading a VF file

The fonts array
Checking a font’s status
Defining a font directly
Extending a font
Projected next font id
Font ids

Iterating over all fonts

Traditional alongside OPENTYPE
Unicode math characters
Math styles

7.3.1
7.3.2
7.3.3

\mathstyle
\Ustack
Cramped math styles

Math parameter settings

7.4.1
7.4.2

Many new \Umath* primitives
Font-based math parameters

Math spacing

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9

Inline surrounding space

Pairwise spacing

Skips around display math

Nolimit correction

Math italic mess

Script and kerning

Fixed scripts

Penalties: \mathpenaltiesmode
Equation spacing: \mathegnogapstep

Math constructs

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7

Unscaled fences

Accent handling

Radical extensions

Super- and subscripts

Scripts on extensibles

Fractions

Delimiters: \Uleft, \Uniddle and \Uright

85
85
90
92
92
94
94
95
95
95
96
96
96
97
97
97
97
98

99

99

99
100
100
102
102
103
103
105
109
109
110
111
111
112
112
113
113
114
114
114
115
115
116
116
117
118

7.7

7.8

7.9

8.1
8.2

8.3

Extracting values

7.7.1 Codes

7.7.2 Last lines

Math mode

7.8.1 Verbose versions of single-character math commands
7.8.2 Script commands \Unosuperscript and \Unosubscript
7.8.3 Allowed math commands in non-math modes

Goodies

7.9.1 Flattening: \mathflattenmode

7.9.2 Less Tracing

7.9.3 Math options with \mathoption

Nodes

LUA node representation
Main text nodes

8.2.1 hlist nodes

8.2.2 vlist nodes

8.2.3 rule nodes

8.2.4 ins nodes

8.2.5 mark nodes

8.2.6 adjust nodes

8.2.7 disc nodes

8.2.8 math nodes

8.2.9 glue nodes

8.2.10 kern nodes

8.2.11 penalty nodes

8.2.12 glyph nodes

8.2.13 boundary nodes
8.2.14 local par nodes
8.2.15 dir nodes

8.2.16 marginkern nodes
Math noads

8.3.1 Math kernel subnodes
8.3.2 math char and math text char subnodes
8.3.3 sub_box and sub_mlist subnodes
8.3.4 delim subnodes

8.3.5 Math core nodes
8.3.6 simple noad nodes
8.3.7 accent nodes

8.3.8 style nodes

8.3.9 choice nodes

8.3.10 radical nodes

8.3.11 fraction nodes
8.3.12 fence nodes

118
118
119
119
119
120
120
120
120
121
121

123
123
123
124
124
124
125
125
126
126
126
127
128
128
128
130
130
130
131
131
131
131
131
132
132
133
133
133
133
134
134
134

8.4 Front-end whatsits

8.5

8.6

8.7

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6

open
write

close
user_defined
save_pos
late lua

DVI backend whatsits

8.5.1

special

PDF backend whatsits

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12
8.6.13
8.6.14

pdf literal
pdf refobj

pdf annot

pdf start link
pdf _end link
pdf dest

pdf action

pdf thread

pdf start thread
pdf end thread
pdf colorstack
pdf setmatrix
pdf save

pdf restore

The node library

8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7
8.7.8
8.7.9
8.7.10
8.7.11
8.7.12
8.7.13
8.7.14
8.7.15
8.7.16
8.7.17
8.7.18
8.7.19
8.7.20
8.7.21

Introduction

is node

types and whatsits
id

type and subtype
fields

has field

new

free, flush node and flush list
copy and copy list
prev and next
current attr

hpack

vpack

prepend prevdepth
dimensions and rangedimensions
mlist to hlist
slide

tail
length and type count
is char and is glyph

135
135
135
135
135
136
136
136
136
137
137
137
137
137
138
138
138
139
139
139
139
140
140
140
140
140
141
141
141
141
142
142
142
142
143
143
143
144
144
145
145
146
146
146
147
147

8.8

8.9

8.10
8.11

9
9.1
9.2

8.7.22 traverse

8.7.23 traverse_id

8.7.24 traverse char and traverse glyph
8.7.25 traverse list

8.7.26 has _glyph

8.7.27 end_of _math

8.7.28 remove

8.7.29 insert before

8.7.30 insert after

8.7.31 first glyph

8.7.32 ligaturing

8.7.33 kerning

8.7.34 unprotect glyph[s]
8.7.35 protect glyph[s]
8.7.36 last node

8.7.37 write

8.7.38 protrusion skippable
Glue handling

8.8.1 setglue

8.8.2 getglue

8.8.3 is zero glue
Attribute handling

8.9.1 Attributes

8.9.2 attribute list nodes
8.9.3 attr nodes

8.94 has_attribute

8.9.5 get attribute

8.9.6 find attribute

8.9.7 set attribute

8.9.8 unset attribute

8.9.9 slide

8.9.10 check discretionary, check discretionaries
8.9.11 flatten discretionaries
8.9.12 family font

Two access models

Properties

LUA callbacks

Registering callbacks

File discovery callbacks

9.2.1 find read file and find write file
9.2.2 find font file

9.2.3 find output file

9.24 find format file

9.2.5 find vf file

9.2.6 find map file

9.2.7 find enc file

147
148
148
149
149
149
149
149
150
150
150
150
151
151
151
151
151
151
151
152
152
152
152
152
153
153
153
153
153
154
154
154
154
154
155
160

165
165
165
166
166
166
166
167
167
167

9.3

9.4

9.5

9.2.8

9.2.9

9.2.10
9.2.11
9.2.12
9.2.13
9.2.14
9.2.15

find pk file
find data file
find opentype file

find truetype file and find typel file

find image file
File reading callbacks
open read file
General file readers

Data processing callbacks

9.3.1
9.3.2
9.3.3

process input buffer

process output buffer

process _jobname

Node list processing callbacks

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13
9.4.14
9.4.15
9.4.16
9.4.17
9.4.18

contribute filter
buildpage filter
build page insert
pre_linebreak filter
linebreak filter

append to vlist filter
post linebreak filter

hpack filter
vpack filter
hpack quality
vpack quality
process rule

pre output filter
hyphenate
ligaturing
kerning

insert local par
mlist to hlist

Information reporting callbacks

9.5.1
9.5.2
9.5.3
9.5.4
9.56.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13

pre_dump

start_run

stop_run
start page number
stop page number
show_error_hook
show _error_message
show lua error hook
start file

stop file

call edit

finish synctex
wrapup_run

167
167
167
167
168
168
168
169
170
170
170
170
170
170
171
171
172
173
173
173
173
174
174
174
175
175
175
175
176
176
176
176
176
177
177
177
177
177
178
178
178
178
178
179
179

9.6 PDF related callbacks

9.7

10
10.1

10.2
10.3

9.6.1
9.6.2
9.6.3
9.6.4

finish pdffile

finish pdfpage

page _objnum provider
process pdf image content

Font-related callbacks

9.7.1
9.7.2

define font
glyph not found

The TgX related libraries
The lua library

10.1.1
10.1.2
10.1.3
10.1.4

Version information
Bytecode registers
Chunk name registers
Introspection

The status library
The tex library

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15
10.3.16
10.3.17
10.3.18
10.3.19

Introduction

Internal parameter values, set and get
Convert commands

Last item commands

Accessing registers: set*, get* and is*

Character code registers: [get|set]*code[s]

Box registers: [get|set]box

Reusing boxes: [use]|save]boxresource and getboxresourcedimensions

triggerbuildpage
splitbox

Accessing math parameters: [get|set]math

Special list heads: [get|set]list
Semantic nest levels: getnest and ptr
Print functions

Helper functions

Functions for dealing with primitives
Core functionality interfaces
Randomizers

Functions related to synctex

10.4 The texconfig table
10.5 The texio library

10.5.1
10.5.2
10.5.3
10.5.4

write
write nl
setescape
closeinput

10.6 The token library

10.6.1
10.6.2
10.6.3
10.6.4

The scanner

Picking up one token
Creating tokens
Macros

179
179
179
179
180
180
180
181

183
183
183
183
183
184
184
186
186
186
189
190
190
191
193
193
194
194
194
195
196
197
199
201
205
207
208
208
209
209
210
210
210
210
210
212
213
214

10.7

11
11.1

11.2

12

12.1
12.2
12.3
12.4
12.5
12.6

10.6.5 Pushing back
10.6.6 Nota bene

The kpse library

10.7.1 set program_name and new
10.7.2 find file
10.7.3 lookup

10.7.4 init prog
10.7.5 readable file
10.7.6 expand path
10.7.7 expand var
10.7.8 expand_braces
10.7.9 show_path
10.7.10 var_value
10.7.11 version

The graphic libraries

The img library

11.1.1 new

11.1.2 fields

11.1.3 scan

11.1.4 copy

11.1.5 write, immediatewrite, immediatewriteobject
11.1.6 node

11.1.7 types

11.1.8 boxes

The mplib library

11.2.1 new

11.2.2 statistics

11.2.3 execute

11.2.4 finish

11.2.5 Result table

11.2.6 Subsidiary table formats
11.2.7 Pens and pen_info

11.2.8 Character size information

The fontloader

Getting quick information on a font
Loading an OPENTYPE or TRUETYPE file
Applying a ‘feature file’

Applying an ‘AFM file’

Fontloader font tables

Table types

12.6.1
12.6.2
12.6.3
12.6.4
12.6.5

The main table
glyphs

map

private
cidinfo

215
215
216
216
217
218
218
218
218
219
219
219
219
219

221
221
221
222
223
224
224
225
225
225
226
226
227
227
227
228
230
231
232

233
233
233
235
235
235
236
236
238
241
242
242

13
13.1

12.6.6

12.6.7

12.6.8

12.6.9

12.6.10
12.6.11
12.6.12
12.6.13
12.6.14
12.6.15
12.6.16
12.6.17
12.6.18
12.6.19
12.6.20
12.6.21
12.6.22
12.6.23

pfminfo

names

anchor classes

gpos

gsub

ttf tables and ttf tab saved
mm

mark classes

math

validation state
horiz_base and vert base
altuni

vert variants and horiz variants
mathkern

kerns

vkerns

texdata

lookups

The backend libraries
The pdf library

13.1.

1

13.1.2
13.1.3
13.14

13.1.

5

13.1.6

13.1.

7

13.1.8

13.1.9

13.1.
13.1.
13.1.
13.1.
13.1.

13.1.
13.1.
13.1.
13.1.
13.1.

10
11
12
13
14

15
16
17
18
19

13.1.20
13.1.21
13.1.22
13.1.23
13.1.24

mapfile, mapline

[set|get][catalog|info|names|trailer]
[set|get][pageattributes|pageresources|pagesattributes]
[set|get][xformattributes|xformresources]
[set|get]l[major|minor]version

getcreationdate

[set|getlinclusionerrorlevel and [set|get]lignoreunknownimages
[set|get]lsuppressoptionalinfo, [set|get]trailerid and
[set|get]lomitcidset

[set|get]l[obj|]lcompresslevel and [set|get]recompress
[set|getlgentounicode

[set|get]ldecimaldigits

[set|get]lpkresolution

getlast[obj|link|annot] and getretval

getmaxobjnum and getobjtype, getfontname, getfontobjnum,
getfontsize, getxformname

[set|getlorigin

[set|get]imageresolution
[set|get][link|dest|thread|xform]margin
get[pos|hpos|vpos]

[has|get]lmatrix

print

immediateobj

obj

refobj

reserveobj

242
243
244
244
245
245
245
246
246
247
247
247
247
248
248
248
248
248

251
251
251
251
251
251
251
252
252

252
252
252
252
252
253

253
253
253
253
253
253
254
254
255
256
256

13.1.25
13.1.26
13.1.27
13.1.28

getpageref
registerannot
newcolorstack
setfontattributes

13.2 The pdfe library

13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11

Introduction

open, new, status, close, unencrypt

size, version, getnofobjects, getnofpages
get[catalog|trailer|info]

getpage, getbox
get[string|integer|number|boolean|name]
get[from][dictionary|array|stream]
[open|close|readfrom] [whole|]stream
getfrom[dictionary|array]
[dictionary|array]ltotable
getfromreference

13.3 Memory streams
13.4 The pdfscanner library

Topics
Primitives
Callbacks
Nodes
Libraries

Statistics

256
256
256
256
257
257
257
258
258
258
258
259
259
259
260
260
260
261

265

269

277

279

281

289

Introduction

This is the reference manual of LuaTgX. We don’t claim it is complete and we assume that the
reader knows about TgX as described in “The TgX Book”, the “¢-TgX manual”, the “pdfTEX man-
ual”, etc. Additional reference material is published in journals of user groups and ConTgXt
related documentation.

It took about a decade to reach stable version 1.0, but for good reason. Successive versions
brought new functionality, more control, some cleanup of internals. Experimental features
evolved into stable ones or were dropped. Already quite early LuaTgX could be used for produc-
tion and it was used on a daily basis by the authors. Successive versions sometimes demanded
an adaption to the Lua interfacing, but the concepts were unchanged. The current version can
be considered stable in functionality and there will be no fundamental changes. Of course we
then can decide to move towards version 2.00 with different properties.

Don’t expect LuaTgX to behave the same as pdfIgX! Although the core functionality of that 8 bit
engine was starting point, it has been combined with the directional support of Omega (Aleph).
But, LuaTgX can behave different due to its wide (32 bit) characters, many registers and large
memory support. The pdf code produced differs from pdfTEX but users will normally not notice
that. There is native utf input, support for large (more than 8 bit) fonts, and the math machinery
is tuned for OpenType math. There is support for directional typesetting too. The log output
can differ from other engines and will likely differ more as we move forward. When you run
plain TgX for sure LuaTgX runs slower than pdfTEX but when you run for instance ConTgXt MkIV
in many cases it runs faster, especially when you have a bit more complex documents or input.
Anyway, 32 bit all-over combined with more features has a price, but on a modern machine this
is no real problem.

Testing is done with ConTgXt, but LuaTgX should work fine with other macro packages too. For
that purpose we provide generic font handlers that are mostly the same as used in ConTgXt.
Discussing specific implementations is beyond this manual. Even when we keep LuaTgX lean
and mean, we already have enough to discuss here.

LuaTgX consists of a number of interrelated but (still) distinguishable parts. The organization
of the source code is adapted so that it can glue all these components together. We continue
cleaning up side effects of the accumulated code in TgX engines (especially code that is not
needed any longer).

» We started out with most of pdfTgX version 1.40.9. The code base was converted to C and split
in modules. Experimental features were removed and utility macros are not inherited because
their functionality can be programmed in Lua. The number of backend interface commands
has been reduced to a few. The so called extensions are separated from the core (which we
try to keep close to the original TEX core). Some mechanisms like expansion and protrusion
can behave different from the original due to some cleanup and optimization. Some whatsit
based functionality (image support and reusable content) is now core functionality. We don’t
stay in sync with pdfTgX development.

» The direction model from Aleph RC4 (which is derived from Omega) is included. The related
primitives are part of core LuaTgX but at the node level directional support is no longer based

Introduction 13 *:‘

on so called whatsits but on real nodes with relevant properties. The number of directions is
limited to the useful set and the backend has been made direction aware.

» Neither Aleph’s I/O translation processes, nor tcx files, nor encTgX are available. These en-
coding-related functions are superseded by a Lua-based solution (reader callbacks). In a
similar fashion all file io can be intercepted.

» We currently use Lua 5.3.*. There are few Lua libraries that we consider part of the core
Lua machinery, for instance lpeg. There are additional Lua libraries that interface to the
internals of TEX. We also keep the Lua 5.2 bit32 library around.

» There are various TgX extensions but only those that cannot be done using the Lua interfaces.
The math machinery often has two code paths: one traditional and the other more suitable
for wide OpenType fonts. Here we follow the Microsoft specifications as much as possible.
Some math functionality has been opened up a bit so that users have more control.

» The fontloader uses parts of FontForge 2008.11.17 combined with additional code specific for
usage in a TgX engine. We try to minimize specific font support to what TgX needs: character
references and dimensions and delegate everything else to Lua. That way we keep TgX open
for extensions without touching the core. In order to minimize dependencies at some point
we may decide to make this an optional library.

» The MetaPost library is integral part of LuaTgX. This gives TgX some graphical capabilities
using a relative high speed graphical subsystem. Again Lua is used as glue between the
frontend and backend. Further development of MetaPost is closely related to LuaTgX.

» The virtual font technology that comes with TgX has been integrated into the font machinery
in a way that permits creating virtual fonts at runtime. Because LuaTgX can also act as a
Lua interpreter this means that a complete TgX workflow can be built without the need for
additional programs.

» The versions starting from 1.09 no longer use the poppler library for inclusion but a light-
weight dedicated one. This removes a dependency but also makes the inclusion code of
LuaTgX different from pdfTgX. In fact it was already much different due to the Lua image
interfacing.

We try to keep upcoming versions compatible but intermediate releases can contain experimen-
tal features. A general rule is that versions that end up on TgXLive and/or are released around
ConTgXt meetings are stable. Any version between the yearly TgXLive releases are to be con-
sidered beta and in the repository end up as trunk releases. We have an experimental branch
that we use for development but there is no support for any of its experimental features. Inter-
mediate releases (from trunk) are normally available via the ConTgXt distribution channels (the
garden and so called minimals).

Version 1.10 is more or less an endpoint in development: this is what you get. Because not only
ConTgXt, that we can adapt rather easily, uses LuaTgX, we cannot change fundamentals without
unforeseen consequences. By now it has been proven that Lua can be used to extend the core
functionality so there is no need to add more, and definitely no hard coded solutions for (not so)
common problems. Of course there will be bug fixes, maybe some optimization, and there might

- ~

e
‘\0; 14 Introduction

hy -

even be some additions or non-intrusive improvements, but only after testing outside the stable
release. After all, the binary is already more than large enough and there is not that much to
gain.

You might find Lua helpers that are not yet documented. These are considered experimental,
although when you encounter them in a ConTEXt version that has been around for a while you
can assume that they will stay. Of course it can just be that we forgot to document them yet.

A manual like this is not really meant as tutorial, for that we refer to documents that ship with
ConTgXt, articles, etc. It is also never complete enough for all readers. We try to keep up but the
reader needs to realize that it’s all volunteer work done in spare time. And for sure, complaining
about a bad manual or crappy documentation will not really motivate us to spend more time on
it. That being said, we hope that this document is useful.

Hans Hagen
Harmut Henkel
Taco Hoekwater
Luigi Scarso

Version : March 2, 2019
LuaTgX : luatex 1.1 /7090
ConTEXt : MkIV 2019.02.26 20:04

Introduction 15 *:‘

- ~

e _
k‘; 16 Introduction

- -

1 Preamble

This is a reference manual, not a tutorial. This means that we discuss changes relative to tra-
ditonal TgX and also present new functionality. As a consequence we will refer to concepts that
we assume to be known or that might be explained later.

The average user doesn’t need to know much about what is in this manual. For instance fonts
and languages are normally dealt with in the macro package that you use. Messing around with
node lists is also often not really needed at the user level. If you do mess around, you’d better
know what you’re dealing with. Reading “The TgX Book” by Donald Knuth is a good investment
of time then also because it’s good to know where it all started. A more summarizing overview
is given by “TgX by Topic” by Victor Eijkhout. You might want to peek in “The £-TgX manual” and
documentation about pdfTgX.

But ... if you’'re here because of Lua, then all you need to know is that you can call it from within
a run. The macro package that you use probably will provide a few wrapper mechanisms but
the basic \directlua command that does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it’s a lot you can also put it in a file and load that
file with the usual Lua commands.

Ifyou still decide to read on, then it’s good to know what nodes are, so we do a quick introduction
here. If you input this text:

Hi There

eventually we will get a linked lists of nodes, which in ascii art looks like:

H<=>1<=> [glue] <=> T <=> h <=> e <=>r <=> ¢

When we have a paragraph, we actually get something:

[localpar] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e <=> [qglue]

Each character becomes a so called glyph node, a record with properties like the current font,
the character code and the current language. Spaces become glue nodes. There are many node
types that we will discuss later. Each node points back to a previous node or next node, given
that these exist.

It’s also good to know beforehand that TgX is basically centered around creating paragraphs
and pages. The par builder takes a list and breaks it into lines. We turn horizontal material
into vertical. Lines are so called boxes and can be separated by glue, penalties and more. The
page builder accumulates lines and when feasible triggers an output routine that will take the
list so far. Constructing the actual page is not part of TgX but done using primitives that permit
manipulation of boxes. The result is handled back to TgX and flushed to a (often pdf) file.

The LuaTgX engine provides hooks for Lua code at nearly every reasonable point in the process:
collecting content, hyphenating, applying font features, breaking into lines, etc. This means

Preamble 17 {\‘

that you can overload TgX’s natural behaviour, which still is the benchmark. When we refer to
‘callbacks’ we means these hooks.

Where plain TgX is basically a basic framework for writing a specific style, macro packages
like ConTgXt and IXTEX provide the user a whole lot of additional tools to make documents look
good. They hide the dirty details of font management, language demands, turning structure
into typeset results, wrapping pages, including images, and so on. You should be aware of the
fact that when you hook in your own code to manipulate lists, this can interfere with the macro
package that you use.

When you read about nodes in the following chapters it’s good to keep in mind their commands
that relate to then. Here are a few:

COMMAND NODE EXPLANATION

\hbox hlist horizontal box

\vbox vlist wvertical box with the baseline at the bottom
\vtop vlist vertical box with the baseline at the top
\hskip glue horizontal skip with optional stretch and shrink
\vskip glue vertical skip with optional stretch and shrink
\kern kern horizontal or vertical fixed skip
\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdir(ection) dir a change in text direction

For now this should be enough to enable you to understand the next chapters.

0;‘ 18 Preamble

2 Basic TgX enhancements

2.1 Introduction

2.1.1 Primitive behaviour

From day one, LuaTgX has offered extra features compared to the superset of pdfIgX, which
includes &-TEX, and Aleph. This has not been limited to the possibility to execute Lua code
via \directlua, but LuaTgX also adds functionality via new TgX-side primitives or extensions to
existing ones.

When LuaTgX starts up in ‘iniluatex’ mode (Luatex -ini), it defines only the primitive commands
known by TgX82 and the one extra command \directlua. As is fitting, a Lua function has to be
called to add the extra primitives to the user environment. The simplest method to get access
to all of the new primitive commands is by adding this line to the format generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this
early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before
the above line:

\catcode "\{=1
\catcode *\}=2

More fine-grained primitives control is possible and you can look up the details in section 10.3.16.
For simplicity’s sake, this manual assumes that you have executed the \directlua command as
given above.

The startup behaviour documented above is considered stable in the sense that there will not
be backward-incompatible changes any more. We have promoted some rather generic pdfTgX
primitives to core LuaTgX ones, and the few that we inherited from Aleph (Omega) are also
promoted. Effectively this means that we now only have the tex, etex and luatex sets left.

In Chapter 3 we discuss several primitives that are derived from pdfIgX and Aleph (Omega).
Here we stick to real new ones. In the chapters on fonts and math we discuss a few more new
ones.

2.1.2 Version information

2.1.2.1 \luatexbanner, \luatexversion and \luatexrevision
There are three new primitives to test the version of LuaTgX:

PRIMITIVE VALUE EXPLANATION

\luatexbanner This is LuaTeX, Version 1.10.0 the banner reported on the command line

Basic TEX enhancements 19 |

\luatexversion 110 a combination of major and minor number
\luatexrevision 0 the revision number, the current value is

The official LuaTgX version is defined as follows:

» The major version is the integer result of \ luatexversion divided by 100. The primitive is
an ‘internal variable’, so you may need to prefix its use with \the depending on the context.

» The minor version is the two-digit result of \luatexversion modulo 100.

» The revision is reported by \luatexrevision. This primitive expands to a positive integer.

» The full version number consists of the major version, minor version and revision, separated
by dots.

2.1.2.2 \formatname

The \formatname syntax is identical to \jobname. In iniTEX, the expansion is empty. Otherwise,
the expansion is the value that \jobname had during the iniTgX run that dumped the currently
loaded format. You can use this token list to provide your own version info.

2.2 UNICODE text support

2.2.1 Extended ranges

Text input and output is now considered to be Unicode text, so input characters can use the
full range of Unicode (220 + 216 — 1 = 0x10FFFF). Later chapters will talk of characters and
glyphs. Although these are not interchangeable, they are closely related. During typesetting, a
character is always converted to a suitable graphic representation of that character in a specific
font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as a
character. Inside LuaTgX there is no clear separation between the two concepts. Because the
subtype of a glyph node can be changed in Lua it is up to the user. Subtypes larger than 255
indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate
for a larger range of acceptable numbers. For instance, \char now accepts values between 0
and 1,114,111. This should not be a problem for well-behaved input files, but it could create in-
compatibilities for input that would have generated an error when processed by older TeX-based
engines. The affected commands with an altered initial (left of the equal sign) or secondary (right
of the equal sign) value are: \char, \lccode, \uccode, \hjcode, \catcode, \sfcode, \efcode,
\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input
files can be pre-processed using the reader callback. This will be explained in section 9.2.13.
Normalization of the Unicode input is on purpose not built-in and can be handled by a macro
package during callback processing. We have made some practical choices and the user has to
live with those.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode
range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
c=1,114,112, LuaTgX will actually print the single byte corresponding to ¢ minus 1,114,112.

‘e _
0; 20 Basic TEX enhancements

Output to the terminal uses ~”" notation for the lower control range (c < 32), with the exception
of ~~I, ~J and ~"M. These are considered ‘safe’ and therefore printed as-is. You can disable
escaping with texio.setescape(false) in which case you get the normal characters on the
console.

2.2.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

2.2.3 Extended tables

All traditional TEX and &-TgX registers can be 16-bit numbers. The affected commands are:

\count \countdef \box \wd
\dimen \dimendef \unhbox \ht
\skip \skipdef \unvbox \dp
\muskip \muskipdef \copy \setbox
\marks \toksdef \unhcopy \vsplit
\toks \insert \unvcopy

Because font memory management has been rewritten, character properties in fonts are no
longer shared among font instances that originate from the same metric file. Of course we
share fonts in the backend when possible so that the resulting pdf file is as efficient as possible,
but for instance also expansion and protrusion no longer use copies as in pdfTgX.

2.3 Attributes

2.3.1 Nodes

When TgX reads input it will interpret the stream according to the properties of the characters.
Some signal a macro name and trigger expansion, others open and close groups, trigger math
mode, etc. What's left over becomes the typeset text. Internally we get linked list of nodes.
Characters become glyph nodes that have for instance a font and char property and \kern
10pt becomes a kern node with a width property. Spaces are alien to TgX as they are turned
into glue nodes. So, a simple paragraph is mostly a mix of sequences of glyph nodes (words)
and glue nodes (spaces).

The sequences of characters at some point are extended with disc nodes that relate to hy-
phenation. After that font logic can be applied and we get a list where some characters can
be replaced, for instance multiple characters can become one ligature, and font kerns can be
injected. This is driven by the font properties.

Boxes (like \hbox and \vbox) become hlist or vlist nodes withwidth, height, depth and shift
properties and a pointer list to its actual content. Boxes can be constructed explicitly or can

Basic TgX enhancements 21 |

be the result of subprocesses. For instance, when lines are broken into paragraphs, the lines
are a linked list of hlist nodes.

So, to summarize: all that you enter as content eventually becomes a node, often as part of a
(nested) list structure. They have a relative small memory footprint and carry only the minimal
amount of information needed. In traditional TgX a character node only held the font and slot
number, in LuaTgX we also store some language related information, the expansion factor, etc.
Now that we have access to these nodes from Lua it makes sense to be able to carry more
information with an node and this is where attributes kick in.

2.3.2 Attribute registers

Attributes are a completely new concept in LuaTgX. Syntactically, they behave a lot like counters:
attributes obey TgX’s nesting stack and can be used after \the etc. just like the normal \count
registers.

\attribute (16-bit number) (optional equals) (32-bit number)
\attributedef (csname) (optional equals) (16-bit number)

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value
to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,
a.k.a. —2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign - "7FFFFFFF to ‘unset’ an attribute. All attributes start out in
this ‘unset’ state in iniTEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact
that the numbers and values of all ‘set’ attributes are attached to all nodes created in their
scope. These can then be queried from any Lua code that deals with node processing. Further
information about how to use attributes for node list processing from Lua is given in chapter 8.

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits
efficient testing and updating. You can define many thousands of attributes but normally such a
large number makes no sense and is also not that efficient because each node carries a (possibly
shared) link to a list of currently set attributes. But they are a convenient extension and one of
the first extensions we implemented in LuaTgX.

2.3.3 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment
can be quite asynchronous. For example: in paragraph building, the individual line boxes are
created after the \par command has been processed, so they will receive the list of attributes
that is in effect then, not the attributes that were in effect in, say, the first or third line of the
paragraph.

Similar situations happen in LuaTgX regularly. A few of the more obvious problematic cases are
dealt with: the attributes for nodes that are created during hyphenation, kerning and ligaturing
borrow their attributes from their surrounding glyphs, and it is possible to influence box attrib-
utes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are
unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the

0;. 22 Basic TEX enhancements

same as characters that have been converted to references to glyphs in fonts. For instance,
when you use attributes to implement color support, each node carries information about its
eventual color. In that case, unless you implement mechanisms that deal with it, applying a
color to already boxed material will have no effect. Keep in mind that this incompatibility is
mostly due to the fact that separate specials and literals are a more unnatural approach to
colors than attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the
use of the keyword attr. The attr keyword(s) should come before a to or spread, if that is also
specified. An example is:

\attribute997=123

\attribute998=456

\setbox0=\hbox {Hello}

\setbox2=\hbox attr 999 = 789 attr 998 = -"7FFFFFFF{Hello}

Box 0 now has attributes 997 and 998 set while box 2 has attributes 997 and 999 set while the
nodes inside that box will all have attributes 997 and 998 set. Assigning the maximum negative
value causes an attribute to be ignored.

To give you an idea of what this means at the Lua end, take the following code:

for b=0,2,2 do
for a=997, 999 do

tex.sprint("box ", b, " : attr ",a," : ",tostring(tex.box[b] [al))
tex.sprint("\\quad\\quad")
tex.sprint("list ",b, " : attr ",a," : ",tostring(tex.box[b].list[a]))
tex.sprint("\\par")

end

end

Later we will see that you can access properties of a node. The boxes here are so called hlist
nodes that have a field list that points to the content. Because the attributes are a list them-
selves you can access them by indexing the node (here we do that with [a]. Running this snippet
gives:

box 0 : attr 997 : 123 list 0 : attr 997 : 123
box 0 : attr 998 : 456 list 0 : attr 998 : 456
box 0 : attr 999 : nil list 0 : attr 999 : nil
box 2 : attr 997 : 123 list 2 : attr 997 : 123
box 2 : attr 998 : nil list 2 : attr 998 : 456

box 2 : attr 999 : 789 list 2 : attr 999 : nil

Because some values are not set we need to apply the tostring function here so that we get the
word nil.

2.4 LUA related primitives

2.4.1 \directlua

In order to merge Lua code with TgX input, a few new primitives are needed. The primitive

, \,
Basic TEX enhancements 23 \‘;

\directlua is used to execute Lua code immediately. The syntax is

\directlua (general text)
\directlua (16-bit number) (general text)

The (general text) is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the (general text), the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a
separate chunk. In such a chunk you can use the local directive to keep your variables from
interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments
(starting with - -) within the argument. As there typically will be only one ‘line’ the first line com-
ment will run on until the end of the input. You will either need to use TgX-style line comments
(starting with %), or change the TgX category codes locally. Another possibility is to say:

\begingroup
\endlinechar=10
\directlua ...
\endgroup

Then Lua line comments can be used, since TgX does not replace line endings with spaces. Of
course such an approach depends on the macro package that you use.

The (16-bit number) designates a name of a Lua chunk and is taken from the lua.name array
(see the documentation of the lua table further in this manual). When a chunk name starts with
a @ it will be displayed as a file name. This is a side effect of the way Lua implements error
handling.

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its
expansion from the TgX viewpoint is usually empty. However, there are some Lua functions
that produce material to be read by TgX, the so called print functions. The most simple use of
these is tex.print(<string> s). The characters of the string s will be placed on the TgX input
buffer, that is, ‘before TEX’s eyes’ to be read by TgX immediately. For example:

\count10=20
a\directlua{tex.print(tex.count[10]+5)}b
expands to

a25b

Here is another example:
$\pi = \directlua{tex.print(math.pi)}$

will result in
o =3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all
TgX commands. So formally speaking its expansion is null, but it places material on a pseudo-
file to be immediately read by TgX, as €-TgX’s \scantokens. For a description of print functions
look at section 10.3.14.

/0;. 24 Basic TgX enhancements

Because the (general text) is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the contex-
tual information is still pretty bad. Often, you will only see the line number of the right brace at
the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up
LuaTgX pretty bad. If you are not careful while working with the node list interface, you may
even end up with assertion errors from within the TgX portion of the executable.

2.4.2 \latelua and \lateluafunction

Contrary to \directlua, \latelua stores Lua code in a whatsit that will be processed at the time
of shipping out. Its intended use is a cross between pdf literals (often available as \pdfliteral)
and the traditional TgX extension \write. Within the Lua code you can print pdf statements
directly to the pdf file via pdf.print, or you can write to other output streams via texio.write
or simply using Lua io routines.

\latelua (general text)
\latelua (16-bit number) (general text)

Expansion of macros in the final <general text> is delayed until just before the whatsit is exe-
cuted (like in \write). With regard to pdf output stream \latelua behaves as pdf page literals.
The name (general text) and (16-bit number) behave in the same way as they do for \directlua.

The \lateluafunction primitive takes a number and is similar to \luafunction but gets delated
to shipout time. It’s just there for completeness.

2.4.3 \luaescapestring

This primitive converts a TgX token sequence so that it can be safely used as the contents of a
Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns
are escaped. This is done by prepending an extra token consisting of a backslash with category
code 12, and for the line endings, converting them to n and r respectively. The token sequence
is fully expanded.

\luaescapestring (general text)

Most often, this command is not actually the best way to deal with the differences between TgX
and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of Lua
code it is easier to keep the code in a separate file and load it using Lua’s dofile:

\directlua { dofile('mysetups.lua') }

2.4.4 \luafunction, \luafunctioncall and \luadef

The \directlua commands involves tokenization of its argument (after picking up an optional
name or number specification). The tokenlist is then converted into a string and given to Lua to
turn into a function that is called. The overhead is rather small but when you have millions of
calls it can have some impact. For this reason there is a variant call available: \luafunction.
This command is used as follows:

, \
Basic TEX enhancements 25 \‘,’

\directlua {
local t = lua.get functions table()
t[1] = function() tex.print("!") end
t[2] = function() tex.print("?") end

\luafunctionl
\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of
functions apart from normal Lua limitations. Of course there is the limitation of no arguments
but that would involve parsing and thereby give no gain. The function, when called in fact gets
one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

local t = lua.get functions table()

t[8] = function(slot) tex.print(slot) end
}

The \luafunctioncall primitive does the same but is unexpandable, for instance in an \edef.
In addition LuaTgX provides a definer:

\luadef\MyFunctionA 1
\global\luadef\MyFunctionB 2
\protected\global\luadef\MyFunctionC 3

You should really use these commands with care. Some references get stored in tokens and
assume that the function is available when that token expands. On the other hand, as we have
tested this functionality in relative complex situations normal usage should not give problems.

2.4.5 \luabytecode and \luabytecodecall

Analogue to the function callers discussed in the previous section we have byte code callers.
Again the call variant is unexpandable.

\directlua {
lua.bytecode[9998] = function(s)
tex.sprint(s*token.scan _int())
end
lua.bytecode[5555] = function(s)
tex.sprint(s*token.scan dimen())
end

}

This works with:

\luabytecode 9998 5 \luabytecode 5555 5sp
\luabytecodecall9998 5 \luabytecodecall5555 5sp

, \
\0,’ 26 Basic TEX enhancements

The variable s in the code is the number of the byte code register that can be used for diagnostic
purposes. The advantage of bytecode registers over function calls is that they are stored in the
format (but without upvalues).

2.5 Catcode tables

2.5.1 Catcodes

Catcode tables are a new feature that allows you to switch to a predefined catcode regime
in a single statement. You can have a practically unlimited number of different tables. This
subsystem is backward compatible: if you never use the following commands, your document will
not notice any difference in behaviour compared to traditional TgX. The contents of each catcode
table is independent from any other catcode table, and its contents is stored and retrieved from
the format file.

2.5.2 \catcodetable

\catcodetable (15-bit number)

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ-
ously created using one of the two primitives below, or it has to be zero. Table zero is initialized
by iniTgX.

2.5.3 \initcatcodetable

\initcatcodetable (15-bit number)

The primitive \initcatcodetable creates a new table with catcodes identical to those defined
by iniTgX. The new catcode table is allocated globally: it will not go away after the current group
has ended. If the supplied number is identical to the currently active table, an error is raised.
The initial values are:

CATCODE CHARACTER EQUIVALENT CATEGORY

0 \ escape

5 M return car_ret

9 @ null ignore

10 <space> space spacer

11 a-z letter

11 A-Z letter

12 everything else other

14 % comment

15 "7 delete invalid char

2.5.4 \savecatcodetable

\savecatcodetable (15-bit number)

Basic TEX enhancements 27 {\‘

\savecatcodetable copies the current set of catcodes to a new table with the requested number.
The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the
supplied number is the currently active table, an error is raised.

2.6 Suppressing errors

2.6.1 \suppressfontnotfounderror

If this integer parameter is non-zero, then LuaTgX will not complain about font metrics that are
not found. Instead it will silently skip the font assignment, making the requested csname for the
font \ifx equal to \nullfont, so that it can be tested against that without bothering the user.

\suppressfontnotfounderror = 1

2.6.2 \suppresslongerror

If this integer parameter is non-zero, then LuaTgX will not complain about \par commands en-
countered in contexts where that is normally prohibited (most prominently in the arguments of
macros not defined as \long).

\suppresslongerror = 1

2.6.3 \suppressifcsnameerror

If this integer parameter is non-zero, then LuaTgX will not complain about non-expandable com-
mands appearing in the middle of a \ifcsname expansion. Instead, it will keep getting expanded
tokens from the input until it encounters an \endcsname command. If the input expansion is
unbalanced with respect to \csname ...\endcsname pairs, the LuaTgX process may hang indefi-
nitely.

\suppressifcsnameerror = 1

2.6.4 \suppressoutererror

If this new integer parameter is non-zero, then LuaTgX will not complain about \outer commands
encountered in contexts where that is normally prohibited.

\suppressoutererror = 1

2.6.5 \suppressmathparerror

The following setting will permit \par tokens in a math formula:
\suppressmathparerror = 1

So, the next code is valid then:

- ~

’

{\0,’ 28 Basic TEX enhancements

\
-

$x+ 1=

as

2.6.6 \suppressprimitiveerror

When set to a non-zero value the following command will not issue an error:
\suppressprimitiveerror =1

\primitive\notaprimitive
2.7 Fonts

2.7.1 Font syntax

LuaTgX will accept a braced argument as a font name:

\font\myfont = {cmrl@}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

2.7.2 \fontid and \setfontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix with
\number (and using \the gives an error). The currently used font id is 29. Here are some more:

STYLE COMMAND FONT ID

normal \tf 38
bold \bf 38
italic \it 50
bold italic \bi 51

These numbers depend on the macro package used because each one has its own way of dealing
with fonts. They can also differ per run, as they can depend on the order of loading fonts. For
instance, when in ConTgXt virtual math Unicode fonts are used, we can easily get over a hundred
ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

The primitive \setfontid can be used to enable a font with the given id, which of course needs
to be a valid one.
2.7.3 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is
built by LuaTgX’s main control loop. You can enable these primitives when you want to do node
list processing of ‘characters’, where TgX’s normal processing would get in the way.

Basic TEX enhancements 29 {‘,’

\noligs (integer)
\nokerns (integer)

These primitives can also be implemented by overloading the ligature building and kerning func-
tions, i.e. by assigning dummy functions to their associated callbacks. Keep in mind that when
you define a font (using Lua) you can also omit the kern and ligature tables, which has the same
effect as the above.

2.7.4 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space
character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a
zero skip. In figure 2.1 we see the results for four characters separated by a space.

X XXX XXXX | XXXX
O / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm
XXXX]
X X
X X
O / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 2.1 The \nospaces options.
2.8 Tokens, commands and strings

2.8.1 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted
version of e-TEX’'s \scantokens. The differences are:

» The last (and usually only) line does not have a \endlinechar appended.

» \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

» There are no ‘... while end of file ...’ error tests executed. This allows the expansion to end
on a different grouping level or while a conditional is still incomplete.

2.8.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,
\xtoksapp, \xtokspre

Instead of:
\toksO\expandafter{\the\toksO foo}
you can use:

\etoksapp0{foo}

- ~

’

\: ‘,’ 30 Basic TgX enhancements

\
-

The pre variants prepend instead of append, and the e variants expand the passed general text.
The g and x variants are global.

2.8.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading
escape character. This can be somewhat more efficient than stripping it afterwards.

The \begincsname primitive is like \csname but doesn’t create a relaxed equivalent when there

is no such name. It is equivalent to

\ifcsname foo\endcsname
\csname foo\endcsname
\fi

The advantage is that it saves a lookup (don’t expect much speedup) but more important is that
it avoids using the \if test. The \lastnamedcs is one that should be used with care. The above
example could be written as:

\ifcsname foo\endcsname
\lastnamedcs
\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTgX this also
involves some utf8 juggling), but probably more relevant is that it saves a few tokens and can
make code a bit more readable.

2.8.4 \clearmarks

This primitive complements the ¢-TgX mark primitives and clears a mark class completely, re-
setting all three connected mark texts to empty. It is an immediate command.

\clearmarks (16-bit number)

2.8.5 \alignmark and \aligntab

The primitive \alignmark duplicates the functionality of # inside alignment preambles, while
\aligntab duplicates the functionality of &.

2.8.6 \letcharcode

This primitive can be used to assign a meaning to an active character, as in:

\def\foo{bar} \letcharcodel23=\foo

This can be a bit nicer than using the uppercase tricks (using the property of \uppercase that
it treats active characters special).

Basic TEX enhancements 31 {\‘,

2.8.7 \glet
This primitive is similar to:
\protected\def\glet{\global\let}

but faster (only measurable with millions of calls) and probably more convenient (after all we
also have \gdef).

2.8.8 \expanded, \immediateassignment and \immediateassigned

The \expanded primitive takes a token list and expands it content which can come in handy:
it avoids a tricky mix of \expandafter and \noexpand. You can compare it with what happens
inside the body of an \edef. But this kind of expansion it still doesn’t expand some primitive
operations.

\newcount\NumberOfCalls
\def\TestMe{\advance\NumberOfCallsl }

\edef\Tested{\TestMe foo:\the\NumberOfCalls}
\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

The result is a macro that has the not expanded code in its body
macro:->\advance \NumberOfCalls 1 foo:0

Instead we can define \TestMe in a way that expands the assignment immediately. You need of
course to be aware of preventing look ahead interference by using a space or \relax (often an
expression works better as it doesn’t leave an \relax).

\def\TestMe{\immediateassignment\advance\NumberOfCallsl }

\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

This time the counter gets updates and we don’t see interference in the resulting \Tested macro:
macro:->foo0:3

Here is a somewhat silly example of expanded comparison:

\def\expandeddoifelse#1#2#3#4%
{\immediateassignment\edef\tempa{#1}%
\immediateassignment\edef\tempb{#2}%

- ~

’

{\‘P 32 Basic TgX enhancements

\
-

\ifx\tempa\tempb
\immediateassignment\def\next{#3}%

\else
\immediateassignment\def\next{#4}%

\fi

\next}

\edef\Tested
{(\expandeddoifelse{abc}{def}{yes}{nop}/%
\expandeddoifelse{abc}{abc}{yes}{nop})}

\meaning\Tested

It gives:
macro:->(nop/yes)

A variant is:

\def\expandeddoifelse#1#2#3#4%
{\immediateassigned{
\edef\tempa{#1}%
\edef\tempb{#2}%
}%
\ifx\tempa\tempb
\immediateassignment\def\next{#3}%
\else
\immediateassignment\def\next{#4}%
\fi
\next}

The possible error messages are the same as using assignments in preambles of alignments and
after the \accent command. The supported assignments are the so called prefixed commands

(except box assignments).

2.8.9 \ifcondition

This is a somewhat special one. When you write macros conditions need to be properly balanced
in order to let TEX’s fast branch skipping work well. This new primitive is basically a no-op
flagged as a condition so that the scanner can recognize it as an if-test. However, when a real
test takes place the work is done by what follows, in the next example \something.

\unexpanded\def\something#1#2%
{\edef\tempa{#1}%
\edef\tempb{#2}
\ifx\tempa\tempb}

\ifcondition\something{a}{b}%
\ifcondition\something{a}{a}%

Basic TEX enhancements 33 {“’.

true 1
\else
false 1
\fi
\else
\ifcondition\something{a}{a}%
true 2
\else
false 2
\fi
\fi

If you are familiar with MetaPost, this is a bit like vardef where the macro has a return value.
Here the return value is a test.

2.9 Boxes, rules and leaders

2.9.1 \outputbox

This integer parameter allows you to alter the number of the box that will be used to store the
page sent to the output routine. Its default value is 255, and the acceptable range is from 0 to
65535.

\outputbox = 12345

2.9.2 \vpack, \hpack and \tpack

These three primitives are like \vbox, \hbox and \vtop but don’t apply the related callbacks.

2.9.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternative
for the to keyword you can use upto to get a split of the given size but result has the natural
dimensions then.

2.9.4 Images and reused box objects

These two concepts are now core concepts and no longer whatsits. They are in fact now imple-
mented as rules with special properties. Normal rules have subtype 0, saved boxes have sub-
type 1 and images have subtype 2. This has the positive side effect that whenever we need to
take content with dimensions into account, when we look at rule nodes, we automatically also
deal with these two types.

The syntax of the \save...resource is the same as in pdfTEX but you should consider them to
be backend specific. This means that a macro package should treat them as such and check for
the current output mode if applicable.

- ~

’

{‘P 34 Basic TEX enhancements

\
-

COMMAND EXPLANATION

\saveboxresource save the box as an object to be included later
\saveimageresource save the image as an object to be included later
\useboxresource include the saved box object here (by index)
\useimageresource include the saved image object here (by index)

\lastsavedboxresourceindex the index of the last saved box object
\lastsavedimageresourceindex the index of the last saved image object
\lastsavedimageresourcepages the number of pages in the last saved image object

LuaTgX accepts optional dimension parameters for \use. . .resource in the same format as for
rules. With images, these dimensions are then used instead of the ones given to \useimagere-
source but the original dimensions are not overwritten, so that a \useimageresource without
dimensions still provides the image with dimensions defined by \saveimageresource. These
optional parameters are not implemented for \saveboxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceindex
\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

The box resources are of course implemented in the backend and therefore we do support the
attr and resources keys that accept a token list. New is the type key. When set to non-zero
the /Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or 3 will write a /Matrix.

2.9.5 \nohrule and \novrule

Because introducing a new keyword can cause incompatibilities, two new primitives were intro-
duced: \nohrule and \novrule. These can be used to reserve space. This is often more efficient
than creating an empty box with fake dimensions.

2.9.6 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal
\leaders in that they align nicely, except that the alignment is based on the largest enclosing
box instead of the smallest. The g stresses this global nature.

2.10 Languages

2.10.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of
the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive
accepts a number and stores the value with the language.

2.10.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

The \noboundary command is used to inject a whatsit node but now injects a normal node with
type boundary and subtype 0. In addition you can say:

, \
Basic TEX enhancements 35 \‘P

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig-
ature builder still sees this as a cancel boundary directive but at the Lua end you can implement
different behaviour. The added benefit of passing this value is a side effect of the generalization.
The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation and
have related primitives.

2.11 Control and debugging

2.11.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of the
nodes.

2.11.2 \outputmode

The \outputmode variable tells LuaTgX what it has to produce:

VALUE OUTPUT

0 dvi code
1 pdf code

2.11.3 \draftmode

The value of the \draftmode counter signals the backend if it should output less. The pdf back-
end accepts a value of 1, while the dvi backend ignores the value. This is no critical feature so
we can remove it in future versions when it can make the backend cleaner.

2.12 Files

2.12.1 File syntax
LuaTgX will accept a braced argument as a file name:

\input {plain}
\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

The \tracingfonts primitive that has been inherited from pdfTEX has been adapted to support
variants in reporting the font. The reason for this extension is that a csname not always makes
sense. The zero case is the default.

, \
\‘,5 36 Basic TEX enhancements

VALUE REPORTED

\foo xyz

\foo (bar)

<bar> xyz

<bar @ ..pt> xyz
<id>

<id: bar>

<id: bar @ ..pt> xyz

SO Uk, WN PR O

2.12.2 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the console
and log. As a consequence a system command is no longer possible but one can use 0s.execute
to do the same.

2.13 Math

We will cover math extensions in its own chapter because not only the font subsystem and spac-
ing model have been enhanced (thereby introducing many new primitives) but also because
some more control has been added to existing functionality. Much of this relates to the different
approaches of traditional TgX fonts and OpenType math.

° ! \\
Basic TgX enhancements 37 \‘p

38 Basic TgX enhancements

3 Modifications

3.1 The merged engines

3.1.1 The need for change

The first version of LuaTgX only had a few extra primitives and it was largely the same as pdfTgX.
Then we merged substantial parts of Aleph into the code and got more primitives. When we
got more stable the decision was made to clean up the rather hybrid nature of the program.
This means that some primitives have been promoted to core primitives, often with a different
name, and that others were removed. This made it possible to start cleaning up the code base.
In chapter 2 we discussed some new primitives, here we will cover most of the adapted ones.

Besides the expected changes caused by new functionality, there are a number of not-so-ex-
pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often
than not, a change necessary to clean up the internal interfaces. These will also be mentioned.

3.1.2 Changes from TgX 3.1415926

Of course it all starts with traditional TgX. Even if we started with pdfTgX, most still comes from
the original. But we divert a bit.

» The current code base is written in C, not Pascal. We use cweb when possible. As a conse-
quence instead of one large file plus change files, we now have multiple files organized in
categories like tex, pdf, lang, font, lua, etc. There are some artifacts of the conversion to
C, but in due time we will clean up the source code and make sure that the documentation is
done right. Many files are in the cweb format, but others, like those interfacing to Lua, are C
files. Of course we want to stay as close as possible to the original so that the documentation
of the fundamentals behind TgX by Don Knuth still applies.

» See chapter 5 for many small changes related to paragraph building, language handling and
hyphenation. The most important change is that adding a brace group in the middle of a word
(like in of{}fice) does not prevent ligature creation.

» There is no pool file, all strings are embedded during compilation.

» The specifier plus 1 fillll does not generate an error. The extra ‘1’ is simply typeset.

» The upper limit to \endlinechar and \newlinechar is 127.

» Magnification (\mag) is only supported in dvi output mode. You can set this parameter and it
even works with true units till you switch to pdf output mode. When you use pdf output you
can best not touch the \mag variable. This fuzzy behaviour is not much different from using
pdf backend related functionality while eventually dvi output is required.

After the output mode has been frozen (normally that happens when the first page is shipped
out) or when pdf output is enabled, the true specification is ignored. When you preload a
plain format adapted to LuaTgX it can be that the \mag parameter already has been set.

Modifications 39 *:‘

3.1.3 Changes from g-TgX 2.2

Being the de factor standard extension of course we provide the £-TgX functionality, but with a
few small adaptations.

» The &-TgX functionality is always present and enabled so the prepended asterisk or -etex
switch for iniTgX is not needed.

» The TgXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,
\endR and \endL are missing. Instead we used the Omega/Aleph approach to directionality
as starting point.

» Some of the tracing information that is output by £-TgX’s \tracingassigns and \tracingre-
stores is not there.

» Register management in LuaTgX uses the Omega/Aleph model, so the maximum value is
65535 and the implementation uses a flat array instead of the mixed flat & sparse model
from e-TEX.

» When kpathsea is used to find files, LuaTgX uses the ofm file format to search for font metrics.
In turn, this means that LuaTgX looks at the OFMFONTS configuration variable (like Omega and
Aleph) instead of TFMFONTS (like TgX and pdfTgX). Likewise for virtual fonts (LuaTgX uses the
variable OVFFONTS instead of VFFONTS).

3.1.4 Changes from PDFTgEX 1.40

Because we want to produce pdf the most natural starting point was the popular pdfTgX pro-
gram. We inherit the stable features, dropped most of the experimental code and promoted
some functionality to core LuaTgX functionality which in turn triggered renaming primitives.

For compatibility reasons we still refer to \pdf. .. commands but LuaTgX has a different backend
interface. Instead of these primitives there are three interfacing primitives: \pdfextension,
\pdfvariable and \pdffeedback that take keywords and optional further arguments (below we
will still use the \pdf prefix names as reference). This way we can extend the features when
needed but don’t need to adapt the core engine. The front- and backend are decoupled as much
as possible.

» The (experimental) support for snap nodes has been removed, because it is much more natural
to build this functionality on top of node processing and attributes. The associated primitives
that are gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

» The (experimental) support for specialized spacing around nodes has also been removed. The
associated primitives that are gone are: \pdfadjustinterwordglue, \pdfprependkern, and
\pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode, \shbscode,
\knbccode, and \knaccode.

» A number of ‘pdfTgX primitives’ have been removed as they can be implemented using
Lua: \pdfelapsedtime, \pdfescapehex, \pdfescapename, \pdfescapestring, \pdffile-
dump, \pdffilemoddate, \pdffilesize, \pdfforcepagebox, \pdflastmatch, \pdfmatch,
\pdfmdfivesum, \pdfmovechars, \pdfoptionalwaysusepdfpagebox, \pdfoptionpdfinclu-
sionerrorlevel, \pdfresettimer, \pdfshellescape, \pdfstrcmp and \pdfunescapehex.

» The version related primitives \pdftexbanner, \pdftexversion and \pdftexrevision are
no longer present as there is no longer a relationship with pdfTgX development.

- ~

‘:“p 40 Modifications

hy -

The experimental snapper mechanism has been removed and therefore also the primitives
\pdfignoreddimen, \pdffirstlineheight, \pdfeachlineheight, \pdfeachlinedepth and
\pdflastlinedepth.

The experimental primitives \primitive, \ifprimitive, \ifabsnum and \ifabsdim are pro-
moted to core primitives. The \pdf* prefixed originals are not available.

Because LuaTgX has a different subsystem for managing images, more diversion from its
ancestor happened in the meantime. We don’t adapt to changes in pdfTgX.

Two extra token lists are provided, \pdfxformresources and \pdfxformattr, as an alterna-
tive to \pdfxform keywords.

Image specifications also support visiblefilename, userpassword and ownerpassword. The
password options are only relevant for encrypted pdf files.

The current version of LuaTgX no longer replaces and/or merges fonts in embedded pdf files
with fonts of the enveloping pdf document. This regression may be temporary, depending on
how the rewritten font backend will look like.

The primitives \pdfpagewidth and \pdfpageheight have been removed because \pagewidth
and \pageheight have that purpose.

The primitives \pdfnormaldeviate, \pdfuniformdeviate, \pdfsetrandomseed and
\pdfrandomseed have been promoted to core primitives without pdf prefix so the original
commands are no longer recognized.

The primitives \ifincsname, \expanded and \quitvmode are now core primitives.

As the hz and protrusion mechanism are part of the core the related primitives \lpcode,
\rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to core primitives.
The two commands \protrudechars and \adjustspacing replace their prefixed with \pdf
originals.

The hz optimization code has been partially redone so that we no longer need to create extra
font instances. The front- and backend have been decoupled and more efficient (pdf) code is
generated.

When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When
the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.

The \tagcode primitive is promoted to core primitive.

The \letterspacefont feature is now part of the core but will not be changed (improved).
We just provide it for legacy use.

The \pdfnoligatures primitive is now \ignoreligaturesinfont.

The \pdfcopyfont primitive is now \copyfont.

The \pdffontexpand primitive is now \expandglyphsinfont.

Because position tracking is also available in dvi mode the \savepos, \lastxpos and \lasty-
pos commands now replace their pdf prefixed originals.

The introspective primitives \pdflastximagecolordepth and \pdfximagebbox have been re-
moved. One can use external applications to determine these properties or use the built-in
img library.

The initializers \pdfoutput has been replaced by \outputmode and \pdfdraftmode is now
\draftmode.

The pixel multiplier dimension \pdfpxdimen lost its prefix and is now called \pxdimen.

An extra \pdfimageaddfilename option has been added that can be used to block writing the
filename to the pdf file.

The primitive \pdftracingfonts is now \tracingfonts as it doesn’t relate to the backend.

Modifications 41 {\‘\p

» The experimental primitive \pdfinsertht is kept as \insertht.

» There is some more control over what metadata goes into the pdf file.

» The promotion of primitives to core primitives as well as the separation of font- and backend
means that the initialization namespace pdftex is gone.

One change involves the so called xforms and ximages. In pdfIgX these are implemented as so
called whatsits. But contrary to other whatsits they have dimensions that need to be taken into
account when for instance calculating optimal line breaks. In LuaTgX these are now promoted
to a special type of rule nodes, which simplifies code that needs those dimensions.

Another reason for promotion is that these are useful concepts. Backends can provide the ability
to use content that has been rendered in several places, and images are also common. As already
mentioned in section 2.9.4, we now have:

LUATEX PDFTEX

\saveboxresource \pdfxform
\saveimageresource \pdfximage
\useboxresource \pdfrefxform
\useimageresource \pdfrefximage

\lastsavedboxresourceindex \pdflastxform
\lastsavedimageresourceindex \pdflastximage
\lastsavedimageresourcepages \pdflastximagepages

There are a few \pdffeedback features that relate to this but these are typical backend specific
ones. The index that gets returned is to be considered as ‘just a number’ and although it still
has the same meaning (object related) as before, you should not depend on that.

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.
When protrusion characters are identified some nodes are skipped:

» zero glue » dir nodes

> penalties » empty horizontal lists

» empty discretionaries » local par nodes

» normal zero kerns » inserts, marks and adjusts
» rules with zero dimensions > boundaries

» math nodes with a surround of zero » whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next
node being ignored. When the value is 1 or 3, the next node will be ignored in the test when
locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored
when locating a right boundary condition (the search goes from right to left). This permits
protrusion combined with for instance content moved into the margin:

\protrusionboundaryl\1lap{!\quad}«Who needs protrusion?»

3.1.5 Changes from ALEPH RC4

Because we wanted proper directional typesetting the Aleph mechanisms looked most attractive.
These are rather close to the ones provided by Omega, so what we say next applies to both these

- ~

// \\
! \ . .
\0, 42 Modifications

hy -

programs.

» The extended 16-bit math primitives (\omathcode etc.) have been removed.

» The OCP processing has been removed completely and as a consequence, the following
primitives have been removed: \ocp, \externalocp, \ocplist, \pushocplist, \popoc-
plist, \clearocplists, \addbeforeocplist, \addafterocplist, \removebeforeocplist,
\removeafterocplist and \ocptracelevel.

» LuaTgX only understands 4 of the 16 direction specifiers of Aleph: TLT (latin), TRT (arabic),
RTT (cjk), LTL (mongolian). All other direction specifiers generate an error. In addition to a
keyword driven model we also provide an integer driven one.

» The input translations from Aleph are not implemented, the related primitives are not
available: \DefaultInputMode, \noDefaultInputMode, \noInputMode, \InputMode, \De-
faultOutputMode, \noDefaultOutputMode, \noOutputMode, \OutputMode, \DefaultInput-
Translation, \noDefaultInputTranslation, \noInputTranslation, \InputTranslation,
\DefaultOutputTranslation, \noDefaultOutputTranslation, \noOutputTranslation and
\OutputTranslation.

» Several bugs have been fixed and confusing implementation details have been sorted out.

» The scanner for direction specifications now allows an optional space after the direction is
completely parsed.

» The ~" notation has been extended: after ~~"" four hexadecimal characters are expected and
after ~*~~"" six hexadecimal characters have to be given. The original TgX interpretation is
still valid for the ~" case but the four and six variants do no backtracking, i.e. when they are
not followed by the right number of hexadecimal digits they issue an error message. Because

is a normal TgX case, we don’t support the odd number of ~*"*"" either.

> Glues immediately after direction change commands are not legal breakpoints.

» Several mechanisms that need to be right-to-left aware have been improved. For instance
placement of formula numbers.

» The page dimension related primitives \pagewidth and \pageheight have been promoted to
core primitives. The \hoffset and \voffset primitives have been fixed.

» The primitives \charwd, \charht, \chardp and \charit have been removed as we have the
e-TgX variants \fontchar*.

» The two dimension registers \pagerightoffset and \pagebottomoffset are now core prim-
itives.

» The direction related primitives \pagedir, \bodydir, \pardir, \textdir, \mathdir and
\boxdir are now core primitives.

» The promotion of primitives to core primitives as well as removing of all others means that
the initialization namespace aleph that early versions of LuaTgX provided is gone.

AAN

The above let’s itself summarize as: we took the 32 bit aspects and much of the directional
mechanisms and merged it into the pdfTEX code base as starting point for further development.
Then we simplified directionality, fixed it and opened it up.

3.1.6 Changes from standard WEB2C

The compilation framework is web2c and we keep using that but without the Pascal to C step.
This framework also provides some common features that deal with reading bytes from files and

locating files in tds. This is what we do different:
Modifications 43 *:‘

» There is no mltex support.

» There is no enctex support.

» The following encoding related command line switches are silently ignored, even in non-Lua
mode: -8bit, -translate-file, -mltex, -enc and -etex.

» The \openout whatsits are not written to the log file.

» Some of the so-called web2c extensions are hard to set up in non-kpse mode because
texmf.cnf isnot read: shell-escape is off (but that is not a problem because of Lua’s 0s.ex-
ecute), and the paranoia checks on openin and openout do not happen. However, it is easy
for a Lua script to do this itself by overloading io.open and alike.

» The ‘E’ option does not do anything useful.

3.2 The backend primitives

3.2.1 Less primitives

In a previous section we mentioned that some pdfTEX primitives were removed and others pro-
moted to core LuaTgX primitives. That is only part of the story. In order to separate the backend
specific primitives in de code these commands are now replaced by only a few. In traditional
TgX we only had the dvi backend but now we have two: dvi and pdf. Additional functionality is
implemented as ‘extensions’ in TEX speak. By separating more strickly we are able to keep the
core (frontend) clean and stable and isolate these extensions. If for some reason an extra back-
end option is needed, it can be implemented without touching the core. The three pdf backend
related primitives are:

\pdfextension command [specification]
\pdfvariable name
\pdffeedback name

An extension triggers further parsing, depending on the command given. A variable is a (kind
of) register and can be read and written, while a feedback is reporting something (as it comes
from the backend it’s normally a sequence of tokens).

3.2.2 \pdfextension, \pdfvariable and \pdffeedback

In order for LuaTgX to be more than just TEX you need to enable primitives. That has already
been the case right from the start. If you want the traditional pdfTEX primitives (for as far their
functionality is still around) you now can do this:

\protected\def\pdfliteral {\pdfextension literal}
\protected\def\pdfcolorstack {\pdfextension colorstack}
\protected\def\pdfsetmatrix {\pdfextension setmatrix}
\protected\def\pdfsave {\pdfextension save\relax}
\protected\def\pdfrestore {\pdfextension restore\relax}
\protected\def\pdfobj {\pdfextension obj }
\protected\def\pdfrefobj {\pdfextension refobj }
\protected\def\pdfannot {\pdfextension annot }

- ~

‘:“. 44 Modifications

hy -

\protected\def\pdfstartlink {\pdfextension startlink }
\protected\def\pdfendlink {\pdfextension endlink\relax}
\protected\def\pdfoutline {\pdfextension outline }
\protected\def\pdfdest {\pdfextension dest }
\protected\def\pdfthread {\pdfextension thread }
\protected\def\pdfstartthread {\pdfextension startthread }
\protected\def\pdfendthread {\pdfextension endthread\relax}
\protected\def\pdfinfo {\pdfextension info }
\protected\def\pdfcatalog {\pdfextension catalog }
\protected\def\pdfnames {\pdfextension names }
\protected\def\pdfincludechars {\pdfextension includechars }
\protected\def\pdffontattr {\pdfextension fontattr }
\protected\def\pdfmapfile {\pdfextension mapfile }
\protected\def\pdfmapline {\pdfextension mapline }
\protected\def\pdftrailer {\pdfextension trailer }
\protected\def\pdfglyphtounicode {\pdfextension glyphtounicode }

The introspective primitives can be defined as:

\def\pdftexversion {\numexpr\pdffeedback version\relax}
\def\pdftexrevision {\pdffeedback revision}
\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}
\def\pdfretval {\numexpr\pdffeedback retvallrelax}
\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}
\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}
\def\pdfxformname {\numexpr\pdffeedback xformname\relax}
\def\pdfcreationdate {\pdffeedback creationdate}
\def\pdffontname {\numexpr\pdffeedback fontname\relax}
\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}
\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}
\def\pdfpageref {\numexpr\pdffeedback pageref\relax}
\def\pdfcolorstackinit {\pdffeedback colorstackinit}

The configuration related registers have become:

\edef\pdfcompresslevel {\pdfvariable compresslevel}
\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}
\edef\pdfrecompress {\pdfvariable recompress}
\edef\pdfdecimaldigits {\pdfvariable decimaldigits}
\edef\pdfgamma {\pdfvariable gamma}
\edef\pdfimageresolution {\pdfvariable imageresolution}
\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}
\edef\pdfimagegamma {\pdfvariable imagegamma}
\edef\pdfimagehicolor {\pdfvariable imagehicolor}
\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}
\edef\pdfpkresolution {\pdfvariable pkresolution}
\edef\pdfpkfixeddpi {\pdfvariable pkfixeddpi}
\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}

Modifications 45 {‘\.

\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}
\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}
\edef\pdfgentounicode {\pdfvariable gentounicode}
\edef\pdfomitcidset {\pdfvariable omitcidset}
\edef\pdfomitcharset {\pdfvariable omitcharset}
\edef\pdfpagebox {\pdfvariable pagebox}
\edef\pdfminorversion {\pdfvariable minorversion}
\edef\pdfuniqueresname {\pdfvariable uniqueresname}
\edef\pdfhorigin {\pdfvariable horigin}
\edef\pdfvorigin {\pdfvariable vorigin}
\edef\pdflinkmargin {\pdfvariable linkmargin}
\edef\pdfdestmargin {\pdfvariable destmargin}
\edef\pdfthreadmargin {\pdfvariable threadmargin}
\edef\pdfxformmargin {\pdfvariable xformmargin}
\edef\pdfpagesattr {\pdfvariable pagesattr}
\edef\pdfpageattr {\pdfvariable pageattr}
\edef\pdfpageresources {\pdfvariable pageresources}
\edef\pdfxformattr {\pdfvariable xformattr}
\edef\pdfxformresources {\pdfvariable xformresources}
\edef\pdfpkmode {\pdfvariable pkmode}
\edef\pdfsuppressoptionalinfo {\pdfvariable suppressoptionalinfo }
\edef\pdftrailerid {\pdfvariable trailerid }

The variables are internal ones, so they are anonymous. When you ask for the meaning of a few

previously defined ones:

\meaning\pdfhorigin
\meaning\pdfcompresslevel
\meaning\pdfpageattr

you will get:

macro: ->[internal backend dimension]

macro:->[internal backend integer]
macro:->[internal backend tokenlist]

The \edef can also be a \def but it’s a bit more efficient to expand the lookup related register
beforehand.

The backend is derived from pdfTEX so the same syntax applies. However, the outline command
accepts a objnum followed by a number. No checking takes place so when this is used it had
better be a valid (flushed) object.

In order to be (more or less) compatible with pdfIgX we also support the option to suppress
some info but we do so via a bitset:

\pdfvariable suppressoptionalinfo \numexpr

- ~

{‘\. 46 Modifications

hy -

0
+ 1 % PTEX.FullBanner
+ 2 % PTEX.FileName
+ 4 % PTEX.PageNumber
+ 8 % PTEX.InfoDict
+ 16 % Creator
+ 32 % CreationDate
+ 64 % ModDate
+ 128 % Producer
+ 256 % Trapped
+ 512 % ID
\relax

In addition you can overload the trailer id, but we don’t do any checking on validity, so you have
to pass a valid array. The following is like the ones normally generated by the engine. You even
need to include the brackets here!

\pdfvariable trailerid {[
<FA052949448907805BA83C1E78896398>
<FA052949448907805BA83C1E78896398>

1}

Although we started from a merge of pdfTgX and Aleph, by now the code base as well as func-
tionality has diverted from those parents. Here we show the options that can be passed to the
extensions.

\pdfextension literal
[direct | page | raw] { tokens }

\pdfextension dest
num integer | name { tokens }!crlf
[fitbh | fitbv | fitb | fith| fitv | fit |
fitr <rule spec> | xyz [zoom <integer>]

\pdfextension annot
reserveobjnum | useobjnum <integer>
{ tokens }

\pdfextension save
\pdfextension restore

\pdfextension setmatrix
{ tokens }

[\immediate] \pdfextension obj
reserveobjnum

[\immediate] \pdfextension obj

Modifications 47 */

[useobjnum <integer>]

[uncompressed]

[stream [attr { tokens }] 1]
[file]

{ tokens }

\pdfextension refobj
<integer>

\pdfextension colorstack
<integer>
set { tokens } | push { tokens } | pop | current

\pdfextension startlink
[attr { tokens } 1]
user { tokens } | goto | thread
[file { tokens }]
[page <integer> { tokens } | name { tokens } | num integer]
[newwindow | nonewwindow]

\pdfextension endlink

\pdfextension startthread
num <integer> | name { tokens }

\pdfextension endthread

\pdfextension thread
num <integer> | name { tokens }

\pdfextension outline
[attr { tokens }]
[useobjnum <integer>]
[count <integer>]

{ tokens }

\pdfextension glyphtounicode
{ tokens }
{ tokens }

\pdfextension catalog
{ tokens }
[openaction
user { tokens } | goto | thread
[file { tokens } 1]
[page <integer> { tokens } | name { tokens } | num <integer>]
[newwindow | nonewwindow]]

\pdfextension fontattr

- ~

{‘\‘ 48 Modifications

~

<integer>
{tokens}

\pdfextension
{tokens}

\pdfextension
{tokens}

\pdfextension
{tokens}

\pdfextension
{tokens}

\pdfextension
{tokens}

\pdfextension
{tokens}

mapfile

mapline

includechars

info

names

trailer

3.2.3 Defaults

The engine sets the following defaults.

\pdfcompresslevel 9
\pdfobjcompresslevel 1
\pdfrecompress 0
\pdfdecimaldigits 4
\pdfgamma 1000
\pdfimageresolution 71
\pdfimageapplygamma 0
\pdfimagegamma 2200
\pdfimagehicolor 1
\pdfimageaddfilename 1
\pdfpkresolution 72
\pdfpkfixeddpi 0
\pdfinclusioncopyfonts 0
\pdfinclusionerrorlevel 0
\pdfignoreunknownimages 0
\pdfgentounicode 0
\pdfomitcidset 0
\pdfomitcharset 0
\pdfpagebox 0
\pdfminorversion 4
\pdfuniqueresname 0
\pdfhorigin lin

% used:

%

% used:

(0,9)

s mostly for debugging

(3,6)

Modifications 49

\pdfvorigin lin
\pdflinkmargin Opt
\pdfdestmargin Opt
\pdfthreadmargin Opt
\pdfxformmargin Opt

3.2.4 Backward compatibility

If you also want some backward compatibility, you can add:

\let\pdfpagewidth \pagewidth
\let\pdfpageheight \pageheight
\let\pdfadjustspacing \adjustspacing
\let\pdfprotrudechars \protrudechars
\let\pdfnoligatures \ignoreligaturesinfont
\let\pdffontexpand \expandglyphsinfont
\let\pdfcopyfont \copyfont

\let\pdfxform \saveboxresource
\let\pdflastxform \lastsavedboxresourceindex
\let\pdfrefxform \useboxresource
\let\pdfximage \saveimageresource
\let\pdflastximage \lastsavedimageresourceindex
\let\pdflastximagepages\lastsavedimageresourcepages
\let\pdfrefximage \useimageresource
\let\pdfsavepos \savepos

\let\pdflastxpos \lastxpos

\let\pdflastypos \lastypos

\let\pdfoutput \outputmode
\let\pdfdraftmode \draftmode

\let\pdfpxdimen \pxdimen

\let\pdfinsertht \insertht
\let\pdfnormaldeviate \normaldeviate
\let\pdfuniformdeviate \uniformdeviate
\let\pdfsetrandomseed \setrandomseed
\let\pdfrandomseed \randomseed
\let\pdfprimitive \primitive
\let\ifpdfprimitive \ifprimitive

- ~

{\‘\‘ 50 Modifications

\let\ifpdfabsnum \ifabsnum
\let\ifpdfabsdim \ifabsdim

And even:

\newdimen\pdfeachlineheight
\newdimen\pdfeachlinedepth
\newdimen\pdflastlinedepth
\newdimen\pdffirstlineheight
\newdimen\pdfignoreddimen

3.3 Directions

3.3.1 Four directions

The directional model in LuaTgX is inherited from Omega/Aleph but we tried to improve it a bit.
At some point we played with recovery of modes but that was disabled later on when we found
that it interfered with nested directions. That itself had as side effect that the node list was no
longer balanced with respect to directional nodes which in turn can give side effects when a
series of dir changes happens without grouping.

When extending the pdf backend to support directions some inconsistencies were found and as
a result we decided to support only the four models that make sense TLT (latin), TRT (arabic),
RTT (cjk) and LTL (mongolian).

3.3.2 How it works

The approach is that we again make the list balanced but try to avoid some side effects. What
happens is quite intuitive if we forget about spaces (turned into glue) but even there what hap-
pens makes sense if you look at it in detail. However that logic makes in-group switching kind
of useless when no proper nested grouping is used: switching from right to left several times
nested, results in spacing ending up after each other due to nested mirroring. Of course a sane
macro package will manage this for the user but here we are discussing the low level dir injec-
tion.

This is what happens:
\textdir TRT nur {\textdir TLT run \textdir TRT NUR} nur
This becomes stepwise:

injected: [+TRTInur {[+TLTlrun [+TRTINUR} nur
balanced: [+TRTInur {[+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {RUNrun } run

And this:

\textdir TRT nur {nur \textdir TLT run \textdir TRT NUR} nur

Modifications 51 */

becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]NUR} nur
balanced: [+TRTInur {nur [+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:
\textdir TRT nur {{\textdir TLT run} {\textdir TRT NUR}} nur

This becomes:
run RUN run run

Compare this to:
\textdir TRT nur {{\textdir TLT run }{\textdir TRT NUR}} nur

Which renders as:
run RUNrun run

So how do we deal with the next?

\def\ltr{\textdir TLT\relax}
\def\rtl{\textdir TRT\relax}

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

run run RUNrun RUNrun run
run run runRUN runRUN run

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir
node. But that way we loose the subtype information that for some applications can be handy to
be kept as-is. This is why we now have a variant of \textdir which injects the balanced node
before the skip. Instead of the previous definition we can use:

\def\ltr{\linedir TLT\relax}
\def\rt1{\linedir TRT\relax}

and this time:

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run run RUN run RUN run run
run run run RUN run RUN run

| 52 Modifications

Anything more complex that this, like combination of skips and penalties, or kerns, should be
handled in the input or macro package because there is no way we can predict the expected
behaviour. In fact, the \linedir is just a convenience extra which could also have been imple-
mented using node list parsing.

3.3.3 Controlling glue with \breakafterdirmode

Glue after a dir node is ignored in the linebreak decision but you can bypass that by setting
\breakafterdirmode to 1. The following table shows the difference. Watch your spaces.

pre {\textdir TLT xxx} post pre pre
XXX post XXX

post

pre {\textdir TLT xxx }post pre pre
XXX XXX

post post

pre{ \textdir TLT xxx} post pre pre
XXX post XXX

post

pre{ \textdir TLT xxx }post pre pre
XXX XXX

post post

pre { \textdir TLT xxx } post pre pre
XXX XXX

post
post
pre {\textdir TLT\relax \space xxx} post pre pre
XXX post
XXX
post

3.3.4 Controling parshapes with \shapemode

Another adaptation to the Aleph directional model is control over shapes driven by \hangindent
and \parshape. This is controlled by a new parameter \shapemode:

VALUE \HANGINDENT \PARSHAPE

0 normal normal
1 mirrored normal
2 normal mirrored
3 mirrored mirrored

The value is reset to zero (like \hangindent and \parshape) after the paragraph is done with.
You can use negative values to prevent this. In figure 3.1 a few examples are given.

Modifications 53 {\‘,‘,

We thrive in information-thick worlds because of our

marvelous and everyday capacity to select, edit, sin-

gle out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, summarize, item-
ize, review, dip into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow the wheat from

TLT: hangindent

e thrive in information-thick worlds because of our mar-

velous and everyday capacity to select, edit, single out,
structure, highlight, group, pair, merge, harmonize, syn-
thesize, focus, organize, condense, reduce, boil down, choose, catego-
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, review, dip into, flip
through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats

TLT: parshape

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

-nis ,tide ,tceles ot yticapac yadyreve dna suolevram

-rah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg

nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom
otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc
kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi
knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo
rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva
hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi
morf taechw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks
staog eht morf peehs eht etarapes dna ffahc eht

fram ruo fo esuaceb sdIrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev
-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts
rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht
etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin
etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid
etamixorppa ,egareva ,knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb
pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc
etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht
eht etarapes dna ffahc eht morf taehw eht wonniw ,ezisponys ,naelg
staog eht morf peeh

TRT: hangindent mode 0

TRT: parshape mode 0

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

rnis ,tide ,tceles ot yticapac yadyreve dna suolevram

rrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg

nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom

otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc

kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi

,knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo

rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva

hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi

morf tachw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks
staog eht morf peehs eht etarapes dna ffahc eht

fram ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev

-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts
rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht
etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin
etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid
etamixorppa ,egareva knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb
pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc
etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht
eht etarapes dna ffahc eht morf taechw eht wonniw ,ezisponys ,naelg
staog eht morf peehs

TRT: hangindent mode 1 & 3

TRT: parshape mode 2 & 3

Figure 3.1 The effect of shapemode.

3.3.5 Symbols or numbers

Internally the implementation is different from Aleph. First of all we use no whatsits but dedi-
cated nodes, but also we have only 4 directions that are mapped onto 4 numbers. A text direc-
tion node can mark the start or end of a sequence of nodes, and therefore has two states. At the
TEX end we don't see these states because TgX itself will add proper end state nodes if needed.

The symbolic names TLT, TRT, etc. originate in Omega. In LuaTgX we also have a number based
model which sometimes makes more sense.

VALUE EQUIVALENT

0 TLT
TRT
LTL

1
2
3 RTT

We support the Omega primitives \textdir, \pardir, \pagedir, \pardir and \mathdir. These
accept three character keywords. The primitives that set the direction by number are: \textdi-
rection, \pardirection, \pagedirection and \bodydirection and \mathdirection. When
specifying a direction for a box you can use bdir instead of dir.

’, 54 Modifications

3.4 Implementation notes

3.4.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two
separate arrays. Each of these will grow dynamically when needed.

The texmf.cnf settings related to main memory are no longer used (these are: main _memory,
mem_bot, extra_mem top and extra mem bot). ‘Out of main memory’ errors can still occur, but
the limiting factor is now the amount of RAM in your system, not a predefined limit.

Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant code
now lives in the C file texnode. ¢, and basically uses a dozen or so ‘avail’ lists instead of a doubly-
linked model. An extra function layer is added so that the code can ask for nodes by type instead
of directly requisitioning a certain amount of memory words.

Because of the split into two arrays and the resulting differences in the data structures, some
of the macros have been duplicated. For instance, there are now vlink and vinfo as well as
token_link and token_info. All access to the variable memory array is now hidden behind a
macro called vmem. We mention this because using the TgXbook as reference is still quite valid
but not for memory related details. Another significant detail is that we have double linked node
lists and that most nodes carry more data.

The input line buffer and pool size are now also reallocated when needed, and the texmf.cnf
settings buf size and pool size are silently ignored.

3.4.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjcode)
tables are now sparse arrays that are implemented in C. They are no longer part of the TgX
‘equivalence table’ and because each had 1.1 million entries with a few memory words each,
this makes a major difference in memory usage. Performance is not really hurt by this.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments don’t show up when using
the e-TEX tracing routines \tracingassigns and \tracingrestores but we don’t see that as a
real limitation.

A side-effect of the current implementation is that \global is now more expensive in terms of
processing than non-global assignments but not many users will notice that.

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go up
to index 221 — 1 but these are never accessed directly so again users will not notice this.
3.4.3 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in
the hash just like the multiletter csnames.

The code that displays control sequences explicitly checks if the length is one when it has to

decide whether or not to add a trailing space.
Modifications 55 *:‘

Active characters are internally implemented as a special type of multi-letter control sequences
that uses a prefix that is otherwise impossible to obtain.

3.4.4 The compressed format file

The format is passed through z1ib, allowing it to shrink to roughly half of the size it would have
had in uncompressed form. This takes a bit more cpu cycles but much less disk io, so it should
still be faster. We use a level 3 compression which we found to be the optimal trade-off between
filesize and decompression speed.

3.4.5 Binary file reading

All of the internal code is changed in such a way that if one of the read xxx file callbacks is
not set, then the file is read by a C function using basically the same convention as the callback: a
single read into a buffer big enough to hold the entire file contents. While this uses more memory
than the previous code (that mostly used getc calls), it can be quite a bit faster (depending on
your io subsystem).

3.4.6 Tabs and spaces

We conform to the way other TgX engines handle trailing tabs and spaces. For decades trailing
tabs and spaces (before a newline) were removed from the input but this behaviour was changed
in September 2017 to only handle spaces. We are aware that this can introduce compatibility
issues in existing workflows but because we don’t want too many differences with upstream
TeXLive we just follow up on that patch (which is a functional one and not really a fix). It is up to
macro packages maintainers to deal with possible compatibility issues and in LuaTgX they can
do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes from
generated sources) it was normally dealt with by adding a comment token to the line in case the
spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradicts
some of our other choices but consistency with other engines and the fact that in kpse mode a
common file io layer is used can have a side effect of breaking compatibility. We still stick to our
view that at the log level we can (and might be) more incompatible. We already expose some
more details.

/ ‘.‘, 56 Modifications

4 Using LUATEX

4.1 Initialization

4.1.1 LUATEX as a LUA interpreter
There are some situations that make LuaTgX behave like a standalone Lua interpreter:

» ifa --luaonly option is given on the commandline, or
» if the executable is named texlua or luatexlua, or
» if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options in
negative values and the rest of the command line in the positive values, just like the Lua inter-
preter.

LuaTgX will exit immediately after executing the specified Lua script and is, in effect, a somewhat
bulky stand alone Lua interpreter with a bunch of extra preloaded libraries.

4.1.2 LUATEX as a LUA byte compiler
There are two situations that make LuaTgX behave like the Lua byte compiler:

» ifa --luaconly option is given on the command line, or
» if the executable is named texluac

In this mode, LuaTgX is exactly like luac from the stand alone Lua distribution, except that
it does not have the -1 switch, and that it accepts (but ignores) the --luaconly switch. The
current version of Lua can dump bytecode using string.dump so we might decide to drop this
version of LuaTgX.

4.1.3 Other commandline processing

When the LuaTgX executable starts, it looks for the - -lua command line option. If there is no
- -lua option, the command line is interpreted in a similar fashion as the other TgX engines.
Some options are accepted but have no consequence. The following command-line options are
understood:

COMMANDLINE ARGUMENT EXPLANATION

--credits display credits and exit

--debug-format enable format debugging

--draftmode switch on draft mode i.e. generate no output in pdf mode
--[no-]file-line-error disable/enable file:line:error style messages
--[no-]file-line-error-style aliasesof --[no-]file-line-error

- - Tmt=FORMAT load the format file FORMAT

Using LuaTgX 57 “

--halt-on-error stop processing at the first error

--help display help and exit

--ini be iniluatex, for dumping formats

--interaction=STRING set interaction mode: batchmode, nonstopmode, scrollmode
or errorstopmode

- -jobname=STRING set the job name to STRING

- -kpathsea-debug=NUMBER set path searching debugging flags according to the bits of
NUMBER

--lua=FILE load and execute a Lua initialization script

--[no-Imktex=FMT disable/enable mktexFMT generation with FMT is tex or tfm

--nosocket disable the Lua socket library

--output-comment=STRING use STRING for dvi file comment instead of date (no effect for
pdf)

--output-directory=DIR use DIR as the directory to write files to

--output-format=FORMAT use FORMAT for job output; FORMAT is dvi or pdf

- -progname=STRING set the program name to STRING

--recorder enable filename recorder

--safer disable easily exploitable Lua commands

--[no-]shell-escape disable/enable system calls

--shell-restricted restrict system calls to a list of commands given in texmf.cnf

- -synctex=NUMBER enable synctex

--utc use utc times when applicable

--version display version and exit

We don’t support \write 18 because os.execute can do the same. It simplifies the code and
makes more write targets possible.

The value to use for \ jobname is decided as follows:

» If --jobname is given on the command line, its argument will be the value for \jobname,
without any changes. The argument will not be used for actual input so it need not exist. The
- - jobname switch only controls the \ jobname setting.

» Otherwise, \jobname will be the name of the first file that is read from the file system, with
any path components and the last extension (the part following the last .) stripped off.

» There is an exception to the previous point: if the command line goes into interactive mode
(by starting with a command) and there are no files input via \everyjob either, then the
\jobname is set to texput as a last resort.

The file names for output files that are generated automatically are created by attaching the
proper extension (log, pdf, etc.) to the found \ jobname. These files are created in the directory
pointed to by --output-directory, or in the current directory, if that switch is not present.

Without the - - lua option, command line processing works like it does in any other web2c-based
typesetting engine, except that LuaTgX has a few extra switches and lacks some others. Also, if
the - -lua option is present, LuaTgX will enter an alternative mode of command line processing
in comparison to the standard web2c programs. In this mode, a small series of actions is taken
in the following order:

- ~

{\0.‘, 58 Using LuaTgX

hy -

1. First, it will parse the command line as usual, but it will only interpret a small subset of
the options immediately: --safer, --nosocket, --[no-]shell-escape, --enable-writels,
--disable-writel8, --shell-restricted, --help, --version, and --credits.

2. Next LuaTgX searches for the requested Lua initialization script. If it cannot be found using
the actual name given on the command line, a second attempt is made by prepending the
value of the environment variable LUATEXDIR, if that variable is defined in the environment.

3. Then it checks the various safety switches. You can use those to disable some Lua commands
that can easily be abused by a malicious document. At the moment, - -safer nils the follow-
ing functions:

LIBRARY FUNCTIONS

0s execute exec spawn setenv rename remove tmpdir
io popen output tmpfile
1fs rmdir mkdir chdir lock touch

Furthermore, it disables loading of compiled Lua libraries and it makes io.open() fail on
files that are opened for anything besides reading.

4. When LuaTgX starts it sets the locale to a neutral value. If for some reason you use 0s.l0-
cale, you need to make sure you nil it afterwards because otherwise it can interfere with
code that for instance generates dates. You can ignore the locale with:

os.setlocale(nil,nil)

The - -nosocket option makes the socket library unavailable, so that Lua cannot use network-
ing.
The switches - -[no-]shell-escape, --[enable|disable] -writel8, and - -shell-restricted
have the same effects as in pdfTEX, and additionally make io.popen(), os.execute, 0s.exec
and os.spawn adhere to the requested option.

5. Next the initialization script is loaded and executed. From within the script, the entire com-
mand line is available in the Lua table arg, beginning with arg[0@], containing the name of
the executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TgX’s initializa-
tions have taken place yet. For that reason, the tables that deal with typesetting, like tex, token,
node and pdf, are off-limits during the execution of the startup file (they are nil’d). Special care
is taken that texio.write and texio.write nl function properly, so that you can at least report
your actions to the log file when (and if) it eventually becomes opened (note that TgX does not
even know its \ jobname yet at this point).

Everything you do in the Lua initialization script will remain visible during the rest of the run,
with the exception of the TgX specific libraries like tex, token, node and pdf tables. These will
be initialized to their documented state after the execution of the script. You should not store
anything in variables or within tables with these four global names, as they will be overwritten
completely.

We recommend you use the startup file only for your own TgX-independent initializations (if
you need any), to parse the command line, set values in the texconfig table, and register the
callbacks you need.

Using LuaTgX 59 (‘.

LuaTgX allows some of the command line options to be overridden by reading values from the
texconfig table at the end of script execution (see the description of the texconfig table later
on in this document for more details on which ones exactly).

Unless the texconfig table tells LuaTgX not to initialize kpathsea at all (set texcon-
fig.kpse _init to false for that), LuaTEgX acts on some more command line options after the
initialization script is finished: in order to initialize the built-in kpathsea library properly, LuaTgX
needs to know the correct program name to use, and for that it needs to check - -progname, or
--ini and - -fmt, if - -progname is missing.

4.2 LUA behaviour

4.2.1 The LUA version

We currently use Lua 5.3 and will follow developments of the language but normally with some
delay. Therefore the user needs to keep an eye on (subtle) differences in successive versions of
the language. Also, LuajitTEX lags behind in the sense that Lua]IT is not in sync with regular
Lua development. Here is an example of one aspect.

Luas tostring function (and string.format may return values in scientific notation, thereby
confusing the TgX end of things when it is used as the right-hand side of an assignment to a
\dimen or \count. The output of these serializers also depend on the Lua version, so in Lua 5.3
you can get different output than from 5.2.

4.2.2 Integration in the TDS ecosystem

The main TgX distributions follow the TgX directory structure (tds). LuaTgX is able to use the
kpathsea library to find require()d modules. For this purpose, package.searchers[2] is re-
placed by a different loader function, that decides at runtime whether to use kpathsea or the
built-in core Lua function. It uses kpathsea when that is already initialized at that point in time,
otherwise it reverts to using the normal package.path loader.

Initialization of kpathsea can happen either implicitly (when LuaTgX starts up and the startup
script has not set texconfig.kpse init to false), or explicitly by calling the Lua function
kpse.set program name().

4.2.3 Loading libraries

LuaTgX is able to use dynamically loadable Lua libraries, unless - -safer was given as an option
on the command line. For this purpose, package.searchers[3] is replaced by a different loader
function, that decides at runtime whether to use kpathsea or the built-in core Lua function. It
uses kpathsea when that is already initialized at that point in time, otherwise it reverts to using
the normal package.cpath loader.

This functionality required an extension to kpathsea. There is a new kpathsea file format:
kpse clua format that searches for files with extension .d11 and .so. The texmf.cnf setting
for this variable is CLUAINPUTS, and by default it has this value:

- ~

{\“‘, 60 Using LuaTgX

hy -

CLUAINPUTS=. : $SELFAUTOLOC/1lib/{$progname, $engine, }/lua//

This path is imperfect (it requires a tds subtree below the binaries directory), but the architec-
ture has to be in the path somewhere, and the currently simplest way to do that is to search
below the binaries directory only. Of course it no big deal to write an alternative loader and use
that in a macro package. One level up (a 1ib directory parallel to bin) would have been nicer,
but that is not doable because TgXLive uses a bin/<arch> structure.

Loading dynamic Lua libraries will fail if there are two Lua libraries loaded at the same time
(which will typically happen on win32, because there is one Lua 5.3 inside LuaTgX, and another
will likely be linked to the dll file of the module itself).

4.2.4 Executing programs

In keeping with the other TgX-like programs in TgXLive, the two Lua functions os.execute and
io.popen, as well as the two new functions o0s.exec and 0s. spawn that are explained below, take
the value of shell escape and/or shell escape commands in account. Whenever LuaTgX is run
with the assumed intention to typeset a document (and by that we mean that it is called as lua-
tex, as opposed to texlua, and that the command line option - -luaonly was not given), it will
only run the four functions above if the matching texmf.cnf variable(s) or their texconfig (see
section 10.4) counterparts allow execution of the requested system command. In ‘script inter-
preter’ runs of LuaTgX, these settings have no effect, and all four functions have their original
meaning.

Some libraries have a few more functions, either coded in C or in Lua. For instance, when we
started with LuaTgX we added some helpers to the luafilesystem namespace 1fs. The two
boolean functions 1fs.isdir and lfs.isfile were speedy and better variants of what could
be done with 1fs.attributes. The additional function 1fs.shortname takes a file name and
returns its short name on win32 platforms. Finally, for non-win32 platforms only, we provided
1fs.readlink that takes an existing symbolic link as argument and returns its name. However,
the ibrary evoved so we have dropped these in favour of pure Lua variants. The shortname
helper is obsolete and now just returns the name.

4.2.5 Multibyte string functions

The string library has a few extra functions, for example string.explode. This function takes
upto two arguments: string.explode(s[,m]) and returns an array containing the string argu-
ment s split into sub-strings based on the value of the string argument m. The second argument is
a string that is either empty (this splits the string into characters), a single character (this splits
on each occurrence of that character, possibly introducing empty strings), or a single character
followed by the plus sign + (this special version does not create empty sub-strings). The default
value for mis * + (multiple spaces). Note: m is not hidden by surrounding braces as it would be
if this function was written in TgX macros.

The string library also has six extra iterators that return strings piecemeal: string.utfval-
ues, string.utfcharacters, string.characters, string.characterpairs, string.bytes and
string.bytepairs.

Using LuaTgX 61 {\“

» string.utfvalues(s): an integer value in the Unicode range

» string.utfcharacters(s): a string with a single utf-8 token in it

» string.cWharacters(s): a string containing one byte

» string.characterpairs(s): two strings each containing one byte or an empty second string
if the string length was odd

» string.bytes(s): a single byte value

» string.bytepairs(s): two byte values or nil instead of a number as its second return value
if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the
conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,
if true, strips the symbols from the dumped data. This matches an extension made in luajit.
This is typically a function that gets adapted as Lua itself progresses.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the utf8
encoding, i.e., strings containing characters above code point 127, the corresponding functions
from the slnunicode library can be used, e.g., unicode.utf8.len, unicode.utf8. lower etc.
The exceptions are unicode.utf8. find, that always returns byte positions in a string, and uni-
code.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are Uni-
code-aware, they fall-back to non-Unicode-aware behavior when using the empty capture () but
other captures work as expected. For the interpretation of character classes in unicode.utf8
functions refer to the library sources at http://luaforge.net/projects/sin.

Version 5.3 of Lua provides some native utf8 support but we have added a few similar helpers
too: string.utfvalue, string.utfcharacter and string.utflength.

» string.utfvalue(s): returns the codepoints of the characters in the given string
» string.utfcharacter(c,...): returns a string with the characters of the given code points
» string.utflength(s): returns the length oif the given string

These three functions are relative fast and don’t do much checking. They can be used as building
blocks for other helpers.

4.2.6 Extra os library functions

The os library has a few extra functions and variables: os.selfdir, os.exec, o0s.spawn,
os.setenv, 0s.env, os.gettimeofday, os.times, os.tmpdir, os.type, 0s.name and 0s.uname,
that we will discuss here.

» o0s.selfdir is a variable that holds the directory path of the actual executable. For example:

\directlua{tex.sprint(os.selfdir)}.

» os.exec(commandline) is a variation on os.execute. Here commandline can be either a
single string or a single table.

- If the argument is a table LuaTgX first checks if there is a value at integer index zero. If
there is, this is the command to be executed. Otherwise, it will use the value at integer
index one. If neither are present, nothing at all happens.

- The set of consecutive values starting at integer 1 in the table are the arguments that
are passed on to the command (the value at index 1 becomes arg[0]). The command is

- ~

{\“\' 62 Using LuaTgX

hy -

searched for in the execution path, so there is normally no need to pass on a fully qualified
path name.

- If the argument is a string, then it is automatically converted into a table by splitting on
whitespace. In this case, it is impossible for the command and first argument to differ
from each other.

- In the string argument format, whitespace can be protected by putting (part of) an argu-
ment inside single or double quotes. One layer of quotes is interpreted by LuaTgX, and
all occurrences of \", \'' or \\ within the quoted text are unescaped. In the table format,
there is no string handling taking place.

This function normally does not return control back to the Lua script: the command will

replace the current process. However, it will return the two values nil and error if there

was a problem while attempting to execute the command.

On MS Windows, the current process is actually kept in memory until after the execution of

the command has finished. This prevents crashes in situations where TgXLua scripts are run

inside integrated TgX environments.

The original reason for this command is that it cleans out the current process before starting

the new one, making it especially useful for use in TgXLua.

os.spawn(commandline) is a returning version of os.exec, with otherwise identical calling

conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwise,

it will return the two values nil and error.

os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value

string will remove the variable.

0s.env is a hash table containing a dump of the variables and values in the process envi-

ronment at the start of the run. It is writeable, but the actual environment is not updated

automatically.

os.gettimeofday () returns the current ‘Unix time’, but as a float. This function is not avail-

able on the SunOS platforms, so do not use this function for portable documents.

os.times ()returns the current process times according to the Unix C library function ‘times’.

This function is not available on the MS Windows and SunOS platforms, so do not use this

function for portable documents.

os.tmpdir() creates a directory in the ‘current directory’ with the name luatex.XXXXXX

where the X-es are replaced by a unique string. The function also returns this string, so you

can Lfs.chdir() into it, or nil if it failed to create the directory. The user is responsible for
cleaning up at the end of the run, it does not happen automatically.

0s.typeis a string that gives a global indication of the class of operating system. The possible

values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

0s.name is a string that gives a more precise indication of the operating system. These pos-
sible values are not yet fixed, and for os.type values windows and msdos, the os.name values
are simply windows and msdos

The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so-

laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv

(unknown, but sysv-like), generic (unknown).

0s.uname returns a table with specific operating system information acquired at runtime.

The keys in the returned table are all string values, and their names are: sysname, machine,

release, version, and nodename.

Using LuaTgX 63 *:“

4.2.7 Binary input from files with fio

There is a whole set of helpers for reading numbers and strings from a file: fio.readcardi-
nall, fio.readcardinal2, fio.readcardinal3, fio.readcardinal4, fio.readcardinaltable,
fio.readintegerl, fio.readinteger2, fio.readinteger3, fio.readinteger4, fio.readin-
tegertable, fio.readfixed2, fio.readfixed4, fio.read2dot14, fio.setposition, fio.get-
position, fio.skipposition, fio.readbytes, fio.readbytetable. They work on normal Lua
file handles.

This library provides a set of functions for reading numbers from a file and in addition to the
regular io library functions.

readcardinall(f) a 1 byte unsigned integer
readcardinal2(f) a 2 byte unsigned integer
readcardinal3(f) a 3 byte unsigned integer
readcardinal4(f) a 4 byte unsigned integer
readcardinaltable(f,n,b) n cardinals of b bytes
readintegerl(f) a 1 byte signed integer
readinteger2(f) a 2 byte signed integer
readinteger3(f) a 3 byte signed integer
readinteger4(f) a 4 byte signed integer
readintegertable(f,n,b) nintegers of b bytes
readfixed2(f) a 2 byte float (used in font files)
readfixed4(f) a 4 byte float (used in font files)
read2dot14(f) a 2 byte float (used in font files)
setposition(f,p) goto position p

getposition(f) get the current position
skipposition(f,n) skip n positions
readbytes(f,n) n bytes

readbytetable(f,n) n bytes

4.2.8 Binary input from strings with sio

A similar set of function as in the fio library is available in the sio library: sio.readcardi-
nall, sio.readcardinal2, sio.readcardinal3, sio.readcardinal4, sio.readcardinaltable,
sio.readintegerl, sio.readinteger2, sio.readinteger3, sio.readinteger4, sio.readin-
tegertable, sio.readfixed2, sio.readfixed4, sio.read2dot14, sio.setposition, sio.get-
position, sio.skipposition, sio.readbytes and sio.readbytetable. Here the first argu-
ment is a string instead of a file handle. More details can be found in the previous section.

4.2.9 Hashes conform sha2

This library is a side effect of the pdfe library that needs such helpers. The sha2.digest256,
sha2.digest384 and sha2.digest512 functions accept a string and return a string with the
hash.

' 64 Using LuaTgX

4.2.10 Locales

In stock Lua, many things depend on the current locale. In LuaTgX, we can’t do that, because it
makes documents unportable. While LuaTgX is running if forces the following locale settings:

LC_CTYPE=C
LC_COLLATE=C
LC_NUMERIC=C

4.3 LUA modules

Some modules that are normally external to Lua are statically linked in with LuaTgX, because
they offer useful functionality:

>

1lpeg, by Roberto Ierusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html. This library
is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mainly means
that lpeg.S cannot be used with utf8 characters encoded in more than two bytes, and thus
1lpeg.S will look for one of those two bytes when matching, not the combination of the two.
The same is true for lpeg.R, although the latter will display an error message if used with
multibyte characters. Therefore lpeg.R('aa') results in the message bad argument #1 to
'R' (range must have two characters), since to lpeg, a is two 'characters’ (bytes), so aa
totals three. In practice this is no real issue and with some care you can deal with Unicode
just fine.

slnunicode, from the selene libraries, http://luaforge.net/projects/sln. This library has been
slightly extended so that the unicode.utf8.* functions also accept the first 256 values of
plane 18. This is the range LuaTgX uses for raw binary output, as explained above. We have
no plans to provide more like this because you can basically do all that you want in Lua.
luazip, from the kepler project, http://www.keplerproject.org/luazip/.

luafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/.
1z1lib, by Tiago Dionizio, http://luaforge.net/projects/lzlib/.

md5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.
luasocket, by Diego Nehab http://w3.impa.br/~diego/software/luasocket/. The . lua support
modules from luasocket are also preloaded inside the executable, there are no external file
dependencies.

4.4 Testing

For development reasons you can influence the used startup date and time. This can be done in
two ways.

1. By setting the environmment variable SOURCE_DATE_EPOCH. This will influence the TgX para-

meters time and date, the random seed, the pdf timestamp and the pdf id that is derived
from the time as well. This variable is consulted when the kpse library is enabled. Resolving
is delegated to this library.

. By setting the start_ time variable in the texconfig table; as with other variables we use the

internal name there. For compatibility reasons we also honour a SOURCE_DATE EPOCH entry.

Using LuaTgX 65 ‘

It should be noted that there are no such variables in other engines and this method is only
relevant in case the while setup happens in Lua.

When Universal Time is needed, you can pass the flag utc to the engine. This property also works
when the date and time are set by LuaTgX itself. It has a complementary entry use_utc_time in
the texconfig table.

There is some control possible, for instance prevent filename to be written to the pdf file. This is
discussed elsewhere. In ConTEXt we provide the command line argument - -nodates that does
a bit more disabling of dates.

' 66 Using LuaTgX

5 Languages, characters, fonts and
glyphs

5.1 Introduction

LuaTgX’s internal handling of the characters and glyphs that eventually become typeset is quite
different from the way TgX82 handles those same objects. The easiest way to explain the differ-
ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later
on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TgX82, the characters you type are converted into char node records when they are encoun-
tered by the main control loop. TgX attaches and processes the font information while creating
those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im-
plicit kerning. This packaging is needed because we may want to get the effective width of for
instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TgX converts (one word at time)
the char node records into a string by replacing ligatures with their components and ignoring
the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated
result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.
Keep in mind that the paragraph may contain unboxed horizontal material, which then already
contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts,
and therefore not really ‘characters’ in the linguistic sense. There is no language information
inside the char node records at all. Instead, language information is passed along using lan-
guage whatsit nodes inside the horizontal list.

In LuaTgX, the situation is quite different. The characters you type are always converted into
glyph node records with a special subtype to identify them as being intended as linguistic char-
acters. LuaTgX stores the needed language information in those records, but does not do any
font-related processing at the time of node creation. It only stores the index of the current font
and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTgX first inserts all hyphenation points
right into the whole node list. Next, it processes all the font information in the whole list (creating
ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the
records are ‘glyph nodes’ from now on.

5.2 Characters, glyphs and discretionaries

TEX82 (including pdfIgX) differentiates between char nodes and 1ig nodes. The former are
simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the
same memory as tokens did. The latter also contained a list of components, and a subtype
indicating whether this ligature was the result of a word boundary, and it was stored in the
same place as other nodes like boxes and kerns and glues.

Languages, characters, fonts and glyphs 67 {\‘

In LuaTgX, these two types are merged into one, somewhat larger structure called a glyph node.
Besides having the old character, font, and component fields there are a few more, like ‘attr’
that we will see in section 8.2.12, these nodes also contain a subtype, that codes four main types
and two additional ghost types. For ligatures, multiple bits can be set at the same time (in case
of a single-glyph word).

» character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

» glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

» ligature, for constructed ligatures bit 1 is set.

» ghost, for so called ‘ghost objects’ bit 2 is set.

» left, forligatures created from a left word boundary and for ghosts created from \leftghost
bit 3 gets set.

» right, for ligatures created from a right word boundary and for ghosts created from \right-
ghost bit 4 is set.

The glyph nodes also contain language data, split into four items that were current when the
node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthyphenmin
(8 bits), and \uchyph (1 bit).

Incidentally, LuaTgX allows 16383 separate languages, and words can be 256 characters long.
The language is stored with each character. You can set \firstvalidlanguage to for instance 1
and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This
value is stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from
TEX82: changes to \uchyph become effective immediately, not at the end of the current partial
paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,
so there is no longer a possible dependency on the surrounding language settings. In TgX82, a
mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan-
guage unless there was a \setlanguage issued inside the box. In LuaTgX, all language variables
are already frozen.

In traditional TgX the process of hyphenation is driven by lccodes. In LuaTgX we made this de-
pendency less strong. There are several strategies possible. When you do nothing, the currently
used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of Lccodes will be
saved with the language. In that case changing a lccode afterwards has no effect. However,
you can adapt the set with:

\hjcode a="a

This change is global which makes sense if you keep in mind that the moment that hyphenation
happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy-
phcodes was zero when the language got initialized you start out with nothing, otherwise you
already have a set.

When a \hjcode is greater than 0 but less than 32 is indicates the to be used length. In the fol-
lowing example we map a character (x) onto another one in the patterns and tell the engine that e

‘/‘, 68 Languages, characters, fonts and glyphs

counts as one character. Because traditionally zero itself is reserved for inhibiting hyphenation,
a value of 32 counts as zero.

Here are some examples (we assume that French patterns are used):

foobar foo-bar

\hjcode “x="0 fxxbar fxx-bar
\lefthyphenmin 3 edipus @di-pus
\lefthyphenmin 4 edipus @dipus
\hjcode "@=2 edipus @di-pus

\hjcode "i=32 \hjcode "d=32 edipus edipus

Carrying all this information with each glyph would give too much overhead and also make the
process of setting up these codes more complex. A solution with hjcode sets was considered but
rejected because in practice the current approach is sufficient and it would not be compatible
anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph-
codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instance
discretionary injection. For this you can use the \wordboundary as a trigger. Here are a few
examples of usage:

discrete---discrete
discrete—discrete
discrete\discretionary{}{}{---}discrete

discrete
discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis-
crete
discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis-
crete
dis-
crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis-
crete—
dis-
crete

Languages, characters, fonts and glyphs 69 {\‘)

We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of
explicit hyphens since that normally indicates a -- or --- ligature in which case we can in a
worse case usage get bad node lists later on due to messed up ligature building as these dashes
are ligatures in base fonts. This is a side effect of separating the hyphenation, ligaturing and
kerning steps.

The start and end of a sequence of characters is signalled by a glue, penalty, kern or boundary
node. But by default also a hlist, vlist, rule, dir, whatsit, ins, and adjust node indicate a
start or end. You can omit the last set from the test by setting \hyphenationbounds to a non-
zero value:

VALUE BEHAVIOUR

0 not strict

1 strict start

2 strict end

3 strict start and strict end

The word start is determined as follows:

NODE BEHAVIOUR

boundary yes when wordboundary

hlist when hyphenationbounds 1 or 3

vlist when hyphenationbounds 1 or 3

rule when hyphenationbounds 1 or 3

dir when hyphenationbounds 1 or 3

whatsit when hyphenationbounds 1 or 3

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no - —)

otherwise yes

The word end is determined as follows:

NODE BEHAVIOUR

boundary yes

glyph yes when different language
glue yes

penalty yes

kern yes when not italic (for some historic reason)
hlist when hyphenationbounds 2 or 3
vlist when hyphenationbounds 2 or 3
rule when hyphenationbounds 2 or 3
dir when hyphenationbounds 2 or 3
whatsit when hyphenationbounds 2 or 3
ins when hyphenationbounds 2 or 3
adjust when hyphenationbounds 2 or 3

Figures 5.1 upto 5.5 show some examples. In all cases we set the min values to 1 and make sure
that the words hyphenate at each character.

’0‘, 70 Languages, characters, fonts and glyphs

Figure 5.1 one

0- o- onet- onetwo
n- n- w-
et- etwo 0
W-
0
0 1 2 3

Figure 5.2 one\null two

o- o- onet- onetwo
n- n- w-
et- etwo o]
W-
0
0 1 2 3

Figure 5.3 \null one\null two

o- o- onetwo onetwo
n- n-
et- etwo
W-
0
0 1 2 3

Figure 5.4 one\null two\null

In traditional TgX ligature building and hyphenation are interwoven with the line break mech-
anism. In LuaTgX these phases are isolated. As a consequence we deal differently with (a se-
quence of) explicit hyphens. We already have added some control over aspects of the hyphen-
ation and yet another one concerns automatic hyphens (e.g. - characters in the input).

When \automatichyphenmode has a value of 0, a hyphen will be turned into an automatic discre-
tionary. The snippets before and after it will not be hyphenated. A side effect is that a leading
hyphen can lead to a split but one will seldom run into that situation. Setting a pre and post
character makes this more prominent. A value of 1 will prevent this side effect and a value of
2 will not turn the hyphen into a discretionary. Experiments with other options, like permitting
hyphenation of the words on both sides were discarded.

In figure ?? and 5.7 we show what happens with three samples:

Input A:

before-after \par
before--after \par

Languages, characters, fonts and glyphs 71 {\‘)

o- o- onetwo onetwo
n- n-
et- etwo
W-
o]
0 1 2 3

Figure 5.5 \null one\null two\null

before-after before- before- before-after
before--after after after before--after
before---after| |before-- before--after before---after
after before---after
before---
after
A O bem A 0 2pt A 1 2pt A 2 2pt
-before i} -before -before
after- before after- after-
--before after- --before --before
after-- --before after-- after--
---before after-- ---before ---before
after--- ---before after--- after---
after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt
before-after before- before- before-after
before--after after after before--after
before---after| |before-- before--after before---after

after before---after
before- - -
after
C 0 6em C 0 2pt C1 2pt C 2 2pt

Figure 5.6 The automatic modes 0 (default), 1 and 2, with a \hsize of
6em and 2pt (which triggers a linebreak).

before---after \par
Input B:

-before \par
after- \par
--before \par
after-- \par
---before \par
after--- \par

72 Languages, characters, fonts and glyphs

before-after beforeB beforeB before-after
before--after Aafter Aafter before--after
before---after| |before-B before--after before---after
Aafter before---after
before--B
Aafter
A O 6em A 0 2pt A 1 2pt A 2 2pt
-before B -before -before
after- Abefore after- after-
--before after- --before --before
after-- --before after-- after--
---before after-- ---before ---before
after--- ---before after--- after---
after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt
before-after beforeB beforeB before-after
before--after Aafter Aafter before--after
before---after| |before-B before--after before---after

Aafter before---after
before--B
Aafter
C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 5.7 The automatic modes 0 (default), 1 and 2, with \preexhy-
phenchar and \postexhyphenchar set to characters A and B.

Input C:

before-after \par
before--after \par
before---after \par

As with primitive companions of other single character commands, the \ - command has a more
verbose primitive version in \explicitdiscretionary and the normally intercepted in the hy-
phenator character - (or whatever is configured) is available as \automaticdiscretionary.

5.3 The main control loop

In LuaTgX's main loop, almost all input characters that are to be typeset are converted into glyph
node records with subtype ‘character’, but there are a few exceptions.

1. The \accent primitive creates nodes with subtype ‘glyph’ instead of ‘character’: one for the
actual accent and one for the accentee. The primary reason for this is that \accent in TEX82
is explicitly dependent on the current font encoding, so it would not make much sense to

Languages, characters, fonts and glyphs 73 {\‘)

attach a new meaning to the primitive’s name, as that would invalidate many old documents
and macro packages. A secondary reason is that in TgX82, \accent prohibits hyphenation of
the current word. Since in LuaTgX hyphenation only takes place on ‘character’ nodes, it is
possible to achieve the same effect. Of course, modern Unicode aware macro packages will
not use the \accent primitive at all but try to map directly on composed characters.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a
character subtype. In traditional TgX there was a strong relationship between the 8-bit input
encoding, hyphenation and glyphs taken from a font. In LuaTgX we have utf input, and in
most cases this maps directly to a character in a font, apart from glyph replacement in the
font engine. If you want to access arbitrary glyphs in a font directly you can always use Lua
to do so, because fonts are available as Lua table.

2. All the results of processing in math mode eventually become nodes with ‘glyph’ subtypes.
In fact, the result of processing math is just a regular list of glyphs, kerns, glue, penalties,
boxes etc.

3. The Aleph-derived commands \leftghost and \rightghost create nodes of a third subtype:
‘ghost’. These nodes are ignored completely by all further processing until the stage where
inter-glyph kerning is added.

4. Automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after
sensing an input character that matches the \hyphenchar in the current font. This test is
wrong in our opinion: whether or not hyphenation takes place should not depend on the
current font, it is a language property.!

In LuaTgX, it works like this: if LuaTgX senses a string of input characters that matches the
value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary
after that series of nodes. Initially TEX sets the \exhyphenchar="\-. Incidentally, this is a
global parameter instead of a language-specific one because it may be useful to change the
value depending on the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same
time as the other hyphenation processing, not inside the main control loop.

The only use LuaTgX has for \hyphenchar is at the check whether a word should be consid-
ered for hyphenation at all. If the \hyphenchar of the font attached to the first character node
in a word is negative, then hyphenation of that word is abandoned immediately. This behav-
iour is added for backward compatibility only, and the use of \hyphenchar=-1 as a means of
preventing hyphenation should not be used in new LuaTgX documents.

5. The \setlanguage command no longer creates whatsits. The meaning of \setlanguage is
changed so that it is now an integer parameter like all others. That integer parameter is
used in \glyph node creation to add language information to the glyph nodes. In conjunction,
the \language primitive is extended so that it always also updates the value of \setlanguage.

6. The \noboundary command (that prohibits word boundary processing where that would nor-
mally take place) now does create nodes. These nodes are needed because the exact place
of the \noboundary command in the input stream has to be retained until after the ligature
and font processing stages.

7. There is no longer a main_loop label in the code. Remember that TEX82 did quite a lot of
processing while adding char nodes to the horizontal list? For speed reasons, it handled

! When TeX showed up we didn’t have Unicode yet and being limited to eight bits meant that one sometimes had to
compromise between supporting character input, glyph rendering, hyphenation.

‘/‘, 74 Languages, characters, fonts and glyphs

that processing code outside of the ‘main control’ loop, and only the first character of any
‘word’ was handled by that ‘main control’ loop. In LuaTgX, there is no longer a need for that
(all hard work is done later), and the (now very small) bits of character-handling code have
been moved back inline. When \tracingcommands is on, this is visible because the full word
is reported, instead of just the initial character.

Because we tend to make hard coded behaviour configurable a few new primitives have been
added:

\hyphenpenaltymode
\automatichyphenpenalty
\explicithyphenpenalty

The first parameter has the following consequences for automatic discs (the ones resulting from
an \exhyphenchar:

MODE AUTOMATIC DISC - EXPLICIT DISC \ -

0 \exhyphenpenalty \exhyphenpenalty

1 \hyphenpenalty \hyphenpenalty

2 \exhyphenpenalty \hyphenpenalty

3 \hyphenpenalty \exhyphenpenalty

4 \automatichyphenpenalty \explicithyphenpenalty
5 \exhyphenpenalty \explicithyphenpenalty
6 \hyphenpenalty \explicithyphenpenalty
7 \automatichyphenpenalty \exhyphenpenalty

8 \automatichyphenpenalty \hyphenpenalty

other values do what we always did in LuaTgX: insert \exhyphenpenalty.

5.4 Loading patterns and exceptions

Although we keep the traditional approach towards hyphenation (which is still superior) the
implementation of the hyphenation algorithm in LuaTgX is quite different from the one in TEX82.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns sep-
arated by spaces, no \char or \chardefd commands are allowed. The current implementation
is quite strict and will reject all non-Unicode characters. Likewise, the expanded argument for
\hyphenation also has to be proper utf8, but here a bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicate a desired complex discretionary,
with arguments as in \discretionary’s command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal
document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,
but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the
internal command names. This string is then converted into a dictionary by a routine that creates

Languages, characters, fonts and glyphs 75 !

key-value pairs by converting the other listed items. It is important to note that the keys in an
exception dictionary can always be generated from the values. Here are a few examples:

VALUE IMPLIED KEY (INPUT) EFFECT
ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)
ba{k-}{}{c}tken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is
the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the
command is optional in the TgX-based input syntax. The underlying reason for that is that it is
conceivable that a whole dictionary of words is stored as a plain text file and loaded into LuaTgX
using one of the functions in the Lua lang library. This loading method is quite a bit faster than
going through the TgX language primitives, but some (most?) of that speed gain would be lost if
it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the
explicit hyphen character (replace - by the actual explicit hyphen character if needed). For
example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetween
‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the e-TgX extension \savinghyphcodes was that hyphenation heavily de-
pended on font encodings. This is no longer true in LuaTgX, and the corresponding primitive is
basically ignored. Because we now have \hjcode, the case relate codes can be used exclusively
for \uppercase and \lowercase.

The three curly brace pair pattern in an exception can be somewhat unexpected so we will try
to explain it by example. The pattern foo{}{}{x}bar pattern creates a lookup fooxbar and the
pattern foo{}{}{}bar creates foobar. Then, when a hit happens there is a replacement text
(x) or none. Because we introduced penalties in discretionary nodes, the exception syntax now
also can take a penalty specification. The value between square brackets is a multiplier for
\exceptionpenalty. Here we have set it to 10000 so effectively we get 30000 in the example.

x{a-}{-b}{}Ix{a-}{-bH{}Ix{a-}{-b}H{Ix{a-}{-b}{}xx

10em 3em Oem 6em
123 xxxxxx 123 |123 123 123 xxxxxx
XXa- Xa- XXXXXX XXa-
-bxa- -bxa- -bxxxx xxa-
-bxa- -bxa- -bxxxx 123

-bxx -bxa-

123 -bxx

123

| 76 Languages, characters, fonts and glyphs

x{a-}{-b}{}Ix{a-}{-b}{}[31x{a-}{-b}{}[1]x{a-}{-b}{}xx

10em 3em Oem 6em
123 xxxxxx 123 |123 123 123 xxxxa-
xa- xa- -bxx xxxxa-
-bxxxa- -bxxxa- -bxx xxxXXX
-bxx -bxx xxxxxx 123
123 123

z{a-}{-b}{z}{a-}{-b}{z}

{a-}{-b}{z}{a-}{-b}{z}z

10em

3em

Oem

6em

123 zzzzzz 123

123
za-
-bza-
-bza-
-b
123

123
za-
-bza-
-bza-
-b

a-

-b23

123 zzzzz7
777777 777Za-
-bzz zzz777
123

z{a-}{-b}{z}{a-}{-b}{z}[3]1{a-}{-b}{z}[1]{a-}{-b}{z}z

10em 3em Oem 6em
123 zzzzzz 123 |123 123 123 zzzzzz
za- za- 777777 Za-
-bzzzz -bzzzz -bzzzz a-
123 a- -bzzzzz 123
-b23

5.5 Applying hyphenation

The internal structures LuaTgX uses for the insertion of discretionaries in words is very different
from the ones in TEX82, and that means there are some noticeable differences in handling as well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still
reads pattern files generated by patgen, but LuaTgX uses a finite state hash to match the pat-
terns against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by

OpenOffice, which in turn is inspired by TgX.

There are a few differences between LuaTgX and TgX82 that are a direct result of the implemen-

tation:

» LuaTgX happily hyphenates the full Unicode character range.

» Pattern and exception dictionary size is limited by the available memory only, all allocations
are done dynamically. The trie-related settings in texmf.cnf are ignored.

» Because there is no ‘trie preparation’ stage, language patterns never become frozen. This
means that the primitive \patterns (and its Lua counterpart lang.patterns) can be used at

any time, not only in iniTgX.

Languages, characters, fonts and glyphs 77

» Only the string representation of \patterns and \hyphenation is stored in the format file.
At format load time, they are simply re-evaluated. It follows that there is no real reason to
preload languages in the format file. In fact, it is usually not a good idea to do so. It is much
smarter to load patterns no sooner than the first time they are actually needed.

» LuaTgX uses the language-specific variables \prehyphenchar and \posthyphenchar in the
creation of implicit discretionaries, instead of TEX82’s \hyphenchar, and the values of the
language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre-
tionaries (instead of TEX82’s empty discretionary).

» The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphen-
penalty, are now stored in the discretionary nodes. This permits a local overload for ex-
plicit \discretionary commands. The value current when the hyphenation pass is applied
is used. When no callbacks are used this is compatible with traditional TgX. When you apply
the Lua lang.hyphenate function the current values are used.

» The hyphenation exception dictionary is maintained as key-value hash, and that is also dy-
namic, so the hyph size setting is not used either.

Because we store penalties in the disc node the \discretionary command has been extended
to accept an optional penalty specification, so you can do the following:

\hsizelmm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par
2:foo\discretionary penalty 10000 {}{}{}bar\par
3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar
2:foobar

3:foo
bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu-
ally the preceding one, but the following one for the items inserted at the left-hand side of a
word).

Word boundaries are no longer implied by font switches, but by language switches. One word
can have two separate fonts and still be hyphenated correctly (but it can not have two different
languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar="\-, \posthyphenchar=0, \preexhyphenchar=0
and \postexhyphenchar=0. When you assign the values of one of these four parameters, you
are actually changing the settings for the current \language, this behaviour is compatible with
\patterns and \hyphenation.

LuaTgX also hyphenates the first word in a paragraph. Words can be up to 256 characters long
(up from 64 in TEX82). Longer words are ignored right now, but eventually either the limitation
will be removed or perhaps it will become possible to silently ignore the excess characters (this
is what happens in TEX82, but there the behaviour cannot be controlled).

‘/‘, 78 Languages, characters, fonts and glyphs

If you are using the Lua function lang.hyphenate, you should be aware that this function expects
to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’,
‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

5.6 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTEX will process the list
to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two
stages: first all ligatures are processed, then all kerning information is applied to the result list.
But those two stages are somewhat dependent on each other: If the used font makes it possible
to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.
While doing so, it removes and interprets \noboundary nodes. The kerning stage deletes those
word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,
at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This word separation is worth mentioning because, if you overrule from Lua only one of the two
callbacks related to font handling, then you have to make sure you perform the tasks normally
done by LuaTgX itself in order to make sure that the other, non-overruled, routine continues to
function properly.

Although we could improve the situation the reality is that in modern OpenType fonts ligatures
can be constructed in many ways: by replacing a sequence of characters by one glyph, or by
selectively replacing individual glyphs, or by kerning, or any combination of this. Add to that
contextual analysis and it will be clear that we have to let Lua do that job instead. The generic
font handler that we provide (which is part of ConTgXt) distinguishes between base mode (which
essentially is what we describe here and which delegates the task to TgX) and node mode (which
deals with more complex fonts.

Let’s look at an example. Take the word office, hyphenated of-fice, using a ‘normal’ font with
all the f-f and f-i type ligatures:

initial {oH{fH{f}H{i}{c}{e}

after hyphenation {o}{f}{{-},{}, {}}H{f}{i}{c}{e}
first ligature stage {o}{{f-},{f}, {<ff>}}{i}{c}{e}
final result {o}{{f-},{<fi>}, {<ffi>}}{c}{e}

That’s bad enough, but let us assume that there is also a hyphenation point between the f and
the i, to create of - f-ice. Then the final result should be:

{o}{{f-},
{{f-},
{1},
{<fi>}},
{{<ff>-},
{1},
{<ffi>}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level
discretionary that resulted from the first hyphenation point.

Languages, characters, fonts and glyphs 79 *:“

Here is that nested solution again, in a different representation:

PRE POST REPLACE
topdisc f- (1) sub 1 sub 2
sub 1 f- (2) i (3) <fi> (4)
sub 2 <ff>- (5) i (6) <ffi> (7)

When line breaking is choosing its breakpoints, the following fields will eventually be selected:

of-f-ice f- (1)

f- ()

i (3)

of-fice f- (1)
<fi> (4)

off-ice <ff>- (5)
i (6)

office <ffi> (7)

The current solution in LuaTgX is not able to handle nested discretionaries, but it is in fact
smart enough to handle this fictional of - f-ice example. It does so by combining two sequential
discretionary nodes as if they were a single object (where the second discretionary node is
treated as an extension of the first node).

One can observe that the of-f-ice and off-ice cases both end with the same actual post re-
placement list (i), and that this would be the case even if i was the first item of a potential
following ligature like ic. This allows LuaTgX to do away with one of the fields, and thus make
the whole stuff fit into just two discretionary nodes.

The mapping of the seven list fields to the six fields in this discretionary node pair is as follows:

FIELD DESCRIPTION

discl.pre f- (D)
discl.post <fi> (4)
discl.replace <ffi> (7)
disc2.pre f- (2)
disc2.post i (3,6)
disc2.replace <ff>- (5)

What is actually generated after ligaturing has been applied is therefore:

{o}{{f-},
{<fi>},
{<ffi>}}
{{f-},
{1},
{<ff>-}}{c}{e}

The two discretionaries have different subtypes from a discretionary appearing on its own: the
first has subtype 4, and the second has subtype 5. The need for these special subtypes stems

/‘) 80 Languages, characters, fonts and glyphs

from the fact that not all of the fields appear in their ‘normal’ location. The second discretionary
especially looks odd, with things like the <ff>- appearing in disc2. replace. The fact that some
of the fields have different meanings (and different processing code internally) is what makes it
necessary to have different subtypes: this enables LuaTgX to distinguish this sequence of two
joined discretionary nodes from the case of two standalone discretionaries appearing in a row.

Of course there is still that relationship with fonts: ligatures can be implemented by mapping a
sequence of glyphs onto one glyph, but also by selective replacement and kerning. This means
that the above examples are just representing the traditional approach.

5.7 Breaking paragraphs into lines

This code is almost unchanged, but because of the above-mentioned changes with respect to
discretionaries and ligatures, line breaking will potentially be different from traditional TgX.
The actual line breaking code is still based on the TgX82 algorithms, and it does not expect
there to be discretionaries inside of discretionaries. But, as patterns evolve and font handling
can influence discretionaries, you need to be aware of the fact that long term consistency is not
an engine matter only.

But that situation is now fairly common in LuaTgX, due to the changes to the ligaturing mech-
anism. And also, the LuaTgX discretionary nodes are implemented slightly different from the
TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these
nodes kept their place in the horizontal list. In traditional TgX the discretionary node contains
a counter indicating how many nodes to skip, but in LuaTgX we store the pre, post and replace
text in the discretionary node.

The combined effect of these two differences is that LuaTgX does not always use all of the poten-
tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course
kerning also complicates matters here.

5.8 The lang library

5.8.1 new and id

This library provides the interface to LuaTgX's structure representing a language, and the asso-
ciated functions.

lang.new()
lang.new(<number> id)

<language> 1
<language> 1

This function creates a new userdata object. An object of type <language> is the first argument
to most of the other functions in the lang library. These functions can also be used as if they
were object methods, using the colon syntax. Without an argument, the next available internal
id number will be assigned to this object. With argument, an object will be created that links to
the internal language with that id number.

<number> n = lang.id(<language> 1)

Languages, characters, fonts and glyphs 81 {\‘

The number returned is the internal \language id number this object refers to.

5.8.2 hyphenation
You can hyphenate a string directly with:

<string> n = lang.hyphenation(<language> 1)
lang.hyphenation(<language> 1, <string> n)

5.8.3 clear_hyphenation and clean

This either returns the current hyphenation exceptions for this language, or adds new ones. The
syntax of the string is explained in section 5.4.

lang.clear hyphenation(<language> 1)
This call clears the exception dictionary (string) for this language.

<string> n = lang.clean(<language> 1, <string> o)
<string> n lang.clean(<string> o)

This function creates a hyphenation key from the supplied hyphenation value. The syntax of the
argument string is explained in section 5.4. This function is useful if you want to do something
else based on the words in a dictionary file, like spell-checking.

5.8.4 patterns and clear_patterns

<string> n = lang.patterns(<language> 1)
lang.patterns(<language> 1, <string> n)

This adds additional patterns for this language object, or returns the current set. The syntax of
this string is explained in section 5.4.

lang.clear patterns(<language> 1)

This can be used to clear the pattern dictionary for a language.

5.8.5 hyphenationmin
This function sets (or gets) the value of the TgX parameter \hyphenationmin.

n = lang.hyphenationmin(<language> 1)
lang.hyphenationmin(<language> 1, <number> n)

5.8.6 [pre|post][ex]|]hyphenchar

<number> n = lang.prehyphenchar(<language> 1)

- ~
’
!

\‘) 82 Languages, characters, fonts and glyphs

\

e

lang.prehyphenchar(<language> 1, <number> n)

<number> n = lang.posthyphenchar(<language> 1)
lang.posthyphenchar(<language> 1, <number> n)

These two are used to get or set the ‘pre-break’ and ‘post-break’ hyphen characters for implicit
hyphenation in this language. The intial values are decimal 45 (hyphen) and decimal O (indicat-
ing emptiness).

<number> n = lang.preexhyphenchar(<language> 1)
lang.preexhyphenchar(<language> 1, <number> n)

<number> n = lang.postexhyphenchar(<language> 1)
lang.postexhyphenchar(<language> 1, <number> n)

These gets or set the ‘pre-break’ and ‘post-break’ hyphen characters for explicit hyphenation in
this language. Both are initially decimal O (indicating emptiness).

5.8.7 hyphenate

The next call inserts hyphenation points (discretionary nodes) in a node list. If tail is given as
argument, processing stops on that node. Currently, success is always true if head (and tail,
if specified) are proper nodes, regardless of possible other errors.

<boolean> success = lang.hyphenate(<node> head)
<boolean> success = lang.hyphenate(<node> head, <node> tail)

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node
subtype having the value 1. Glyph modes with different subtypes are not processed. See sec-
tion 5.2 for more details.

5.8.8 [set|get]hjcode
The following two commands can be used to set or query hj codes:

lang.sethjcode(<language> 1, <number> char, <number> usedchar)
<number> usedchar = lang.gethjcode(<language> 1, <number> char)

When you set a hjcode the current sets get initialized unless the set was already initialized due
to \savinghyphcodes being larger than zero.

Languages, characters, fonts and glyphs 83 *:

84 Languages, characters, fonts and glyphs

60 Font structure

6.1 The font tables

All TgX fonts are represented to Lua code as tables, and internally as C structures. All keys in
the table below are saved in the internal font structure if they are present in the table returned
by the define font callback, or if they result from the normal tfm/vf reading routines if there
is no define font callback defined.

The column ‘v’ means that this key will be created by the font.read vf() routine, ‘tfm’ means
that the key will be created by the font.read tfm() routine, and ‘used’ means whether or not
the LuaTgX engine itself will do something with the key. The top-level keys in the table are as
follows:

KEY VF TFM USED VALUE TYPE DESCRIPTION

name yes yes yes string metric (file) name

area no yes vyes string (directory) location, typically empty
used no yes yes boolean indicates usage (initial: false)
characters yes yes yes table the defined glyphs of this font

checksum yes yes no number default: 0

designsize no yes yes number expected size (default: 655360 == 10pt)
direction no yes yes number default: 0

encodingbytes no no yes number default: depends on format
encodingname no no yes string encoding name

fonts yes no yes table locally used fonts

psname no no yes string This is the PostScript fontname in the in-

coming font source, and it’s used as font-
name identifier in the pdf output. This

has to be a valid string, e.g. no spaces and
such, as the backend will not do a cleanup.
This gives complete control to the loader.

fullname no no yes string output font name, used as a fallback in the
pdf output if the psname is not set

header yes no no string header comments, if any

hyphenchar no no yes number default: TgX's \hyphenchar

parameters no vyes yes hash default: 7 parameters, all zero

size no yes yes number the required scaling (by default the same
as designsize)

skewchar no no yes number default: TEX’s \skewchar

type yes no yes string basic type of this font

format no no yes string disk format type

embedding no no yes string pdf inclusion

filename no no yes string the name of the font on disk

tounicode no yes yes number When this is set to 1 LuaTgX assumes per-

glyph tounicode entries are present in the

font.
// \\
Font structure 85 | i

stretch
shrink

step
expansion factor

attributes
cache

nomath

oldmath

slant

extend

squeeze

width

mode

no

no

no
no

no
no

no

no

no

no

no

no

no

no

no

no
no

no
no

no

no

no

no

no

no

no

yes

yes

yes
no

yes
yes

yes

yes

yes

yes

yes

yes

yes

number

number

number
number

string
string

boolean

boolean

number

number

number

number

number

the ‘stretch’ value from \expandglyphsin-
font

the ‘shrink’ value from \expandglyphsin-
font

the ‘step’ value from \expandglyphsinfont
the actual expansion factor of an expanded
font

the \pdffontattr

This key controls caching of the Lua ta-

ble on the TgX end where yes means: use
a reference to the table that is passed to
LuaTgX (this is the default), and no means:
don’t store the table reference, don’t cache
any Lua data for this font while renew
means: don’t store the table reference, but
save a reference to the table that is created
at the first access to one of its fields in the
font.

This key allows a minor speedup for text
fonts. If it is present and true, then LuaTgX
will not check the character entries for
math-specific keys.

This key flags a font as representing an

old school TEX math font and disables the
OpenType code path.

This parameter will tilt the font and does
the same as SlantFont in the map file for
Typel fonts.

This parameter will scale the font horizon-
tally and does the same as ExtendFont in
the map file for Typel fonts.

This parameter will scale the font vertically
and has no equivalent in the map file.

The backend will inject pdf operators that
set the penwidth. The value is (as usual

in TgX) divided by 1000. It works with the
mode file.

The backend will inject pdf operators that
relate to the drawing mode with O being a
fill, 1 being an outline, 2 both draw and fill
and 3 no painting at all.

The saved reference in the cache option is thread-local, so be careful when you are using corou-
tines: an error will be thrown if the table has been cached in one thread, but you reference it

from another thread.

The key name is always required. The keys stretch, shrink, step only have meaning when used

/‘) 86 Font structure

together: they can be used to replace a post-loading \expandglyphsinfont command. The
auto_expand option is not supported in LuaTgX. In fact, the primitives that create expanded or
protruding copies are probably only useful when used with traditional fonts because all these
extra OpenType properties are kept out of the picture. The expansion factor is value that can
be present inside a fontin font. fonts. Itis the actual expansion factor (a value between -shrink
and stretch, with step step) of a font that was automatically generated by the font expansion
algorithm.

Because we store the actual state of expansion with each glyph and don’t have special font
instances, we can change some font related parameters before lines are constructed, like:

font.setexpansion(font.current(),100,100,20)

This is mostly meant for experiments (or an optimizing routing written in Lua) so there is no
primitive.

The key attributes can be used to set font attributes in the pdf file. The key used is set by the
engine when a font is actively in use, this makes sure that the font’s definition is written to the

output file (dvi or pdf). The tfm reader sets it to false. The direction is a number signalling the
‘normal’ direction for this font. There are sixteen possibilities:

DIR # DIR # DIR # DIR

0 LT 4 RT 8 TT 12 BT
1 LL 5 RL 9 TL 13 BL
2 LB 6 RB 10 TB 14 BB
3 LR 7 RR 11 TR 15 BR

These are Omega-style direction abbreviations: the first character indicates the ‘first’ edge of
the character glyphs (the edge that is seen first in the writing direction), the second the ‘top’
side. Keep in mind that LuaTgX has a bit different directional model so these values are not used
for anything.

The parameters is a hash with mixed key types. There are seven possible string keys, as well as
a number of integer indices (these start from 8 up). The seven strings are actually used instead
of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

NAME REMAPPING

slant 1
space

space stretch
space shrink
X_height

quad

extra space

N OOk W N

The keys type, format, embedding, fullname and filename are used to embed OpenType fonts
in the result pdf.

/ \
Font structure 87 \‘

The characters table is a list of character hashes indexed by an integer number. The number

is the ‘internal code’ TEX knows this character by.

Two very special string indexes can be used also: left boundary is a virtual character whose
ligatures and kerns are used to handle word boundary processing. right boundary is similar
but not actually used for anything (yet).

Each character hash itself is a hash. For example, here is the character ‘f’ (decimal 102) in the
font cmrl@ at 10pt. The numbers that represent dimensions are in scaled points.

[102] = {
["width"]
["height"]
["depth"]
["italic"]
["kerns"]

[63]
[93]
[39]
[33]
[41]

5
5
5
5
5

I
["ligatures”
[102]
[108]
[105]

}

200250,
455111,
0,
50973,
{
0973,
0973,
0973,
0973,
0973

11,
13,
12,

] —

{r
{r
{ [II

C
char"]
C

["type"]
[“type"]
["type"]

1
(ool o]

The following top-level keys can be present inside a character hash:

KEY

width
height
depth
italic
top accent

bot accent

left protruding
right protruding
expansion factor
tounicode

next
extensible
vert variants

VF TFM USED
yes yes yes
no yes yes
no yes yes
no yes yes
no no maybe
no no maybe
no no maybe
no no maybe
no no maybe
no no maybe
no yes yes
no yes yes
no no yes

88 Font structure

TYPE

number
number
number
number
number

number

number
number
number
string

number
table
table

DESCRIPTION

character’s width, in sp (default 0)
character’s height, in sp (default 0)
character’s depth, in sp (default 0)
character’s italic correction, in sp (default zero)
character’s top accent alignment place, in sp
(default zero)

character’s bottom accent alignment place,
in sp (default zero)

character’s \'lpcode

character’s \rpcode

character’s \efcode

character’s Unicode equivalent(s), in utf-16BE
hexadecimal format

the ‘next larger’ character index

the constituent parts of an extensible recipe
constituent parts of a vertical variant set

horiz variants no no yes table constituent parts of a horizontal variant set

kerns no yes yes table kerning information

ligatures no yes yes table ligaturing information

commands yes no yes array virtual font commands

name no no no string the character (PostScript) name

index no no yes number the (OpenType or TrueType) font glyph index
used no yes yes boolean typeset already (default: false)

mathkern no no yes table math cut-in specifications

The values of top_accent, bot_accent and mathkern are used only for math accent and super-
script placement, see page 99 in this manual for details. The values of left protruding and
right protruding are used only when \protrudechars is non-zero. Whether or not expan-
sion factor is used depends on the font’s global expansion settings, as well as on the value of
\adjustspacing.

The usage of tounicode is this: if this font specifies a tounicode=1 at the top level, then LuaTgX
will construct a /ToUnicode entry for the pdf font (or font subset) based on the character-level
tounicode strings, where they are available. If a character does not have a sensible Unicode
equivalent, do not provide a string either (no empty strings).

If the font level tounicode is not set, then LuaTgX will build up /ToUnicode based on the TgX
code points you used, and any character-level tounicodes will be ignored. The string format
is exactly the format that is expected by Adobe CMap files (utf-16BE in hexadecimal encoding),
minus the enclosing angle brackets. For instance the tounicode for a fi ligature would be
00660069. When you pass a number the conversion will be done for you.

A math character can have a next field that points to a next larger shape. However, the presence
of extensible will overrule next, if that is also present. The extensible field in turn can be
overruled by vert variants, the OpenType version. The extensible table is very simple:

KEY TYPE DESCRIPTION

top number top character index

mid number middle character index
bot number bottom character index
rep number repeatable character index

The horiz_variants and vert variants are arrays of components. Each of those components
is itself a hash of up to five keys:

KEY TYPE EXPLANATION

glyph number The character index. Note that this is an encoding number, not a name.
extender number One (1) if this part is repeatable, zero (0) otherwise.

start number The maximum overlap at the starting side (in scaled points).

end number The maximum overlap at the ending side (in scaled points).

advance number The total advance width of this item. It can be zero or missing, then the
natural size of the glyph for character component is used.

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either
a non-negative integer or the string value right boundary), with the values of the kerning to
be applied, in scaled points.

/ \
Font structure 89 \‘

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as
either a non-negative integer or the string value right boundary), with the values being yet
another small hash, with two fields:

KEY TYPE DESCRIPTION

type number the type of this ligature command, default O
char number the character index of the resultant ligature

The char field in a ligature is required. The type field inside a ligature is the numerical or string
value of one of the eight possible ligature types supported by TgX. When TgX inserts a new
ligature, it puts the new glyph in the middle of the left and right glyphs. The original left and
right glyphs can optionally be retained, and when at least one of them is kept, it is also possible
to move the new ‘insertion point’ forward one or two places. The glyph that ends up to the right
of the insertion point will become the next ‘left’.

EXTUAL (KNUTH) NUMBER STRING RESUL

L+r=:n 0 = |n

l+r=:|n 1 =] Inr
L+r |=:n 2 |=: | tn
L+r |=:]n 3 [=:] | tnr
1L+r=:|>n 5 =:|> njr
1L+ r |=:>n 6 |=:> 1|n
L+r |=:]>n 7 |=:]> 1|nr
1L+r |=:|>>n 11 |=:]>> 1n|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature
replaces both original glyphs. In this table the | indicates the final insertion point.

The commands array is explained below.

6.2 Real fonts

Whether or not a TgX font is a ‘real’ font that should be written to the pdf document is decided
by the type value in the top-level font structure. If the value is real, then this is a proper font,
and the inclusion mechanism will attempt to add the needed font object definitions to the pdf.
Values for type are:

VALUE DESCRIPTION

real this is a base font
virtual thisis a virtual font

The actions to be taken depend on a number of different variables:

» Whether the used font fits in an 8-bit encoding scheme or not. This is true for traditional TgX
fonts that communicate via tfm files.

» The type of the disk font file, for instance a bitmap file or an outline Typel, TrueType or
OpenType font.

» Thelevel of embedding requested, although in most cases a subset of characters is embedded.
The times when nothing got embedded are (in our opinion at least) basically gone.

‘/‘, 90 Font structure

A font that uses anything other than an 8-bit encoding vector has to be written to the pdf in
a different way. When the font table has encodingbytes set to 2, then it is a wide font, in all
other cases it isn’t. The value 2 is the default for OpenType and TrueType fonts loaded via Lua.
For Typel fonts, you have to set encodingbytes to 2 explicitly. For pk bitmap fonts, wide font
encoding is not supported at all.

If no special care is needed, LuaTgX falls back to the mapfile-based solution used by pdfTEX
and dvips, so that legacy fonts are supported transparently. If a ‘wide’ font is used, the new
subsystem kicks in, and some extra fields have to be present in the font structure. In this case,
LuaTgX does not use a map file at all. These extra fields are: format, embedding, fullname,
cidinfo (as explained above), filename, and the index key in the separate characters.

The format variable can have the following values. type3 fonts are provided for backward
compatibility only, and do not support the new wide encoding options.

VALUE DESCRIPTION

typel this is a PostScript Typel font

type3 this is a bitmapped (pk) font

truetype thisis a TrueType or TrueType-based OpenType font
opentype this is a PostScript-based OpenType font

Valid values for the embedding variable are:

VALUE DESCRIPTION

no don’t embed the font at all
subset include and atttempt to subset the font
full include this font in its entirety

The other fields are used as follows. The fullname will be the PostScript/pdf font name. The
cidinfo will be used as the character set: the CID /0rdering and /Registry keys. The filename
points to the actual font file. If you include the full path in the filename or if the file is in the
local directory, LuaTgX will run a little bit more efficient because it will not have to re-run the
find _* file callback in that case.

Be careful: when mixing old and new fonts in one document, it is possible to create PostScript
name clashes that can result in printing errors. When this happens, you have to change the
fullname of the font to a more unique one.

Typeset strings are written out in a wide format using 2 bytes per glyph, using the index key
in the character information as value. The overall effect is like having an encoding based on
numbers instead of traditional (PostScript) name-based reencoding. One way to get the correct
index numbers for Typel fonts is by loading the font via fontloader.open and use the table
indices as index fields.

In order to make sure that cut and paste of the final document works okay you can best make
sure that there is a tounicode vector enforced. Not all pdf viewers handle this right so take
Acrobat as reference.

Font structure 91 *:‘

6.3 Virtual fonts

6.3.1 The structure

You have to take the following steps if you want LuaTgX to treat the returned table from de-
fine font as a virtual font:

» Set the top-level key type to virtual. In most cases it’s optional because we look at the
commands entry anyway.

» Make sure there is at least one valid entry in fonts (see below), although recent versions of
LuaTgX add a default entry when this table is missing.

» Add a commands array to those characters that matter. A virtual character can itself point to
virtual characters but be careful with nesting as you can create loops and overflow the stack
(which often indicates an error anyway).

The presence of the toplevel type key with the specific value virtual will trigger handling of
the rest of the special virtual font fields in the table, but the mere existence of ‘type’ is enough to
prevent LuaTgX from looking for a virtual font on its own. This also works ‘in reverse’: if you are
absolutely certain that a font is not a virtual font, assigning the value real to type will inhibit
LuaTgX from looking for a virtual font file, thereby saving you a disk search. This only matters
when we load a tfm file.

The fonts is an (indexed) Lua table. The values are one- or two-key hashes themselves, each
entry indicating one of the base fonts in a virtual font. In case your font is referring to itself,
you can use the font.nextid () function which returns the index of the next to be defined font
which is probably the currently defined one. So, a table looks like this:

fonts = {
{ name = "ptmr8a", size = 655360 },
{ name = "psyr", size = 600000 },
{ id = 38 }

}

The first referenced font (at index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second
is psyr loaded at a little over 9pt. The third one is a previously defined font that is known to
LuaTgX as font id 38. The array index numbers are used by the character command definitions
that are part of each character.

The commands array is a hash where each item is another small array, with the first entry rep-
resenting a command and the extra items being the parameters to that command. The allowed
commands and their arguments are:

COMMAND ARGUMENTS TYPE DESCRIPTION

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current font,
and move right by the character’s width

node 1 node output this node (list), and move right by the width of
this list

0) 92 Font structure

slot 2 2 numbers a shortcut for the combination of a font and char com-

mand

push 0 save current position

nop 0 do nothing

pop 0 pop position

rule 2 2 numbers output a rule ht x wd, and move right.

down 1 number move down on the page

right 1 number move right on the page

special 1 string output a \special command

pdf 2 2 strings output a pdf literal, the first string is one of origin,
page, text, font, direct or raw; if you have one string
only origin is assumed

lua 1 string, function execute a Lua script when the glyph is embedded; in
case of a function it gets the font id and character code
passed

image 1 image output an image (the argument can be either an <im-
age> variable or an image spec table)

comment any any the arguments of this command are ignored

When a font id is set to 0 then it will be replaced by the currently assigned font id. This prevents
the need for hackery with future id’s. Normally one could use font.nextid but when more
complex fonts are built in the meantime other instances could have been loaded.

The pdf option also accepts a mode keyword in which case the third argument sets the mode.
That option will change the mode in an efficient way (passing an empty string would result in
an extra empty lines in the pdf file. This option only makes sense for virtual fonts. The font
mode only makes sense in virtual fonts. Modes are somewhat fuzzy and partially inherited from
pdfTEX.

MODE DESCRIPTION

origin enter page mode and set the position
page enter page mode

text enter text mode

font enter font mode (kind of text mode, only in virtual fonts)
always finish the current string and force a transform if needed
raw finish the current string

You always need to check what pdf code is generated because there can be all kind of inter-
ferences with optimization in the backend and fonts are complicated anyway. Here is a rather
elaborate glyph commands example using such keys:

commands = {

{ "push" }, -- remember where we are
{ "right", 5000 }, -- move right about 0.08pt
{ "font", 3 }, -- select the fonts[3] entry
{ "char", 97 }, -- place character 97 (ASCII 'a')
-- { "slot", 2, 97 }, -- an alternative for the previous two

Font structure 93 !

{ "pop" 1}, -- go all the way back

{ "down", -200000 }, -- move upwards by about 3pt

{ "special"”, "pdf: 1 0 0 rg" } -- switch to red color

-- { "pdf", "origin", "1 0 0 rg" } -- switch to red color (alternative)
{ "rule", 500000, 20000 } -- draw a bar

{ "special", "pdf: 0 g" } -- back to black

{ "pdf", "origin", "0 g" } -- back to black (alternative)

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual
font is essentially only a re-encoding, then you do usually not have created an explicit ‘font’
command in the array.

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.
For correct vertical placement, an extra down command may be needed.

Regardless of the amount of movement you create within the commands, the output pointer will
always move by exactly the width that was given in the width key of the character hash. Any
movements that take place inside the commands array are ignored on the upper level.

The special can have a pdf:, pdf:origin:, pdf:page:, pdf:direct: or pdf:raw: prefix. When
you have to concatenate strings using the pdf command might be more efficient.

6.3.2 Artificial fonts

Even in a ‘real’ font, there can be virtual characters. When LuaTgX encounters a commands field
inside a character when it becomes time to typeset the character, it will interpret the commands,
just like for a true virtual character. In this case, if you have created no ‘fonts’ array, then
the default (and only) ‘base’ font is taken to be the current font itself. In practice, this means
that you can create virtual duplicates of existing characters which is useful if you want to create
composite characters.

Note: this feature does not work the other way around. There can not be ‘real’ characters in a
virtual font! You cannot use this technique for font re-encoding either; you need a truly virtual
font for that (because characters that are already present cannot be altered).

6.3.3 Example virtual font

Finally, here is a plain TgX input file with a virtual font demonstration:

\directlua {
callback.register('define font',
function (name,size)

if name == 'cmrlO-red' then
local f = font.read tfm('cmrl0',size)
f.name = 'cmrlO-red'
f.type = 'virtual'
f.fonts = {

‘/‘, 94 Font structure

{ name = 'cmrl0', size = size }

}
for i,v in pairs(f
if string.char(i)
v.commands = {
{ "special", "pdf: 1 0 0 rg" },

.characters) do
:find (' [tacohanshartmut]') then

{ "char", i},
{ "special", "pdf: 0 g" },
}
end
end
return f
else
return font.read tfm(name,size)
end
end

\font\myfont = cmrl@-red at 10pt \myfont This is a line of text \par
\font\myfontx cmrlo at 10pt \myfontx Here is another line of text \par

6.4 The vf library

The vf library can be used when Lua code, as defined in the commands of the font, is executed.
The functions provided are similar as the commands: char, down, fontid, image, node, nop, pop,
push, right, rule, special and pdf. This library has been present for a while but not been
advertised and tested much, if only because it’s easy to define an invalid font (or mess up the
pdf stream). Keep in mind that the Lua snippets are executed each time when a character is
output.

6.5 The font library

The font library provides the interface into the internals of the font system, and it also contains
helper functions to load traditional TgX font metrics formats. Other font loading functionality is
provided by the fontloader library that will be discussed in the next section.

6.5.1 Loading a TFM file

The behaviour documented in this subsection is considered stable in the sense that there will
not be backward-incompatible changes any more.

<table> fnt =
font.read tfm(<string> name, <number> s)

The number is a bit special:

Font structure 95 {

» Ifit is positive, it specifies an ‘at size’ in scaled points.
» If it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of
the font.

6.5.2 Loading a VF file

The behavior documented in this subsection is considered stable in the sense that there will not
be backward-incompatible changes any more.

<table> vf fnt =
font.read vf(<string> name, <number> s)

The meaning of the number s and the format of the returned table are similar to the ones in the
read tfm function.

6.5.3 The fonts array
The whole table of TgX fonts is accessible from Lua using a virtual array.

font.fonts[n] = { ... }
<table> f = font.fonts[n]

Because this is a virtual array, you cannot call pairs on it, but see below for the font.each
iterator.
The two metatable functions implementing the virtual array are:

<table> f = font.getfont(<number> n)
font.setfont(<number> n, <table> f)

Note that at the moment, each access to the font.fonts or call to font.getfont creates a Lua
table for the whole font unless you cached it. This process can be quite slow.

<table> p = font.getparameters(<number> n)

This one will return a table of the parameters as known to TgX. These can be different from the
ones in the cached table.

Also note the following: assignments can only be made to fonts that have already been defined
in TEX, but have not been accessed at all since that definition. This limits the usability of the
write access to font.fonts quite a lot, a less stringent ruleset will likely be implemented later.

6.5.4 Checking a font’s status
You can test for the status of a font by calling this function:

<boolean> f =
font.frozen(<number> n)

- ~

// \\
/ \
\ ‘; 96 Font structure

\"

The return value is one of true (unassignable), false (can be changed) or nil (not a valid font
at all).

6.5.5 Defining a font directly

You can define your own font into font. fonts by calling this function:

<number> i =
font.define(<table> f)

The return value is the internal id number of the defined font (the index into font. fonts). If the
font creation fails, an error is raised. The table is a font structure. An alternative call is:

<number> i =
font.define(<number> n, <table> f)

Where the first argument is a reserved font id (see below).

6.5.6 Extending a font

Within reasonable bounds you can extend a font after it has been defined. Because some prop-
erties are best left unchanged this is limited to adding characters.

font.addcharacters(<number n>, <table> f)

The table passed can have the fields characters which is a (sub)table like the one used in define,
and for virtual fonts a fonts table can be added. The characters defined in the characters table
are added (when not yet present) or replace an existing entry. Keep in mind that replacing can
have side effects because a character already can have been used. Instead of posing restrictions
we expect the user to be careful. (The setfont helper is a more drastic replacer.)

6.5.7 Projected next font id

<number> i =
font.nextid()

This returns the font id number that would be returned by a font.define call if it was executed
at this spot in the code flow. This is useful for virtual fonts that need to reference themselves.
If you pass true as argument, the id gets reserved and you can pass to font.define as first
argument. This can be handy when you create complex virtual fonts.

<number> i =
font.nextid(true)

6.5.8 Font ids

<number> i =

Font structure 97 *:‘

font.id(<string> csname)
This returns the font id associated with csname, or —1 if csname is not defined.

<number> i =
font.max()

This is the largest used index in font. fonts.

<number> i = font.current()
font.current(<number> i)

This gets or sets the currently used font number.

6.5.9 Iterating over all fonts

for i,v in font.each() do

end

This is an iterator over each of the defined TgX fonts. The first returned value is the index in
font.fonts, the second the font itself, as a Lua table. The indices are listed incrementally, but
they do not always form an array of consecutive numbers: in some cases there can be holes in
the sequence

/‘) 98 Font structure

7 Math

7.1 Traditional alongside OPENTYPE

The handling of mathematics in LuaTgX differs quite a bit from how TgX82 (and therefore pdfIgX)
handles math. First, LuaTgX adds primitives and extends some others so that Unicode input can
be used easily. Second, all of TEX82’s internal special values (for example for operator spacing)
have been made accessible and changeable via control sequences. Third, there are extensions
that make it easier to use OpenType math fonts. And finally, there are some extensions that have
been proposed or considered in the past that are now added to the engine.

7.2 Unicode math characters
Character handling is now extended up to the full Unicode range (the \U prefix), which is com-
patible with XqTEX.

The math primitives from TgX are kept as they are, except for the ones that convert from input to
math commands: mathcode, and delcode. These two now allow for a 21-bit character argument
on the left hand side of the equals sign.

Some of the new LuaTgX primitives read more than one separate value. This is shown in the
tables below by a plus sign.

The input for such primitives would look like this:
\def\overbrace{\Umathaccent 0 1 "23DE }

The altered TgX82 primitives are:

PRIMITIVE MIN MAX MIN MAX
\mathcode O 10FFFF = 0 8000
\delcode O 10FFFF = 0 FFFFFF

The unaltered ones are:

PRIMITIVE MIN MA
\mathchardef 0 8000
\mathchar 0 7FFF
\mathaccent O 7FFF
\delimiter 0 7FFFFFF
\radical 0 7FFFFFF

For practical reasons \mathchardef will silently accept values larger that 0x8000 and interpret
it as \Umathcharnumdef. This is needed to satisfy older macro packages.

The following new primitives are compatible with XqTEX:

PRIMITIVE MIN MAX MIN MAX
\Umathchardef 0+0+0 7+FF+10FFFF

Math 99 |

\Umathcha rnumdef® -80000000 7FFFFFFF

\Umathcode 0 10FFFF = 0+0+0 7+FF+10FFFF
\Udelcode 0 10FFFF = 040 FF+10FFFF
\Umathchar 0+0+0 7+FF+10FFFF
\Umathaccent 0+0+0 7+FF+10FFFF
\Udelimiter 0+0+0 7+FF+10FFFF
\Uradical 0+0 FF+10FFFF
\Umathcharnum -80000000 7FFFFFFF
\Umathcodenum 0 10FFFF = -80000000 7FFFFFFF
\Udelcodenum 0 10FFFF = -80000000 7FFFFFFF

Specifications typically look like:

\Umathchardef\xx="1"0"456
\Umathcode 123="1"0"789

The new primitives that deal with delimiter-style objects do not set up a ‘large family’. Selecting
a suitable size for display purposes is expected to be dealt with by the font via the \Umathoper -
atorsize parameter.

For some of these primitives, all information is packed into a single signed integer. For the first
two (\Umathcharnum and \Umathcodenum), the lowest 21 bits are the character code, the 3 bits
above that represent the math class, and the family data is kept in the topmost bits. This means
that the values for math families 128-255 are actually negative. For \Udelcodenum there is no
math class. The math family information is stored in the bits directly on top of the character code.
Using these three commands is not as natural as using the two- and three-value commands, so
unless you know exactly what you are doing and absolutely require the speedup resulting from
the faster input scanning, it is better to use the verbose commands instead.

The \Umathaccent command accepts optional keywords to control various details regarding
math accents. See section 7.6.2 below for details.

There are more new primitives and all of these will be explained in following sections:

PRIMITIVE VALUE RANGE (IN HEX)

\Uroot 0 + O-FF + 10FFFF
\Uoverdelimiter 0 + O-FF + 10FFFF
\Uunderdelimiter O + O-FF + 10FFFF
\Udelimiterover 0 + O-FF + 10FFFF
\Udelimiterunder O + O-FF + 10FFFF

7.3 Math styles

7.3.1 \mathstyle

It is possible to discover the math style that will be used for a formula in an expandable fashion
(while the math list is still being read). To make this possible, LuaTgX adds the new primitive:

100 Math

\mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only be read,
not set.

The returned value is between 0 and 7 (in math mode), or —1 (all other modes). For easy testing,
the eight math style commands have been altered so that they can be used as numeric values,
so you can write code like this:

\ifnum\mathstyle=\textstyle
\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle
\message{cramped text style}

\fi \fi

Sometimes you won’t get what you expect so a bit of explanation might help to understand what
happens. When math is parsed and expanded it gets turned into a linked list. In a second pass
the formula will be build. This has to do with the fact that in order to determine the automatically
chosen sizes (in for instance fractions) following content can influence preceding sizes. A side
effect of this is for instance that one cannot change the definition of a font family (and thereby
reusing numbers) because the number that got used is stored and used in the second pass (so
changing \fam 12 mid-formula spoils over to preceding use of that family).

The style switching primitives like \textstyle are turned into nodes so the styles set there are
frozen. The \mathchoice primitive results in four lists being constructed of which one is used
in the second pass. The fact that some automatic styles are not yet known also means that the
\mathstyle primitive expands to the current style which can of course be different from the one
really used. It’s a snapshot of the first pass state. As a consequence in the following example
you get a style number (first pass) typeset that can actually differ from the used style (second
pass). In the case of a math choice used ungrouped, the chosen style is used after the choice
too, unless you group.

[a:\mathstyle]\quad

\bgroup

\mathchoice
{\bf \scriptstyle (x:d :\mathstyle)}
{\bf \scriptscriptstyle (x:t :\mathstyle)}
{\bf \scriptscriptstyle (x:s :\mathstyle)}
{\bf \scriptscriptstyle (x:ss:\mathstyle)}

\egroup

\quad[b:\mathstyle]\quad

\mathchoice
{\bf \scriptstyle (y:d :\mathstyle)}
{\bf \scriptscriptstyle (y:t :\mathstyle)}
{\bf \scriptscriptstyle (y:s :\mathstyle)}
{\bf \scriptscriptstyle (y:ss:\mathstyle)}

\quad[c:\mathstyle]\quad

\bgroup

\mathchoice
{\bf \scriptstyle (z:d :\mathstyle)}

{\bf \scriptscriptstyle (z:t :\mathstyle)}

Math 101

{\bf \scriptscriptstyle (z:s :\mathstyle)}
{\bf \scriptscriptstyle (z:ss:\mathstyle)}
\egroup
\quad[d:\mathstyle]

This gives:

[a:0] x:d:4) [b:0] (y:d:4) [c:0] (z:s:6) [d:0]
[@a:2] &:t:6) [b:2] (y:t:6) [c:2] (z:55:6) [d:2]
Using \begingroup ... \endgroup instead gives:
[a:0] x:d:4) [b:0] (y:s:6) [c:0] (z:s5:6) [d:0]
[@a:2] x:t:6) [b:2] (y:ss:6) [c:2] (z:55:6) [d:2]

This might look wrong but it’s just a side effect of \mathstyle expanding to the current (first
pass) style and the number being injected in the list that gets converted in the second pass. It all
makes sense and it illustrates the importance of grouping. In fact, the math choice style being
effective afterwards has advantages. It would be hard to get it otherwise.

7.3.2 \Ustack

There are a few math commands in TgX where the style that will be used is not known straight
from the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would
therefore normally return wrong values for \mathstyle. To fix this, LuaTgX introduces a special
prefix command: \Ustack:

$\Ustack {a \over b}$

The \Ustack command will scan the next brace and start a new math group with the correct
(numerator) math style.

7.3.3 Cramped math styles
LuaTgX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle
\crampedtextstyle
\crampedscriptstyle
\crampedscriptscriptstyle

These additional commands are not all that valuable on their own, but they come in handy as

arguments to the math parameter settings that will be added shortly.

In Eijkhouts “TgX by Topic” the rules for handling styles in scripts are described as follows:

» In any style superscripts and subscripts are taken from the next smaller style. Exception: in
display style they are in script style.

» Subscripts are always in the cramped variant of the style; superscripts are only cramped if
the original style was cramped.

0) 102 Math

v

Inan ..\over.. formula in any style the numerator and denominator are taken from the next
smaller style.

The denominator is always in cramped style; the numerator is only in cramped style if the
original style was cramped.

» Formulas under a \sqrt or \overline are in cramped style.

v

In LuaTgX one can set the styles in more detail which means that you sometimes have to set
both normal and cramped styles to get the effect you want. (Even) if we force styles in the script
using \scriptstyle and \crampedscriptstyle we get this:

default bXZ3%
script bXZx%
crampedscript b}=X%

Now we set the following parameters

\Umathordrelspacing\scriptstyle=30mu
\Umathordordspacing\scriptstyle=30mu

This gives a different result:

STYLE EXAMPLE
X =X X
default bl _. %
3 X =X X
script by Ix *
3 X=XX
crampedscript b3 Z7%

But, as this is not what is expected (visually) we should say:

\Umathordrelspacing\scriptstyle=30mu
\Umathordordspacing\scriptstyle=30mu
\Umathordrelspacing\crampedscriptstyle=30mu
\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

STYLE EXAMPLE
X =X X
default by Ix *
J X =X X
script bY X X
3 X =X X
crampedscript b} Z}

7.4 Math parameter settings

7.4.1 Many new \Umath* primitives

In LuaTgX, the font dimension parameters that TEX used in math typesetting are now accessible
via primitive commands. In fact, refactoring of the math engine has resulted in many more
parameters than were not accessible before.

Math 103

PRIMITIVE NAME DESCRIPTION

\Umathquad the width of 18 mu’s

\Umathaxis height of the vertical center axis of the math formula above the
baseline

\Umathoperatorsize minimum size of large operators in display mode

\Umathoverbarkern vertical clearance above the rule

\Umathoverbarrule the width of the rule

\Umathoverbarvgap vertical clearance below the rule

\Umathunderbarkern vertical clearance below the rule

\Umathunderbarrule the width of the rule

\Umathunderbarvgap vertical clearance above the rule

\Umathradicalkern vertical clearance above the rule

\Umathradicalrule the width of the rule

\Umathradicalvgap vertical clearance below the rule

\Umathradicaldegreebefore the forward kern that takes place before placement of the radical
degree

\Umathradicaldegreeafter the backward kern that takes place after placement of the radi-
cal degree

\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical
sign that the degree is raised by; it is expressed in percents, so
60% is expressed as the integer 60

\Umathstackvgap vertical clearance between the two elements in a \atop stack
\Umathstacknumup numerator shift upward in \atop stack
\Umathstackdenomdown denominator shift downward in \atop stack
\Umathfractionrule the width of the rule in a \over

\Umathfractionnumvgap vertical clearance between the numerator and the rule
\Umathfractionnumup numerator shift upward in \over
\Umathfractiondenomvgap vertical clearance between the denominator and the rule
\Umathfractiondenomdown denominator shift downward in \over
\Umathfractiondelsize minimum delimiter size for \...withdelims
\Umathlimitabovevgap vertical clearance for limits above operators
\Umathlimitabovebgap vertical baseline clearance for limits above operators
\Umathlimitabovekern space reserved at the top of the limit
\Umathlimitbelowvgap vertical clearance for limits below operators
\Umathlimitbelowbgap vertical baseline clearance for limits below operators
\Umathlimitbelowkern space reserved at the bottom of the limit

\Umathoverdelimitervgap vertical clearance for limits above delimiters
\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters
\Umathunderdelimitervgap vertical clearance for limits below delimiters
\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters

\Umathsubshiftdrop subscript drop for boxes and subformulas
\Umathsubshiftdown subscript drop for characters

\Umathsupshiftdrop superscript drop (raise, actually) for boxes and subformulas
\Umathsupshiftup superscript raise for characters

\Umathsubsupshiftdown subscript drop in the presence of a superscript

/104 Math

\Umathsubtopmax the top of standalone subscripts cannot be higher than this above
the baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this
above the baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and subscript
be at least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript

\Umathspaceafterscript additional space added after a super- or subscript

\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

Each of the parameters in this section can be set by a command like this:
\Umathquad\displaystyle=1lem

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

7.4.2 Font-based math parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have
to set each of them by hand. For this reason, LuaTgX initializes a bunch of these parameters
whenever you assign a font identifier to a math family based on either the traditional math font
dimensions in the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy
and cmex), or based on the named values in a potential MathConstants table when the font is
loaded via Lua. If there is a MathConstants table, this takes precedence over font dimensions,
and in that case no attention is paid to which family is being assigned to: the MathConstants
tables in the last assigned family sets all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names
match those used in the TgXbook. Assignments to \textfont set the values for the cramped and
uncramped display and text styles, \scriptfont sets the script styles, and \scriptscriptfont
sets the scriptscript styles, so we have eight parameters for three font sizes. In the tfm case,
assignments only happen in family 2 and family 3 (and of course only for the parameters for
which there are font dimensions).

Besides the parameters below, LuaTgX also looks at the ‘space’ font dimension parameter. For
math fonts, this should be set to zero.

VARIABLE / STYLE TFM / OPENTYPE

\Umathaxis axis height
AxisHeight

® \Umathoperatorsize -

D, D DisplayOperatorMinHeight
?\Umathfractiondelsize deliml

D, D FractionDelimiterDisplayStyleSize
?\Umathfractiondelsize delim2

TT,S, S, SS, SS’ FractionDelimiterSize

\Umathfractiondenomdown denoml

Math 105

D, D’

\Umathfractiondenomdown
TT,S, S, SS, SS’

\Umathfractiondenomvgap
D, D’

\Umathfractiondenomvgap
TT,S, S, SS,SS’

\Umathfractionnumup
D, D’

\Umathfractionnumup
TT,S, S, SS, S

\Umathfractionnumvgap
D, D’

\Umathfractionnumvgap
TT,S, S, SS,SS’
\Umathfractionrule
\Umathskewedfractionhgap

\Umathskewedfractionvgap

\Umathlimitabovebgap

-

\Umathlimitabovekern

\Umathlimitabovevgap

\Umathlimitbelowbgap

-

\Umathlimitbelowkern

\Umathlimitbelowvgap

\Umathoverdelimitervgap

\Umathoverdelimiterbgap

\Umathunderdelimitervgap

\Umathunderdelimiterbgap

\Umathoverbarkern

106 Math

FractionDenominatorDisplayStyleShiftDown

denom?2
FractionDenominatorShiftDown

3*default rule thickness

FractionDenominatorDisplayStyleGapMin

default rule thickness
FractionDenominatorGapMin

numl

FractionNumeratorDisplayStyleShiftUp

num2
FractionNumeratorShiftUp

3*default rule thickness

FractionNumeratorDisplayStyleGapMin

default rule thickness
FractionNumeratorGapMin

default rule thickness
FractionRuleThickness

math quad/2
SkewedFractionHorizontalGap
math_x height
SkewedFractionVerticalGap
big op _spacing3
UpperLimitBaselineRiseMin
big op spacing5

0

big op spacingl
UpperLimitGapMin

big op spacing4
LowerLimitBaselineDropMin
big op spacing5

0

big op spacing2
LowerLimitGapMin

big op spacingl
StretchStackGapBelowMin
big op spacing3
StretchStackTopShiftUp
big op spacing2
StretchStackGapAboveMin
big op spacing4
StretchStackBottomShiftDown
default rule thickness

\Umathoverbarrule

\Umathoverbarvgap
! \Umathquad

\Umathradicalkern
2 \Umathradicalrule
3 \Umathradicalvgap

D, D’

3 \Umathradicalvgap
TT,S, S, SS, SS’

*\Umathradicaldegreebefore
2 \Umathradicaldegreeafter

27 \Umathradicaldegreeraise

*\Umathspaceafterscript

\Umathstackdenomdown
D, D’

\Umathstackdenomdown
TT,S, S, SS,SS

\Umathstacknumup
D, D’

\Umathstacknumup
T,T,S, S, SS, SS

\Umathstackvgap
D, D’

\Umathstackvgap
TT,S S, SS, SS
\Umathsubshiftdown
\Umathsubshiftdrop

8 \Umathsubsupshiftdown

\Umathsubtopmax

OverbarExtraAscender
default rule thickness
OverbarRuleThickness
3*default rule thickness
OverbarVerticalGap

math_quad

default rule thickness
RadicalExtraAscender

<not set>

RadicalRuleThickness

default rule thickness+abs(math x height)/4
RadicalDisplayStyleVerticalGap
default rule thickness+abs(default rule thickness)/4
RadicalVerticalGap

<not set>
RadicalKernBeforeDegree

<not set>
RadicalKernAfterDegree

<not set>
RadicalDegreeBottomRaisePercent
script space

SpaceAfterScript

denoml
StackBottomDisplayStyleShiftDown
denom2

StackBottomShiftDown

numl
StackTopDisplayStyleShiftUp
num3

StackTopShiftUp

7*default _rule_thickness
StackDisplayStyleGapMin
3*default rule thickness
StackGapMin

subl

SubscriptShiftDown

sub_drop
SubscriptBaselineDropMin

SubscriptShiftDownWithSuperscript
abs(math x height*4)/5

Math 107

o

SubscriptTopMax

\Umathsubsupvgap 4*default rule thickness
SubSuperscriptGapMin
\Umathsupbottommin abs(math_x_height/4)
SuperscriptBottomMin
\Umathsupshiftdrop sup_drop
SuperscriptBaselineDropMax
\Umathsupshiftup supl
D SuperscriptShiftUp
\Umathsupshiftup sup2
T S, SS, SuperscriptShiftUp
\Umathsupshiftup sup3
D, T, S, SS’ SuperscriptShiftUpCramped
\Umathsupsubbottommax abs(math x height*4)/5
SuperscriptBottomMaxWithSubscript
\Umathunderbarkern default rule thickness
UnderbarExtraDescender
\Umathunderbarrule default rule thickness
UnderbarRuleThickness
\Umathunderbarvgap 3*default rule thickness
UnderbarVerticalGap

\Umathconnectoroverlapmin 0
MinConnectorOverlap

Note 1: OpenType fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set
\Umathquad to the font size of the used font, because these are not supported in the MATH table,

Note 2: Traditional tfm fonts do not set \Umathradicalrule because TEX82 uses the height of
the radical instead. When this parameter is indeed not set when LuaTgX has to typeset a radi-
cal, a backward compatibility mode will kick in that assumes that an oldstyle TgX font is used.
Also, they do not set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umath-
radicaldegreeraise. These are then automatically initialized to 5/18quad, —10/18quad, and
60.

Note 3: If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTgX
has to typeset a formula because this needs parameters from both family 2 and family 3. This
provides a partial backward compatibility with TEX82, but that compatibility is only partial: once
the \Umathradicalvgap is set, it will not be recalculated any more.

Note 4: When tfm fonts are used a similar situation arises with respect to \Umathspaceafter-
script: it is not set until the first time LuaTgX has to typeset a formula. This provides some
backward compatibility with TgX82. But once the \Umathspaceafterscript is set, \script-
space will never be looked at again.

Note 5: Traditional tfm fonts set \Umathconnectoroverlapmin to zero because TgX82 always
stacks extensibles without any overlap.

108 Math

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType
fonts. In tfm font mode, it is artificially set to one scaled point more than the initial attempt’s
size, so that always the ‘first next’ will be tried, just like in TEX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that
is expressed in a percentage instead of a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ Open-
Type math font Cambria, but it is useful enough to be added.

Note 9: FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually ex-
ist in the ‘standard’ OpenType math font Cambria, but were useful enough to be added.

7.5 Math spacing

7.5.1 Inline surrounding space

Inline math is surrounded by (optional) \mathsurround spacing but that is a fixed dimension.
There is now an additional parameter \mathsurroundskip. When set to a non-zero value (or zero
with some stretch or shrink) this parameter will replace \mathsurround. By using an additional
parameter instead of changing the nature of \mathsurround, we can remain compatible. In the
meantime a bit more control has been added via \mathsurroundmode. This directive can take 6
values with zero being the default behaviour.

\mathsurround 10pt
\mathsurroundskip20pt

MODE XXX X X X EFFECT

0 XXX x x X obey \mathsurround when \mathsurroundskip is Opt
XXX x x X only add skip to the left

XXX x x X only add skip to the right

XXX x x X add skip to the left and right

XXX x x x ignore the skip setting, obey \mathsurround

XXX x x X disable all spacing around math

XXX x x X only apply \mathsurroundskip when also spacing
XXX x x X only apply \mathsurroundskip when no spacing

NOo ok~ W N

Method six omits the surround glue when there is (x)spacing glue present while method seven
does the opposite, the glue is only applied when there is (x)space glue present too. Anything
more fancy, like checking the begining or end of a paragraph (or edges of a box) would not be
robust anyway. If you want that you can write a callback that runs over a list and analyzes a
paragraph. Actually, in that case you could also inject glue (or set the properties of a math node)
explicitly. So, these modes are in practice mostly useful for special purposes and experiments
(they originate in a tracker item). Keep in mind that this glue is part of the math node and not
always treated as normal glue: it travels with the begin and end math nodes. Also, method 6
and 7 will zero the skip related fields in a node when applicable in the first occasion that checks
them (linebreaking or packaging).

Math 109

7.5.2 Pairwise spacing

Besides the parameters mentioned in the previous sections, there are also 64 new primitives to
control the math spacing table (as explained in Chapter 18 of the TgXbook). The primitive names
are a simple matter of combining two math atom types, but for completeness’ sake, here is the

whole list:

\Umathordordspacing
\Umathordopspacing
\Umathordbinspacing
\Umathordrelspacing
\Umathordopenspacing
\Umathordclosespacing
\Umathordpunctspacing
\Umathordinnerspacing
\Umathopordspacing
\Umathopopspacing
\Umathopbinspacing
\Umathoprelspacing
\Umathopopenspacing
\Umathopclosespacing
\Umathoppunctspacing
\Umathopinnerspacing
\Umathbinordspacing
\Umathbinopspacing
\Umathbinbinspacing
\Umathbinrelspacing
\Umathbinopenspacing
\Umathbinclosespacing
\Umathbinpunctspacing
\Umathbininnerspacing
\Umathrelordspacing
\Umathrelopspacing
\Umathrelbinspacing
\Umathrelrelspacing
\Umathrelopenspacing
\Umathrelclosespacing
\Umathrelpunctspacing
\Umathrelinnerspacing

\Umathopenordspacing
\Umathopenopspacing
\Umathopenbinspacing
\Umathopenrelspacing
\Umathopenopenspacing
\Umathopenclosespacing
\Umathopenpunctspacing
\Umathopeninnerspacing
\Umathcloseordspacing
\Umathcloseopspacing
\Umathclosebinspacing
\Umathcloserelspacing
\Umathcloseopenspacing
\Umathcloseclosespacing
\Umathclosepunctspacing
\Umathcloseinnerspacing
\Umathpunctordspacing
\Umathpunctopspacing
\Umathpunctbinspacing
\Umathpunctrelspacing
\Umathpunctopenspacing
\Umathpunctclosespacing
\Umathpunctpunctspacing
\Umathpunctinnerspacing
\Umathinnerordspacing
\Umathinneropspacing
\Umathinnerbinspacing
\Umathinnerrelspacing
\Umathinneropenspacing
\Umathinnerclosespacing
\Umathinnerpunctspacing
\Umathinnerinnerspacing

These parameters are of type \muskip, so setting a parameter can be done like this:

\Umathopordspacing\displaystyle=4mu plus 2mu

They are all initialized by initex to the values mentioned in the table in Chapter 18 of the

TEXbook.

0 110 Math

Note 1: for ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and
\thickmuskip are treated specially. In their case a pointer to the corresponding internal para-
meter is saved, not the actual \muskip value. This means that any later changes to one of these
three parameters will be taken into account.

Note 2: Careful readers will realise that there are also primitives for the items marked * in the
TgXbook. These will not actually be used as those combinations of atoms cannot actually happen,
but it seemed better not to break orthogonality. They are initialized to zero.

7.5.3 Skips around display math

The injection of \abovedisplayskip and \belowdisplayskip is not symmetrical. An above one
is always inserted, also when zero, but the below is only inserted when larger than zero. Espe-
cially the latter makes it sometimes hard to fully control spacing. Therefore LuaTgX comes with
a new directive: \mathdisplayskipmode. The following values apply:

VALUE MEANING

0 normal TgX behaviour

1 always (same as 0)

2 only when not zero

3 never, not even when not zero

7.5.4 Nolimit correction

There are two extra math parameters \Umathnolimitsupfactor and \Umathnolimitsubfactor
that were added to provide some control over how limits are spaced (for example the position
of super and subscripts after integral operators). They relate to an extra parameter \mathno-
limitsmode. The half corrections are what happens when scripts are placed above and below.
The problem with italic corrections is that officially that correction italic is used for above/be-
low placement while advanced kerns are used for placement at the right end. The question is:
how often is this implemented, and if so, do the kerns assume correction too. Anyway, with this
parameter one can control it.

o O A N S

mode 0 1 2 3 4 8000
superscript 0 font 0 0 +ic/2 0
subscript -ic font 0 -ic/2 -ic/2 8000ic/1000

When the mode is set to one, the math parameters are used. This way a macro package writer
can decide what looks best. Given the current state of fonts in ConTgXt we currently use mode
1 with factor O for the superscript and 750 for the subscripts. Positive values are used for both
parameters but the subscript shifts to the left. A \mathnolimitsmode larger that 15 is considered
to be a factor for the subscript correction. This feature can be handy when experimenting.

Math 111 |

7.5.5 Math italic mess

The \mathitalicsmode parameter can be set to 1 to force italic correction before noads that
represent some more complex structure (read: everything that is not an ord, bin, rel, open,
close, punct or inner). We show a Cambria example.

\mathitalicsmode = 0 || T+1
\mathitalicsmode = 1 T+1

This kind of parameters relate to the fact that italic correction in OpenType math is bound to
fuzzy rules. So, control is the solution.

7.5.6 Script and kerning

If you want to typeset text in math macro packages often provide something \text which obeys
the script sizes. As the definition can be anything there is a good chance that the kerning doesn’t
come out well when used in a script. Given that the first glyph ends up in a \hbox we have some
control over this. And, as a bonus we also added control over the normal sublist kerning. The
\mathscriptboxmode parameter defaults to 1.

VALUE MEANING

0 forget about kerning

1 kern math sub lists with a valid glyph

2 also kern math sub boxes that have a valid glyph

2 only kern math sub boxes with a boundary node present

Here we show some examples. Of course this doesn’t solve all our problems, if only because
some fonts have characters with bounding boxes that compensate for italics, while other fonts
can lack kerns.

$T_{\tf fluff}$s ST _{\tf fluff}s ST {\text{fluff}}$ T_{fluff} $T_{\text{\boundaryl fluff}}$

mode 0 mode 1 mode 1 mode 2 mode 3
modern Thyute Thyge Thuge Thus Thus
lucidaot T'fruge Thutt Tt T st T st
pagella Tt Tt T Tt Tt
cambria Tuss Thue Thugr Thygr Ty
dejavu T fyuse T fruse T s T s T s

Kerning between a character subscript is controlled by \mathscriptcharmode which also de-
faults to 1.

Here is another example. Internally we tag kerns as italic kerns or font kerns where font kerns
result from the staircase kern tables. In 2018 fonts like Latin Modern and Pagella rely on cheats
with the boundingbox, Cambria uses staircase kerns and Lucida a mixture. Depending on how
fonts evolve we might add some more control over what one can turn on and off.

normal modern Tf Yo Vee Crfl‘uf"f”
pagella Tf Yo Yee Telutt

0 112 Math

cambria Tf Ye Yee Tﬂuf'f
lucidaot Tf Ye Yee Tfluff

bold modern Tf Ye Yee Tf’l“uff‘
pagella Tf Ye Yee Tsruse

cambria Tf Ye Yee Tﬂuf'f
lucidaot Tf Ye Yee Tttt

7.5.7 Fixed scripts
We have three parameters that are used for this fixed anchoring:

PARAMETER REGISTER

d \Umathsubshiftdown
u \Umathsupshiftup
S \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other than zero these are used for calculating fixed
positions. This is something that is needed for instance for chemistry. You can manipulate the
mentioned variables to achieve different effects.

MODE DOWN upP EXAMPLE
0 dynamic dynamic ~ CH, + CHJ + CH2
1 d u CH, + CH3 + CH3
2 s u CH, + CH} + CHé
3 s u+s—d CH2+CH§+CH%
4 d+(s-d))2 u+(s—d)/2 CH2+CH§+CH%
5 d u+s—-d CH,+CHj +CHj

The value of this parameter obeys grouping but applies to the whole current formula.

7.5.8 Penalties: \mathpenaltiesmode

Only in inline math penalties will be added in a math list. You can force penalties (also in display
math) by setting:

\mathpenaltiesmode = 1

This primnitive is not really needed in LuaTgX because you can use the callbackmlist to hlist
to force penalties by just calling the regular routine with forced penalties. However, as part
of opening up and control this primitive makes sense. As a bonus we also provide two extra
penalties:

\prebinoppenalty
\prerelpenalty

-100 % example value
900 % example value

Math 113 (‘)

They default to inifinite which signals that they don’t need to be inserted. When set they are
injected before a binop or rel noad. This is an experimental feature.

7.5.9 Equation spacing: \matheqnogapstep

By default TgX will add one quad between the equation and the number. This is hard coded. A
new primitive can control this:

\mathegnogapstep = 1000

Because a math quad from the math text font is used instead of a dimension, we use a step to
control the size. A value of zero will suppress the gap. The step is divided by 1000 which is the
usual way to mimmick floating point factors in TgX.

7.6 Math constructs

7.6.1 Unscaled fences

The \mathdelimitersmode primitive is experimental and deals with the following (potential)
problems. Three bits can be set. The first bit prevents an unwanted shift when the fence symbol
is not scaled (a cambria side effect). The second bit forces italic correction between a preceding
character ordinal and the fenced subformula, while the third bit turns that subformula into an
ordinary so that the same spacing applies as with unfenced variants. Here we show Cambria
(with \mathitalicsmode enabled).

\mathdelimitersmode = 0
\mathdelimitersmode = 1
\mathdelimitersmode = 2
\mathdelimitersmode = 3 Wik
\mathdelimitersmode = 4
\mathdelimitersmode = 5
\mathdelimitersmode = 6) G
\mathdelimitersmode = 7)

So, when set to 7 fenced subformulas with unscaled delimiters come out the same as unfenced
ones. This can be handy for cases where one is forced to use \left and \right always because
of unpredictable content. As said, it’s an experimental feature (which somehow fits in the ex-
ceptional way fences are dealt with in the engine). The full list of flags is given in the next table:

VALUE MEANING

"01 don’t apply the usual shift

"02 apply italic correction when possible
"04 force an ordinary subformula

"08 no shift when a base character

"“10 only shift when an extensible

The effect can depend on the font (and for Cambria one can use for instance "16).

0 114 Math

7.6.2 Accent handling

LuaTgX supports both top accents and bottom accents in math mode, and math accents stretch
automatically (if this is supported by the font the accent comes from, of course). Bottom and
combined accents as well as fixed-width math accents are controlled by optional keywords fol-
lowing \Umathaccent.

The keyword bottomafter \Umathaccent signals that a bottom accent is needed, and the keyword
both signals that both a top and a bottom accent are needed (in this case two accents need to
be specified, of course).

Then the set of three integers defining the accent is read. This set of integers can be prefixed by
the fixed keyword to indicate that a non-stretching variant is requested (in case of both accents,
this step is repeated).

A simple example:
\Umathaccent both fixed 0 0@ "20D7 fixed 0 0 "20D7 {example}

If a math top accent has to be placed and the accentee is a character and has a non-zero top ac-
cent value, then this value will be used to place the accent instead of the \skewchar kern used
by TgX82.

The top_accent value represents a vertical line somewhere in the accentee. The accent will be
shifted horizontally such that its own top_accent line coincides with the one from the accentee.
If the top accent value of the accent is zero, then half the width of the accent followed by its
italic correction is used instead.

The vertical placement of a top accent depends on the x _height of the font of the accentee (as
explained in the TgXbook), but if a value turns out to be zero and the font had a MathConstants
table, then AccentBaseHeight is used instead.

The vertical placement of a bottom accent is straight below the accentee, no correction takes
place.

Possible locations are top, bottom, both and center. When no location is given top is assumed.
An additional parameter fraction can be specified followed by a number; a value of for instance
1200 means that the criterium is 1.2 times the width of the nucleus. The fraction only applies
to the stepwise selected shapes and is mostly meant for the overlay location. It also works for
the other locations but then it concerns the width.

7.6.3 Radical extensions

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its
syntax is an extension of \Uradical:

\Uradical <fam integer> <char integer> <radicand>
\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by the math parameters \Umathradicaldegreebefore,
\Umathradicaldegreeafter, and \Umathradicaldegreeraise. The degree will be typeset in
\scriptscriptstyle.

Math 115 ‘

7.6.4 Super- and subscripts

The character fields in a Lua-loaded OpenType math font can have a ‘mathkern’ table. The
format of this table is the same as the ‘mathkern’ table that is returned by the fontloader
library, except that all height and kern values have to be specified in actual scaled points.

When a super- or subscript has to be placed next to a math item, LuaTgX checks whether the
super- or subscript and the nucleus are both simple character items. If they are, and if the
fonts of both character items are OpenType fonts (as opposed to legacy TgX fonts), then LuaTgX
will use the OpenType math algorithm for deciding on the horizontal placement of the super- or
subscript.

This works as follows:

» The vertical position of the script is calculated.

» The default horizontal position is flat next to the base character.

» For superscripts, the italic correction of the base character is added.

» For a superscript, two vertical values are calculated: the bottom of the script (after shifting
up), and the top of the base. For a subscript, the two values are the top of the (shifted down)
script, and the bottom of the base.

» For each of these two locations:

- find the math kern value at this height for the base (for a subscript placement, this is the
bottom right corner, for a superscript placement the top right corner)
- find the math kern value at this height for the script (for a subscript placement, this is the
top left corner, for a superscript placement the bottom left corner)
- add the found values together to get a preliminary result.
» The horizontal kern to be applied is the smallest of the two results from previous step.

The math kern value at a specific height is the kern value that is specified by the next higher
height and kern pair, or the highest one in the character (if there is no value high enough in the
character), or simply zero (if the character has no math kern pairs at all).

7.6.5 Scripts on extensibles

The primitives \Uunderdelimiter and \Uoverdelimiter allow the placement of a subscript or
superscript on an automatically extensible item and \Udelimiterunder and \Udelimiterover
allow the placement of an automatically extensible item as a subscript or superscript on a nu-
cleus. The input:

$\Uoverdelimiter 0 "2194 {\hbox{\strut overdelimiter}}$
$\Uunderdelimiter 0 "2194 {\hbox{\strut underdelimiter}}$
$\Udelimiterover 0 "2194 {\hbox{\strut delimiterover}}$
$\Udelimiterunder 0 "2194 {\hbox{\strut delimiterunder}}$

will render this:

overdelimiter —_—
delimiterover delimiterunder

underdelimiter

0 116 Math

The vertical placements are controlled by \Umathunderdelimiterbgap, \Umathunderdelim-
itervgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit
placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable
scripted style, the subscript in \Uunderdelimiter is cramped as well.

These primitives accepts an option width specification. When used the also optional keywords
left, middle and right will determine what happens when a requested size can’t be met (which
can happen when we step to successive larger variants).

An extra primitive \Uhextensible is available that can be used like this:
$\Uhextensible width 10cm 0 "2194%

This will render this:

Here you can also pass options, like:
$\Uhextensible width 1lpt middle 0 "2194%
This gives:

o

LuaTgX internally uses a structure that supports OpenType ‘MathVariants’ as well as tfm ‘exten-
sible recipes’. In most cases where font metrics are involved we have a different code path for
traditional fonts end OpenType fonts.

7.6.6 Fractions

The \abovewithdelims command accepts a keyword exact. When issued the extra space rela-
tive to the rule thickness is not added. One can of course use the \Umathfraction..gap com-
mands to influence the spacing. Also the rule is still positioned around the math axis.

$$ { {a} \abovewithdelims() exact 4pt {b} }$$

The math parameter table contains some parameters that specify a horizontal and vertical gap
for skewed fractions. Of course some guessing is needed in order to implement something that
uses them. And so we now provide a primitive similar to the other fraction related ones but with
a few options so that one can influence the rendering. Of course a user can also mess around a
bit with the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

{ {1} \Uskewed / <options> {2} }
{ {1} \Uskewedwithdelims / () <options> {2} }

where the options can be noaxis and exact. By default we add half the axis to the shifts and by
default we zero the width of the middle character. For Latin Modern the result looks as follows:

x4yt z+1y+z x+ ()t x4+ (Yy) +x
exact z4+ Y+ z+Yh+r x4+ () +z x4+ () +a

Math 117 G

noaxis THafy+z x4+ 1otz x4+ (o)t z+(12)+x
z+ (1) +

exact noaxis x4+ af +x

7.6.7 Delimiters: \Uleft, \Umiddle and \Uright

Normally you will force delimiters to certain sizes by putting an empty box or rule next to it. The
resulting delimiter will either be a character from the stepwise size range or an extensible.
The latter can be quite differently positioned than the characters as it depends on the fit as
well as the fact if the used characters in the font have depth or height. Commands like (plain
TgXs) \big need use this feature. In LuaTEX we provide a bit more control by three variants that
support optional parameters height, depth and axis. The following example uses this:

\Uleft height 30pt
\quad x\quad
\Umiddle height 40pt
\quad x\quad

\Uright height 30pt
\quad \quad \quad
\Uleft height 30pt
\quad x\quad
\Umiddle height 40pt
\quad x\quad

\Uright height 30pt

T+ 1kt

depth
depth
depth
depth
depth

depth

10pt

15pt

lopt

10pt

15pt

lopt

1)L

.

\) \

/

The keyword exact can be used as directive that the real dimensions should be applied when
the criteria can’t be met which can happen when we’re still stepping through the successively
larger variants. When no dimensions are given the noaxis command can be used to prevent

shifting over the axis.

You can influence the final class with the keyword class which will influence the spacing. The

T+ (ah) +

\Udelimiter "0 "0 "000028

\Udelimiter

\Udelimiter

axis \Udelimiter

axis \Udelimiter

axis \Udelimiter

numbers are the same as for character classes.

7.7 Extracting values

7.7.1 Codes

You can extract the components of a math character. Say that we have defined:

\Umathcode 1 2 3 4

then

"0

"0

IIO

"0

"0

"0

"0

IIO

"0

"0

[\Umathcharclassl] [\Umathcharfaml] [\Umathcharslotl]

0 118 Math

"002016

"000029

"000028

"002016

"000029

will return:
[2] [3] [4]

These commands are provides as convenience. Before they come available you could do the
following:

\def\Umathcharclass{\directlua{tex.print(tex.getmathcode(token.scan int())[1])}}
\def\Umathcharfam {\directlua{tex.print(tex.getmathcode(token.scan int())[2])}}
\def\Umathcharslot {\directlua{tex.print(tex.getmathcode(token.scan int())I[3])}}

7.7.2 Last lines

There is a new primitive to control the overshoot in the calculation of the previous line in mid-
paragraph display math. The default value is 2 times the em width of the current font:

\predisplaygapfactor=2000

If you want to have the length of the last line independent of math i.e. you don’t want to revert
to a hack where you insert a fake display math formula in order to get the length of the last line,
the following will often work too:

\def\lastlinelength{\dimexpr
\directlua {tex.sprint (
(nodes.dimensions(node.tail(tex.lists.page head).list))
)}sp
\relax}

7.8 Math mode

7.8.1 Verbose versions of single-character math commands

LuaTgX defines six new primitives that have the same function as ~, , $, and $$:

PRIMITIVE EXPLANATION

\Usuperscript duplicates the functionality of ©

\Usubscript duplicates the functionality of _

\Ustartmath duplicates the functionality of $, when used in non-math mode.
\Ustopmath duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath duplicates the functionality of $$, when used in non-math mode.
\Ustopdisplaymath duplicates the functionality of $$, when used in display math mode.

The \Ustopmath and \Ustopdisplaymath primitives check if the current math mode is the cor-
rect one (inline vs. displayed), but you can freely intermix the four mathon/mathoff commands
with explicit dollar sign(s).

Math 119 G

7.8.2 Script commands \Unosuperscript and \Unosubscript

These two commands result in super- and subscripts but with the current style (at the time of
rendering). So,

\Uleft height 30pt depth 10pt \Udelimiter "0 "0 "000028
\quad x\quad
\Umiddle height 40pt depth 15pt \Udelimiter "0 "0 "002016
\quad x\quad
\Uright height 30pt depth 10pt \Udelimiter "0 "0 "000029

\quad \quad \quad

\Uleft height 30pt depth 10pt axis \Udelimiter "0 "0 "000028
\quad x\quad

\Umiddle height 40pt depth 15pt axis \Udelimiter "0 "0 "002016
\quad x\quad

\Uright height 30pt depth 10pt axis \Udelimiter "0 "0 "000029

1
>

: 1,1 _ 1 _
results in Xy =Xy =Xy =X

7.8.3 Allowed math commands in non-math modes

The commands \mathchar, and \Umathchar and control sequences that are the result of \math-
chardef or \Umathchardef are also acceptable in the horizontal and vertical modes. In those
cases, the \textfont from the requested math family is used.

7.9 Goodies

7.9.1 Flattening: \mathflattenmode

The TgX math engine collapses ord noads without sub- and superscripts and a character as
nucleus. and which has the side effect that in OpenType mode italic corrections are applied
(given that they are enabled).

\switchtobodyfont[modern]
$V \mathbin{\mathbin{v}} V$\par
$V \mathord{\mathord{v}} V$\par

This renders as:

VoV

VoV

When we set \mathflattenmode to 31 we get:

VoV
VoV

- ~

(0) 120 Math

el

When you see no difference, then the font probably has the proper character dimensions and no
italic correction is needed. For Latin Modern (at least till 2018) there was a visual difference. In
that respect this parameter is not always needed unless of course you want efficient math lists
anyway.

You can influence flattening by adding the appropriate number to the value of the mode para-
meter. The default value is 1.

MODE CLASS

1 ord
2 bin
4 rel
8 punct

16 inner

7.9.2 Less Tracing

Because there are quite some math related parameters and values, it is possible to limit tracing.
Only when tracingassigns and/or tracingrestores are set to 2 or more they will be traced.

7.9.3 Math options with \mathoption

The logic in the math engine is rather complex and there are often no universal solutions (read:
what works out well for one font, fails for another). Therefore some variations in the imple-
mentation are driven by parameters (modes). In addition there is a new primitive \mathoption
which will be used for testing. Don’t rely on any option to be there in a production version as
they are meant for development.

This option was introduced for testing purposes when the math engine got split code paths and
it forces the engine to treat new fonts as old ones with respect to italic correction etc. There are
no guarantees given with respect to the final result and unexpected side effects are not seen as
bugs as they relate to font properties. Ther eis currently only one option:

The oldmath boolean flag in the Lua font table is the official way to force old treatment as it’s
bound to fonts. Like with all options we may temporarily introduce with this command this
feature is not meant for production.

Math 121 (‘)

122 Math

8 Nodes

8.1 LUA node representation

TEX’s nodes are represented in Lua as userdata objects with a variable set of fields. In the
following syntax tables, such as the type of such a userdata object is represented as (node).

The current return value of node. types() is: hlist (0), vlist (1), rule(2), ins (3), mark (4), ad-
just (5), boundary (6), disc (7), whatsit (8), Llocal par (9), dir (10), math (11), glue (12), kern
(13), penalty (14), unset (15), style (16), choice (17), noad (18), radical (19), fraction (20),
accent (21), fence (22), math _char (23), sub_box (24), sub_mlist (25), math _text char (26),
delim (27), margin kern (28), glyph (29), align record (30), pseudo file (31), pseudo line
(32), page insert (33), split insert (34), expr_stack (35), nested list (36), span (37),
attribute (38), glue spec (39), attribute list (40), temp (41), align stack (42), move-
ment stack (43), if stack (44), unhyphenated (45), hyphenated (46), delta (47), passive (48),
shape (49).

The \lastnodetype primitive is £-TgX compliant. The valid range is still [-1, 15] and glyph nodes
(formerly known as char nodes) have number 0 while ligature nodes are mapped to 7. That
way macro packages can use the same symbolic names as in traditional £-TgX. Keep in mind
that these ¢-TgX node numbers are different from the real internal ones and that there are more
e-TeX node types than 15.

You can ask for a list of fields with node. fields and for valid subtypes with node. subtypes. The
node.values function reports some used values. Valid arguments are dir, direction, glue,
pdf literal, pdf action, pdf window and color stack. Keep in mind that the setters nor-
mally expect a number, but this helper gives you a list of what numbers matter. For practical
reason the pagestate values are also reported with this helper.

8.2 Main text nodes

These are the nodes that comprise actual typesetting commands. A few fields are present in all
nodes regardless of their type, these are:

FIELD TYPE EXPLANATION
next node the next node in a list, or nil
id number the node’s type (id) number

subtype number the node subtype identifier

The subtype is sometimes just a dummy entry because not all nodes actually use the subtype,
but this way you can be sure that all nodes accept it as a valid field name, and that is often handy
in node list traversal. In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field
called prev. That last field is always present, but only initialized on explicit request: when the
function node.slide() is called, it will set up the prev fields to be a backwards pointer in the
argument node list. By now most of TEX’s node processing makes sure that the prev nodes are

Nodes 123 *:“

valid but there can be exceptions, especially when the internal magic uses a leading temp nodes
to temporarily store a state.

8.2.1 hlist nodes

FIELD TYPE EXPLANATION

subtype number O = unknown, 1 = line, 2 = box, 3 = indent, 4 = alignment, 5 = cell,
6 = equation, 7 = equationnumber, 8 = math, 9 = mathchar, 10 = hex-
tensible, 11 = vextensible, 12 = hdelimiter, 13 = vdelimiter, 14 =
overdelimiter, 15 = underdelimiter, 16 = numerator, 17 = denomi-
nator, 18 = limits, 19 = fraction, 20 = nucleus, 21 = sup, 22 = sub,
23 = degree, 24 = scripts, 25 = over, 26 = under, 27 = accent, 28 =

radical
attr node list of attributes
width number the width of the box
height number the height of the box
depth number the depth of the box
shift number a displacement perpendicular to the character progression direction
glue order number a number in the range [0, 4], indicating the glue order
glue set number the calculated glue ratio

glue sign number 0 =normal, 1 = stretching, 2 = shrinking
head/list node the first node of the body of this list
dir string the direction of this box, see 8.2.15

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may result.

Note: the field name head and list are both valid. Sometimes it makes more sense to refer to
a list by head, sometimes 1ist makes more sense.

8.2.2 vlist nodes

This node is similar to hlist, except that ‘shift’ is a displacement perpendicular to the line
progression direction, and ‘subtype’ only has the values 0, 4, and 5.

8.2.3 rule nodes

Contrary to traditional TgX, LuaTgX has more \ rule subtypes because we also use rules to store
reuseable objects and images. User nodes are invisible and can be intercepted by a callback.

FIELD TYPE EXPLANATION

subtype number O =normal, 1 = box, 2 = image, 3 = empty, 4 = user, 5 = over, 6 = under,
7 = fraction, 8 = radical, 9 = outline

attr node list of attributes

width number the width of the rule where the special value —1073741824 is used for
‘running’ glue dimensions

- ~

/ \\
\0; 124 Nodes

“’/

height number the height of the rule (can be negative)

depth number the depth of the rule (can be negative)

left number shift at the left end (also subtracted from width)
right number (subtracted from width)

dir string the direction of this rule, see 8.2.15

index number an optional index that can be referred to

transform number an private variable (also used to specify outline width)

The left and type right keys are somewhat special (and experimental). When rules are auto
adapting to the surrounding box width you can enforce a shift to the right by setting left. The
value is also subtracted from the width which can be a value set by the engine itself and is not
entirely under user control. The right is also subtracted from the width. It all happens in the
backend so these are not affecting the calculations in the frontend (actually the auto settings
also happen in the backend). For a vertical rule left affects the height and right affects the
depth. There is no matching interface at the TgX end (although we can have more keywords
for rules it would complicate matters and introduce a speed penalty.) However, you can just
construct a rule node with Lua and write it to the TgX input. The outline subtype is just a
convenient variant and the transform field specifies the width of the outline.

8.2.4 ins nodes

This node relates to the \insert primitive.

FIELD TYPE EXPLANATION

subtype number the insertion class

attr node list of attributes

cost number the penalty associated with this insert
height number height of the insert

depth number depth of the insert

head/1list node the first node of the body of this insert

There is a set of extra fields that concern the associated glue: width, stretch, stretch order,
shrink and shrink order. These are all numbers.

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may result. You can use list instead (often in functions you want
to use local variable with similar names and both names are equally sensible).

8.2.5 mark nodes

This one relates to the \mark primitive.

FIELD TYPE EXPLANATION

subtype number unused

attr node list of attributes

class number the mark class

mark table a table representing a token list

Nodes 125 *:“

8.2.6 adjust nodes

This node comes from \vadjust primitive.

FIELD TYPE EXPLANATION
subtype number O =normal, 1 = pre
attr node list of attributes
head/1list node adjusted material

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error may be the result.

8.2.7 disc nodes

The \discretionary and \-, the - character but also the hyphenation mechanism produces
these nodes.

FIELD TYPE EXPLANATION

subtype number 0 =discretionary, 1 =explicit, 2 =automatic, 3 = reqular, 4 = first,
5 = second

attr node list of attributes

pre node pointer to the pre-break text

post node pointer to the post-break text

replace node pointer to the no-break text

penalty number the penalty associated with the break, normally \hyphenpenalty or \exhy-
phenpenalty

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere. These disc
nodes are kind of special as at some point they also keep information about breakpoints and
nested ligatures.

The pre, post and replace fields at the Lua end are in fact indirectly accessed and have a prev
pointer that is not nil. This means that when you mess around with the head of these (three)
lists, you also need to reassign them because that will restore the proper prev pointer, so:

pre = d.pre
-- change the list starting with pre
d.pre = pre

Otherwise you can end up with an invalid internal perception of reality and LuaTgX might even
decide to crash on you. It also means that running forward over for instance pre is ok but
backward you need to stop at pre. And you definitely must not mess with the node that prev
points to, if only because it is not really a node but part of the disc data structure (so freeing it
again might crash LuaTgX).

8.2.8 math nodes

Math nodes represent the boundaries of a math formula, normally wrapped into $ signs.

- ~

/ \\
\0; 126 Nodes

®--

FIELD TYPE EXPLANATION

subtype number 0 = beginmath, 1 = endmath
attr node list of attributes
surround number width of the \mathsurround kern

There is a set of extra fields that concern the associated glue: width, stretch, stretch order,
shrink and shrink_order. These are all numbers.

8.2.9 glue nodes

Skips are about the only type of data objects in traditional TgX that are not a simple value. They
are inserted when TgX sees a space in the text flow but also by \hskip and \vskip. The structure
that represents the glue components of a skip is called a glue spec, and it has the following
accessible fields:

FIELD TYPE EXPLANATION

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount
stretch order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink order number factor applied to shrink amount

The effective width of some glue subtypes depends on the stretch or shrink needed to make
the encapsulating box fit its dimensions. For instance, in a paragraph lines normally have glue
representing spaces and these stretch or shrink to make the content fit in the available space.
The effective glue function that takes a glue node and a parent (hlist or vlist) returns the
effective width of that glue item. When you pass true as third argument the value will be
rounded.

A glue specnodeis aspecial kind of node that is used for storing a set of glue values in registers.
Originally they were also used to store properties of glue nodes (using a system of reference
counts) but we now keep these properties in the glue nodes themselves, which gives a cleaner
interface to Lua.

The indirect spec approach was in fact an optimization in the original TgX code. First of all it can
save quite some memory because all these spaces that become glue now share the same spec-
ification (only the reference count is incremented), and zero testing is also a bit faster because
only the pointer has to be checked (this is no longer true for engines that implement for instance
protrusion where we really need to ensure that zero is zero when we test for bounds). Another
side effect is that glue specifications are read-only, so in the end copies need to be made when
they are used from Lua (each assignment to a field can result in a new copy). So in the end the
advantages of sharing are not that high (and nowadays memory is less an issue, also given that
a glue node is only a few memory words larger than a spec).

FIELD TYPE EXPLANATION

subtype number 0 =userskip, 1= lineskip, 2 =baselineskip, 3 =parskip, 4 =abovedis-
playskip, 5 = belowdisplayskip, 6 = abovedisplayshortskip, 7 = be-
lowdisplayshortskip, 8 = leftskip, 9 = rightskip, 10 = topskip, 11

Nodes 127 0

= splittopskip, 12 = tabskip, 13 = spaceskip, 14 = xspaceskip, 15 =
parfillskip, 16 = mathskip, 17 = thinmuskip, 18 = medmuskip, 19 =
thickmuskip, 98 = conditionalmathskip, 99 = muglue, 100 = leaders,
101 = cleaders, 102 = xleaders, 103 = gleaders

attr node list of attributes

leader node pointer to a box or rule for leaders

In addition there are the width, stretch stretch order, shrink, and shrink order fields. Note
that we use the key width in both horizontal and vertical glue. This suits the TgX internals well
so we decided to stick to that naming.

A regular word space also results in a spaceskip subtype (this used to be a userskip with
subtype zero).

8.2.10 kern nodes

The \kern command creates such nodes but for instance the font and math machinery can also

add them.

FIELD TYPE EXPLANATION

subtype number 0 = fontkern, 1 = userkern, 2 = accentkern, 3 = italiccorrection
attr node list of attributes

kern number fixed horizontal or vertical advance

8.2.11 penalty nodes
The \penalty command is one that generates these nodes.

FIELD TYPE EXPLANATION

subtype number 0 = userpenalty, 1 = linebreakpenalty, 2 = linepenalty, 3 = word-
penalty, 4 = finalpenalty, 5 = noadpenalty, 6 = beforedisplaypenalty,
7 = afterdisplaypenalty, 8 = equationnumberpenalty

attr node list of attributes

penalty number the penalty value

The subtypes are just informative and TgX itself doesn’t use them. When you run into an line-
breakpenalty you need to keep in mind that it’'s a accumulation of club, widow and other rele-
vant penalties.

8.2.12 glyph nodes

These are probably the mostly used nodes and although you can push them in the current list
with for instance \char TgX will normally do it for you when it considers some input to be text.

FIELD TYPE EXPLANATION
subtype number bit field

- ~

/ \\
\0; 128 Nodes

®--

attr node list of attributes

char number the character index in the font

font number the font identifier

lang number the language identifier

left number the frozen \lefthyphenmnin value

right number the frozen \righthyphenmnin value

uchyph boolean the frozen \uchyph value

components node pointer to ligature components

xoffset number a virtual displacement in horizontal direction
yoffset number a virtual displacement in vertical direction
width number the (original) width of the character

height number the (original) height of the character

depth number the (original) depth of the character
expansion factor number the to be applied expansion factor

data number a general purpose field for users (we had room for it)

The width, height and depth values are read-only. The expansion factor is assigned in the
par builder and used in the backend.

A warning: never assign a node list to the components field unless you are sure its internal link
structure is correct, otherwise an error may be result. Valid bits for the subtype field are:

BIT MEANING

0 character
ligature
ghost

left

right

B W N -

See section 5.2 for a detailed description of the subtype field.

The expansion factor has been introduced as part of the separation between font- and back-
end. It is the result of extensive experiments with a more efficient implementation of expansion.
Early versions of LuaTgX already replaced multiple instances of fonts in the backend by scaling
but contrary to pdfIgX in LuaTEX we now also got rid of font copies in the frontend and replaced
them by expansion factors that travel with glyph nodes. Apart from a cleaner approach this is
also a step towards a better separation between front- and backend.

The is char function checks if a node is a glyph node with a subtype still less than 256. This
function can be used to determine if applying font logic to a glyph node makes sense. The value
nil gets returned when the node is not a glyph, a character number is returned if the node is
still tagged as character and false gets returned otherwise. When nil is returned, the id is also
returned. The is glyph variant doesn’t check for a subtype being less than 256, so it returns
either the character value or nil plus the id. These helpers are not always faster than separate
calls but they sometimes permit making more readable tests. The uses font helpers takes a
node and font id and returns true when a glyph or disc node references that font.

/ \\
Nodes 129 \‘;

8.2.13 boundary nodes

This node relates to the \noboundary, \boundary, \protrusionboundary and \wordboundary
primitives.

FIELD TYPE EXPLANATION

subtype number 0 = cancel, 1 = user, 2 = protrusion, 3 =word
attr node list of attributes
value number values 0-255 are reserved

8.2.14 local _par nodes

This node is inserted at the start of a paragraph. You should not mess too much with this one.

FIELD TYPE EXPLANATION

attr node list of attributes

pen inter number local interline penalty (from \localinterlinepenalty)
pen_broken number local broken penalty (from \localbrokenpenalty)

dir string the direction of this par. see 8.2.15

box left node the \localleftbox

box left width number width of the \localleftbox

box right node the \localrightbox

box right width number width of the \localrightbox

A warning: never assign a node list to the box_left or box right field unless you are sure its
internal link structure is correct, otherwise an error may result.

8.2.15 dir nodes

Direction nodes mark parts of the running text that need a change of direction and the \textdir
command generates them.

FIELD TYPE EXPLANATION

attr node list of attributes
dir string the direction (but see below)
level number nesting level of this direction whatsit

Direction specifiers are three-letter combinations of T, B, R, and L. These are built up out of three
separate items:

» the first is the direction of the ‘top’ of paragraphs
» the second is the direction of the ‘start’ of lines
» the third is the direction of the ‘top’ of glyphs

However, only four combinations are accepted: TLT, TRT, RTT, and LTL. Inside actual dir nodes,
the representation of dir is not a three-letter but a combination of numbers. When printed the

- ~

/ \\
\0; 130 Nodes

.A"/

direction is indicated by a + or -, indicating whether the value is pushed or popped from the
direction stack.

8.2.16 marginkern nodes
Margin kerns result from protrusion.

FIELD TYPE EXPLANATION

subtype number 0 = left, 1 = right
attr node list of attributes

width number the advance of the kern
glyph node the glyph to be used

8.3 Math noads

These are the so-called ‘noad’s and the nodes that are specifically associated with math pro-
cessing. Most of these nodes contain subnodes so that the list of possible fields is actually quite
small. First, the subnodes:

8.3.1 Math kernel subnodes

Many object fields in math mode are either simple characters in a specific family or math lists
or node lists. There are four associated subnodes that represent these cases (in the following
node descriptions these are indicated by the word <kernel>).

The next and prev fields for these subnodes are unused.

8.3.2 math_char and math_text_char subnodes

FIELD TYPE EXPLANATION

attr node list of attributes
char number the character index
fam number the family number

The math_char is the simplest subnode field, it contains the character and family for a single
glyph object. The math_ text char is a special case that you will not normally encounter, it
arises temporarily during math list conversion (its sole function is to suppress a following italic
correction).

8.3.3 sub_box and sub_mlist subnodes

FIELD TYPE EXPLANATION

attr node list of attributes
head/list node list of nodes

Nodes 131 {\‘

|
\

- ~

’

.\"/

These two subnode types are used for subsidiary list items. For sub_box, the head points to a
‘normal’ vbox or hbox. For sub _mlist, the head points to a math list that is yet to be converted.

A warning: never assign a node list to the head field unless you are sure its internal link structure
is correct, otherwise an error is triggered.

8.3.4 delim subnodes

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next and
prev fields are unused.

FIELD TYPE EXPLANATION

attr node list of attributes

small char number character index of base character

small fam number family number of base character

large char number character index of next larger character
large fam number family number of next larger character

The fields large char and large fam can be zero, in that case the font that is set for the
small fam is expected to provide the large version as an extension to the small char.

8.3.5 Math core nodes

First, there are the objects (the TEXbook calls them ‘atoms’) that are associated with the simple
math objects: ord, op, bin, rel, open, close, punct, inner, over, under, vcent. These all have the
same fields, and they are combined into a single node type with separate subtypes for differen-
tiation.

Some noads have an option field. The values in this bitset are common:

MEANING BITS

set 0x08
internal 0x00 + Ox08
internal 0x01 + O0x08
axis 0x02 + 0x08
no axis 0x04 + 0x08
exact 0x10 + 0x08
left 0x11 + 0x08
middle 0x12 + Ox08
right 0x14 + 0x08

no sub script 0x21 + 0x08
no super script 0x22 + 0x08
no script 0x23 + 0x08

0 132 Nodes

8.3.6 simple noad nodes

FIELD TYPE EXPLANATION

subtype number 0 =ord, 1 =opdisplaylimits, 2 = oplimits, 3 = opnolimits, 4 =bin,
5 =rel, 6 = open, 7 = close, 8 = punct, 9 = inner, 10 = under, 11 =
over, 12 = vcenter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

options number bitset of rendering options

8.3.7 accent nodes

FIELD TYPE EXPLANATION

subtype number 0 = bothflexible, 1 = fixedtop, 2 = fixedbottom, 3 = fixedboth
nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

accent kernel node top accent

bot accent kernel node bottom accent

fraction number larger step criterium (divided by 1000)

8.3.8 style nodes

FIELD TYPE EXPLANATION

style string contains the style

There are eight possibilities for the string value: one of display, text, script, orscriptscript.
Each of these can have be prefixed by cramped.

8.3.9 choice nodes

FIELD TYPE EXPLANATION

attr node list of attributes

display node list of display size alternatives
text node list of text size alternatives
script node list of scriptsize alternatives

scriptscript node list of scriptscriptsize alternatives

Warning: never assign a node list to the display, text, script, or scriptscript field unless
you are sure its internal link structure is correct, otherwise an error can occur.

Nodes 133 *:“

|
\

- ~

’

@

8.3.10 radical nodes

FIELD TYPE EXPLANATION

subtype number 0 = radical, 1 = uradical, 2 = uroot, 3 = uunderdelimiter, 4 =
uoverdelimiter, 5 = udelimiterunder, 6 = udelimiterover

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

left delimiter node

degree kernel node only set by \Uroot

width number required width

options number bitset of rendering options

Warning: never assign a node list to the nucleus, sub, sup, left, or degree field unless you are
sure its internal link structure is correct, otherwise an error can be triggered.

8.3.11 fraction nodes

FIELD TYPE EXPLANATION

attr node list of attributes

width number (optional) width of the fraction
num kernel node numerator

denom kernel node denominator

left delimiter node left side symbol

right delimiter node right side symbol
middle delimiter node middle symbol
options number bitset of rendering options

Warning: never assign a node list to the num, or denom field unless you are sure its internal link
structure is correct, otherwise an error can result.

8.3.12 fence nodes

FIELD TYPE EXPLANATION

subtype number 0 = unset, 1 = left, 2 = middle, 3 = right, 4 = no
attr node list of attributes

delim delimiter node delimiter specification

italic number italic correction

height number required height

depth number required depth

options number bitset of rendering options

class number spacing related class

Warning: some of these fields are used by the renderer and might get adapted in the process.

0 134 Nodes

8.4 Front-end whatsits

Whatsit nodes come in many subtypes that you can ask for them by running node.whatsits:
open (0), write (1), close (2), special (3), save pos (6), late lua (7), user_defined (8),
pdf literal (16), pdf refobj (17), pdf_annot (18), pdf start link (19), pdf_end link (20),
pdf dest (21), pdf action (22), pdf thread (23), pdf start thread (24), pdf end thread
(25), pdf_thread data (26), pdf link data (27), pdf colorstack (28), pdf setmatrix (29),
pdf save (30), pdf restore (31).

Some of them are generic and independent of the output mode and others are specific to the
chosen backend: dvi or pdf. Here we discuss the generic font-end nodes nodes.

8.4.1 open
FIELD TYPE EXPLANATION
attr node list of attributes

stream number TgX's stream id number

name string file name

ext string file extension

area string file area (this may become obsolete)

8.4.2 write

FIELD TYPE EXPLANATION

attr node list of attributes

stream number TgX’s stream id number

data table a table representing the token list to be written

8.4.3 close

FIELD TYPE EXPLANATION

attr node list of attributes
stream number TgX’s stream id number

8.4.4 user_defined

User-defined whatsit nodes can only be created and handled from Lua code. In effect, they are
an extension to the extension mechanism. The LuaTgX engine will simply step over such whatsits
without ever looking at the contents.

FIELD TYPE EXPLANATION
attr node list of attributes
user_id number id number

type number type of the value

Nodes 135 *:“

|
\

- ~

’

®----

value number a Lua number
node a node list
string a Lua string
table a Lua table

The type can have one of six distinct values. The number is the ascii value if the first character
of the type name (so you can use string.byte("]l") instead of 108).

VALUE MEANING EXPLANATION
97 a list of attributes (a node list)

100 d a Lua number

108 | a Lua value (table, number, boolean, etc)

110 n a node list

115 S a Lua string

116 t a Lua token list in Lua table form (a list of triplets)

8.4.5 save_pos

FIELD TYPE EXPLANATION

attr node list of attributes

8.4.6 late_lua

FIELD TYPE EXPLANATION

attr node list of attributes

data string or function the to be written information stored as Lua value
token string the to be written information stored as token list
name string the name to use for Lua error reporting

The difference between data and string is that on assignment, the data field is converted to a
token list, cf. use as \latelua. The string version is treated as a literal string.

8.5 DVI backend whatsits

8.5.1 special
There is only one dvi backend whatsit, and it just flushes its content to the output file.

FIELD TYPE EXPLANATION

attr node list of attributes
data string the \special information

/0) 136 Nodes

8.6 PDF backend whatsits

8.6.1 pdf_literal

FIELD TYPE EXPLANATION

attr node list of attributes

mode number the ‘mode’ setting of this literal

data string the to be written information stored as Lua string
token string the to be written information stored as token list

Possible mode values are:

VALUE KEYWORD

0 origin

1 page
2 direct
3 raw
4 text

The higher the number, the less checking and the more you can run into trouble. Especially the
raw variant can produce bad pdf so you can best check what you generate.

8.6.2 pdf_refobj

FIELD TYPE EXPLANATION

attr node list of attributes
objnum number the referenced pdf object number

8.6.3 pdf_annot

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)
height number the height (not used in calculations)
depth number the depth (not used in calculations)
objnum number the referenced pdf object number
data string the annotation data

8.6.4 pdf_start_link

FIELD TYPE EXPLANATION
attr node list of attributes
width number the width (not used in calculations)

Nodes 137 {\‘

height number the height (not used in calculations)

depth number the depth (not used in calculations)
objnum number the referenced pdf object number
link attr table the link attribute token list

action node the action to perform

8.6.5 pdf_end_link

FIELD TYPE EXPLANATION

attr node

8.6.6 pdf_dest

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)
height number the height (not used in calculations)
depth number the depth (not used in calculations)
named id number isthe dest id a string value?

dest id number the destination id

string the destination name
dest type number type of destination
xyz_zoom number the zoom factor (times 1000)
objnum number the pdf object number

8.6.7 pdf_action

These are a special kind of items that only appear inside pdf start link objects.

FIELD TYPE EXPLANATION

action type number the kind of action involved
action id number or string token list reference or string
named_id number the index of the destination
file string the target filename

new window number the window state of the target
data string the name of the destination

Valid action types are:

VALUE MEANING

0 page
1 goto
2 thread
3 user

0) 138 Nodes

Valid window types are:

VALUE MEANING

0 notset
1 new
2 nonew

8.6.8 pdf_thread

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)
height number the height (not used in calculations)
depth number the depth (not used in calculations)
named id number is tread id a string value?

tread id number the thread id

string the thread name
thread attr number extra thread information

8.6.9 pdf_start_thread

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)
height number the height (not used in calculations)
depth number the depth (not used in calculations)
named id number is tread id a string value?

tread id number the thread id

string the thread name
thread attr number extra thread information

8.6.10 pdf_end_thread

FIELD TYPE EXPLANATION

attr node

8.6.11 pdf_colorstack

FIELD TYPE EXPLANATION

attr node list of attributes
stack number colorstack id number
command number command to execute
data string data

Nodes 139 *:“

|
\

~

-

8.6.12 pdf_setmatrix

FIELD TYPE EXPLANATION

attr node list of attributes
data string data

8.6.13 pdf_save

FIELD TYPE EXPLANATION
attr node list of attributes

8.6.14 pdf_restore

FIELD TYPE EXPLANATION

attr node list of attributes

8.7 The node library

8.7.1 Introduction

The node library contains functions that facilitate dealing with (lists of) nodes and their values.
They allow you to create, alter, copy, delete, and insert LuaTgX node objects, the core objects
within the typesetter.

LuaTgX nodes are represented in Lua as userdata with the metadata type luatex.node. The
various parts within a node can be accessed using named fields.

Each node has at least the three fields next, id, and subtype:

» The next field returns the userdata object for the next node in a linked list of nodes, or nil,
if there is no next node.

The id indicates TgX’s ‘node type’. The field id has a numeric value for efficiency reasons,
but some of the library functions also accept a string value instead of id.

The subtype is another number. It often gives further information about a node of a particular
id, but it is most important when dealing with ‘whatsits’, because they are differentiated
solely based on their subtype.

v

v

The other available fields depend on the id (and for ‘whatsits’, the subtype) of the node.

Support for unset (alignment) nodes is partial: they can be queried and modified from Lua code,
but not created.

Nodes can be compared to each other, but: you are actually comparing indices into the node
memory. This means that equality tests can only be trusted under very limited conditions. It will
not work correctly in any situation where one of the two nodes has been freed and/or reallocated:
in that case, there will be false positives.

0 140 Nodes
. 7

At the moment, memory management of nodes should still be done explicitly by the user. Nodes
are not ‘seen’ by the Lua garbage collector, so you have to call the node freeing functions yourself
when you are no longer in need of a node (list). Nodes form linked lists without reference
counting, so you have to be careful that when control returns back to LuaTgX itself, you have
not deleted nodes that are still referenced from a next pointer elsewhere, and that you did not
create nodes that are referenced more than once. Normally the setters and getters handle this
for you.

There are statistics available with regards to the allocated node memory, which can be handy
for tracing.

8.7.2 is_node

<boolean|integer> t =
node.is node(<any> item)

This function returns a number (the internal index of the node) if the argument is a userdata
object of type <node> and false when no node is passed.
8.7.3 types and whatsits

This function returns an array that maps node id numbers to node type strings, providing an
overview of the possible top-level id types.

<table> t =
node.types()

TEX’s ‘whatsits’ all have the same id. The various subtypes are defined by their subtype fields.
The function is much like types, except that it provides an array of subtype mappings.

<table> t =
node.whatsits ()

8.7.4 id

This converts a single type name to its internal numeric representation.

<number> id =
node.id(<string> type)

8.7.5 type and subtype

In the argument is a number, then the next function converts an internal numeric representa-
tion to an external string representation. Otherwise, it will return the string node if the object
represents a node, and nil otherwise.

<string> type =

Nodes 141 (‘)
. ’

!
|
\

~

-

node.type(<any> n)
This next one converts a single whatsit name to its internal numeric representation (subtype).

<number> subtype =
node.subtype(<string> type)

8.7.6 fields

This function returns an array of valid field names for a particular type of node. If you want to
get the valid fields for a ‘whatsit’, you have to supply the second argument also. In other cases,
any given second argument will be silently ignored.

<table> t =
node.fields(<number> id)
<table> t =
node.fields(<number> id, <number> subtype)

The function accepts string id and subtype values as well.

8.7.7 has_field

This function returns a boolean that is only true if n is actually a node, and it has the field.

<boolean> t =
node.has field(<node> n, <string> field)

8.7.8 new

The new function creates a new node. All its fields are initialized to either zero or nil except
for id and subtype. Instead of numbers you can also use strings (names). If you create a new
whatsit node the second argument is required. As with all node functions, this function creates
a node at the TgX level.

<node> n =
node.new(<number> id)
<node> n =
node.new(<number> id, <number> subtype)

8.7.9 free, flush_node and flush_list

The next one the node n from TgX’s memory. Be careful: no checks are done on whether this
node is still pointed to from a register or some next field: it is up to you to make sure that the
internal data structures remain correct.

<node> next =
node. free(<node> n)

0) 142 Nodes
. /

flush node(<node> n)

The free function returns the next field of the freed node, while the flush node alternative
returns nothing.

A list starting with node n can be flushed from TgX’s memory too. Be careful: no checks are
done on whether any of these nodes is still pointed to from a register or some next field: it is up
to you to make sure that the internal data structures remain correct.

node.flush list(<node> n)

8.7.10 copy and copy list

This creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node.
Only the next field is not copied.

<node> m =
node. copy(<node> n)

A deep copy of the node list that starts at n can be created too. If m is also given, the copy stops
just before node m.

<node> m =
node.copy list(<node> n)
<node> m =
node.copy list(<node> n, <node> m)

Note that you cannot copy attribute lists this way. However, there is normally no need to copy
attribute lists as when you do assignments to the attr field or make changes to specific attrib-
utes, the needed copying and freeing takes place automatically.

8.7.11 prev and next

These returns the node preceding or following the given node, or nil if there is no such node.

<node> m =
node.next(<node> n)

<node> m =
node.prev(<node> n)

8.7.12 current_attr
This returns the currently active list of attributes, if there is one.

<node> m =
node.current attr()

The intended usage of current_attr is as follows:

Nodes 143 *:“

local x1 = node.new("glyph"
x1l.attr = node.current_attr
local x2 = node.new("glyph"
x2.attr = node.current attr

)

)

or:
local x1 = node.new("glyph")
local x2 = node.new("glyph")
local ca = node.current attr()

xl.attr = ca
x2.attr = ca

The attribute lists are ref counted and the assignment takes care of incrementing the refcount.
You cannot expect the value ca to be valid any more when you assign attributes (using tex.se-
tattribute) or when control has been passed back to TgX.

Note: this function is somewhat experimental, and it returns the actual attribute list, not a copy
thereof. Therefore, changing any of the attributes in the list will change these values for all
nodes that have the current attribute list assigned to them.

8.7.13 hpack

This function creates a new hlist by packaging the list that begins at node n into a horizontal
box. With only a single argument, this box is created using the natural width of its components.
In the three argument form, info must be either additional or exactly, and w is the additional
(\hbox spread) or exact (\hbox to) width to be used. The second return value is the badness
of the generated box.

<node> h, <number> b =
node.hpack(<node> n)
<node> h, <number> b =
node.hpack(<node> n, <number> w, <string> info)
<node> h, <number> b =
node.hpack(<node> n, <number> w, <string> info, <string> dir)

Caveat: there can be unexpected side-effects to this function, like updating some of the \marks
and \inserts. Also note that the content of h is the original node list n: if you call node. free(h)
you will also free the node list itself, unless you explicitly set the list field to nil beforehand.
And in a similar way, calling node. free(n) will invalidate h as well!

8.7.14 vpack

This function creates a new vlist by packaging the list that begins at node n into a vertical box.
With only a single argument, this box is created using the natural height of its components. In
the three argument form, info must be either additional or exactly, and w is the additional
(\vbox spread) or exact (\vbox to) height to be used.

<node> h, <number> b =

- ~

{\0) 144 Nodes
. /

hy -

node.vpack(<node> n)
<node> h, <number> b =
node.vpack(<node> n, <number> w, <string> info)
<node> h, <number> b =
node.vpack(<node> n, <number> w, <string> info, <string> dir)

The second return value is the badness of the generated box. See the description of hpack for a
few memory allocation caveats.
8.7.15 prepend_prevdepth

This function is somewhat special in the sense that it is an experimental helper that adds the
interlinespace to a line keeping the baselineskip and lineskip into account.

<node> n, <number> delta =
node.prepend prevdepth(<node> n,<number> prevdepth)

8.7.16 dimensions and rangedimensions

<number> w, <number> h, <number> d
node.dimensions(<node> n)
<number> w, <number> h, <number> d
node.dimensions(<node> n, <string> dir)

<number> w, <number> h, <number> d =
node.dimensions(<node> n, <node> t)

<number> w, <number> h, <number> d =
node.dimensions(<node> n, <node> t, <string> dir)

This function calculates the natural in-line dimensions of the node list starting at node n and
terminating just before node t (or the end of the list, if there is no second argument). The
return values are scaled points. An alternative format that starts with glue parameters as the
first three arguments is also possible:

<number> w, <number> h, <number> d =
node.dimensions (<number> glue set, <number> glue sign, <number> glue order,
<node> n)
<number> w, <number> h, <number> d =
node.dimensions (<number> glue set, <number> glue sign, <number> glue order,
<node> n, <string> dir)
<number> w, <number> h, <number> d =
node.dimensions (<number> glue set, <number> glue sign, <number> glue order,
<node> n, <node> t)
<number> w, <number> h, <number> d =
node.dimensions (<number> glue set, <number> glue sign, <number> glue order,
<node> n, <node> t, <string> dir)

!

Nodes 145

\

This calling method takes glue settings into account and is especially useful for finding the actual
width of a sublist of nodes that are already boxed, for example in code like this, which prints the
width of the space in between the a and b as it would be if \box0 was used as-is:

\setbox® = \hbox to 20pt {a b}

\directlua{print (node.dimensions(
tex.box[0].glue set,
tex.box[0].glue sign,
tex.box[0].glue order,
tex.box[0].head.next,
node.tail(tex.box[0].head)

)) }

You need to keep in mind that this is one of the few places in TgX where floats are used, which
means that you can get small differences in rounding when you compare the width reported by
hpack with dimensions.

The second alternative saves a few lookups and can be more convenient in some cases:

<number> w, <number> h, <number> d =
node.rangedimensions(<node> parent, <node> first)
<number> w, <number> h, <number> d =
node.rangedimensions(<node> parent, <node> first, <node> last)

8.7.17 mlist_to_hlist

<node> h =
node.mlist to hlist(<node> n, <string> display type, <boolean> penalties)

This runs the internal mlist to hlist conversion, converting the math list in n into the horizontal

list h. The interface is exactly the same as for the callback mlist to hlist

8.7.18 slide

<node> m =
node.slide(<node> n)

Returns the last node of the node list that starts at n. As a side-effect, it also creates a reverse

chain of prev pointers between nodes.

8.7.19 tail

<node> m =
node.tail (<node> n)

Returns the last node of the node list that starts at n.

- ~

(0) 146 Nodes
.\ ’

hy -

8.7.20 length and type count

<number> i =
node.length(<node> n)
<number> i =
node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it
stops at m instead of at the end of the list. The node m is not counted.

<number> i =
node.count(<number> id, <node> n)
<number> i =
node.count (<number> id, <node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n that have a matching id
field. If m is also supplied, counting stops at m instead of at the end of the list. The node m is not
counted. This function also accept string id’s.

8.7.21 is_char and is_glyph

The subtype of a glyph node signals if the glyph is already turned into a character reference or
not.

<boolean> b =

node.is char(<node> n)
<boolean> b =

node.is glyph(<node> n)

8.7.22 traverse

<node> t, id, subtype =
node.traverse(<node> n)

This is a Lua iterator that loops over the node list that starts at n. Typically code looks like this:

for n in node.traverse(head) do

end

is functionally equivalent to:

do
local n
local function f (head,var)
local t
if var == nil then
t = head

Nodes 147 (‘)
‘\ ’

else
t = var.next
end
return t
end
while true do
n = f (head, n)
if n == nil then break end

end
end

It should be clear from the definition of the function f that even though it is possible to add or
remove nodes from the node list while traversing, you have to take great care to make sure all
the next (and prev) pointers remain valid.

If the above is unclear to you, see the section ‘For Statement’ in the Lua Reference Manual.

8.7.23 traverse_id

<node> t, subtype =
node.traverse id(<number> id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching
id field.

See the previous section for details. The change is in the local function f, which now does an
extra while loop checking against the upvalue id:

local function f(head,var)

local t

if var == nil then
t = head

else
t = var.next

end

while not t.id == id do
t = t.next

end

return t

end

8.7.24 traverse_char and traverse_glyph

The traverse char iterator loops over the glyph nodes in a list. Only nodes with a subtype less
than 256 are seen.

<node> n, font, char =

- ~

(0) 148 Nodes
.\ ’

hy -

node.traverse char(<node> n)
The traverse glyph iterator loops over a list and returns the list and filters all glyphs:

<node> n, font, char =
node.traverse glyph(<node> n)

8.7.25 traverse_list
This iterator loops over the hlist and vlist nodes in a list.

<node> n, id, subtype, list =
node.traverse list(<node> n)

The four return values can save some time compared to fetching these fields but in practice you
seldom need them all. So consider it a (side effect of experimental) convenience.

8.7.26 has_glyph
This function returns the first glyph or disc node in the given list:

<node> n =
node.has glyph(<node> n)

8.7.27 end_of_math

<node> t =
node.end of math(<node> start)

Looks for and returns the next math node following the start. If the given node is a math end
node this helper returns that node, else it follows the list and returns the next math endnote. If
no such node is found nil is returned.

8.7.28 remove

<node> head, current =
node. remove(<node> head, <node> current)

This function removes the node current from the list following head. It is your responsibility to
make sure it is really part of that list. The return values are the new head and current nodes.
The returned current is the node following the current in the calling argument, and is only
passed back as a convenience (or nil, if there is no such node). The returned head is more
important, because if the function is called with current equal to head, it will be changed.

8.7.29 insert_before

<node> head, new =

/ \\
Nodes 149 \‘;
L .

node.insert before(<node> head, <node> current, <node> new)

This function inserts the node new before current into the list following head. It is your respon-
sibility to make sure that current is really part of that list. The return values are the (potentially
mutated) head and the node new, set up to be part of the list (with correct next field). If head is
initially nil, it will become new.

8.7.30 insert_after

<node> head, new =
node.insert after(<node> head, <node> current, <node> new)

This function inserts the node new after current into the list following head. It is your respon-
sibility to make sure that current is really part of that list. The return values are the head and
the node new, set up to be part of the list (with correct next field). If head is initially nil, it will
become new.

8.7.31 first_glyph

<node> n =
node.first glyph(<node> n)
<node> n =
node.first glyph(<node> n, <node> m)

Returns the first node in the list starting at n that is a glyph node with a subtype indicating it is
a glyph, or nil. If mis given, processing stops at (but including) that node, otherwise processing
stops at the end of the list.

8.7.32 ligaturing

<node> h, <node> t, <boolean> success
node.ligaturing(<node> n)

<node> h, <node> t, <boolean> success
node.ligaturing(<node> n, <node> m)

Apply TgX-style ligaturing to the specified nodelist. The tail node mis optional. The two returned
nodes h and t are the new head and tail (both n and m can change into a new ligature).

8.7.33 kerning

<node> h, <node> t, <boolean> success
node.kerning(<node> n)

<node> h, <node> t, <boolean> success =
node.kerning(<node> n, <node> m)

Apply TgX-style kerning to the specified node list. The tail node m is optional. The two returned
nodes h and t are the head and tail (either one of these can be an inserted kern node, because
special kernings with word boundaries are possible).

- ~

/ \\
\0; 150 Nodes
. /

hy -

8.7.34 unprotect _glyph[s]

node.unprotect glyph(<node> n)
node.unprotect glyphs(<node> n, [<node> n])

Subtracts 256 from all glyph node subtypes. This and the next function are helpers to convert
from characters to glyphs during node processing. The second argument is optional and indi-
cates the end of a range.

8.7.35 protect_glyphl[s]

node.protect glyph(<node> n)
node.protect glyphs(<node> n,[<node> n])

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1,
it adds only 255. The special handling of 1 means that characters will become glyphs after
subtraction of 256. A single character can be marked by the singular call. The second argument
is optional and indicates the end of a range.

8.7.36 last_node

<node> n =
node.last node()

This function pops the last node from TgX’s ‘current list’. It returns that node, or nil if the

current list is empty.

8.7.37 write

node.write(<node> n)

This function that will append a node list to TEX's ‘current list’. The node list is not deep-copied!
There is no error checking either! You mignt need to enforce horizontal mode in order for this
to work as expected.

8.7.38 protrusion_skippable

<boolean> skippable =
node.protrusion skippable(<node> n)

Returns true if, for the purpose of line boundary discovery when character protrusion is active,
this node can be skipped.

8.8 Glue handling

8.8.1 setglue

You can set the properties of a glue in one go. If you pass no values, the glue will become a zero
glue.

- ~

/ \\
Nodes 151 \‘;
. /

hy -

node.setglue(<node> n)
node.setglue(<node> n,width,stretch,shrink,stretch order,shrink order)

When you pass values, only arguments that are numbers are assigned so
node.setglue(n, 655360, false, 65536)

will only adapt the width and shrink.

When a list node is passed, you set the glue, order and sign instead.

8.8.2 getglue
The next call will return 5 values or nothing when no glue is passed.

<integer> width, <integer> stretch, <integer> shrink, <integer> stretch order,
<integer> shrink order = node.getglue(<node> n)

When the second argument is false, only the width is returned (this is consistent with tex.get).

When a list node is passed, you get back the glue that is set, the order of that glue and the sign.

8.8.3 is_zero_glue
This function returns true when the width, stretch and shrink properties are zero.

<boolean> isglue =
node.is zero glue(<node> n)

8.9 Attribute handling

8.9.1 Attributes

The newly introduced attribute registers are non-trivial, because the value that is attached to a
node is essentially a sparse array of key-value pairs. It is generally easiest to deal with attribute
lists and attributes by using the dedicated functions in the node library, but for completeness,
here is the low-level interface.

Attributes appear as linked list of userdata objects in the attr field of individual nodes. They can
be handled individually, but it is much safer and more efficient to use the dedicated functions
associated with them.

8.9.2 attribute_list nodes

An attribute list item is used as a head pointer for a list of attribute items. It has only one
user-visible field:

FIELD TYPE EXPLANATION

next node pointer to the first attribute

- ~

*/ I 152 Nodes
A)

hy -

8.9.3 attr nodes

A normal node’s attribute field will point to an item of type attribute 1list, and the next field
in that item will point to the first defined ‘attribute’ item, whose next will point to the second
‘attribute’ item, etc.

FIELD TYPE EXPLANATION

next node pointer to the next attribute
number number the attribute type id
value number the attribute value

As mentioned it’s better to use the official helpers rather than edit these fields directly. For
instance the prev field is used for other purposes and there is no double linked list.

8.9.4 has_attribute

<number> v =
node.has attribute(<node> n, <number> id)
<number> v =
node.has attribute(<node> n, <number> id, <number> val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value
matches val. It returns the value, or, if no match is found, nil.

8.9.5 get_attribute

<number> v =
node.get attribute(<node> n, <number> id)

Tests if a node has an attribute with number id set. It returns the value, or, if no match is found,
nil. If no id is given then the zero attributes is assumed.

8.9.6 find_attribute

<number> v, <node> n =
node.find attribute(<node> n, <number> id)

Finds the first node that has attribute with number id set. It returns the value and the node if
there is a match and otherwise nothing.

8.9.7 set_attribute

node.set attribute(<node> n, <number> id, <number> val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored.

Nodes 153 {“,
W

8.9.8 unset_attribute

<number> v =
node.unset attribute(<node> n, <number> id)
<number> v =
node.unset attribute(<node> n, <number> id, <number> val)

Unsets the attribute with number id. If val is also supplied, it will only perform this operation
if the value matches val. Missing attributes or attribute-value pairs are ignored.

If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

8.9.9 slide

This helper makes sure that the node lists is double linked and returns the found tail node.

<node> tail =
node.slide(<node> n)

After some callbacks automatic sliding takes place. This feature can be turned off with
node.fix node lists(false) but you better make sure then that you don’t mess up lists. In
most cases TgX itself only uses next pointers but your other callbacks might expect proper prev
pointers too. Future versions of LuaTgX can add more checking but this will not influence usage.

8.9.10 check discretionary, check _discretionaries

When you fool around with disc nodes you need to be aware of the fact that they have a special
internal data structure. As long as you reassign the fields when you have extended the lists it’s
ok because then the tail pointers get updated, but when you add to list without reassigning you
might end up in trouble when the linebreak routine kicks in. You can call this function to check
the list for issues with disc nodes.

node.check discretionary(<node> n)
node.check discretionaries(<node> head)

The plural variant runs over all disc nodes in a list, the singular variant checks one node only (it
also checks if the node is a disc node).

8.9.11 flatten_discretionaries

This function will remove the discretionaries in the list and inject the replace field when set.

<node> head, count = node.flatten discretionaries(<node> n)

8.9.12 family_font

When you pass a proper family identifier the next helper will return the font currently associated
with it. You can normally also access the font with the normal font field or getter because it will
resolve the family automatically for noads.

- ~

*/ I 154 Nodes
()

hy -

<integer> id =
node.family font(<integer> fam)

8.10 Two access models

Deep down in TgX a node has a number which is a numeric entry in a memory table. In fact, this
model, where TEX manages memory is real fast and one of the reasons why plugging in callbacks
that operate on nodes is quite fast too. Each node gets a number that is in fact an index in the
memory table and that number often is reported when you print node related information. You
go from userdata nodes and there numeric references and back with:

<integer> d = node.todirect(<node> n))
<node> n = node.tonode(<integer> d))

The userdata model is rather robust as it is a virtual interface with some additional checking
while the more direct access which uses the node numbers directly. However, even with userdata
you can get into troubles when you free nodes that are no longer allocated or mess up lists. if
you apply tostring to a node you see its internal (direct) number and id.

The first model provides key based access while the second always accesses fields via functions:

nodeobject.char
getfield(nodenumber, "char")

If you use the direct model, even if you know that you deal with numbers, you should not depend
on that property but treat it as an abstraction just like traditional nodes. In fact, the fact that we
use a simple basic datatype has the penalty that less checking can be done, but less checking
is also the reason why it’s somewhat faster. An important aspect is that one cannot mix both
methods, but you can cast both models. So, multiplying a node number makes no sense.

So our advice is: use the indexed (table) approach when possible and investigate the direct
one when speed might be a real issue. For that reason LuaTgX also provide the get* and set*
functions in the top level node namespace. There is a limited set of getters. When implementing
this direct approach the regular index by key variant was also optimized, so direct access only
makes sense when nodes are accessed millions of times (which happens in some font processing
for instance).

We’re talking mostly of getters because setters are less important. Documents have not that
many content related nodes and setting many thousands of properties is hardly a burden con-
trary to millions of consultations.

Normally you will access nodes like this:

local next = current.next
if next then

-- do something
end

Here next is not a real field, but a virtual one. Accessing it results in a metatable method being
called. In practice it boils down to looking up the node type and based on the node type checking

Nodes 155 */ |
i ©

for the field name. In a worst case you have a node type that sits at the end of the lookup list and
a field that is last in the lookup chain. However, in successive versions of LuaTgX these lookups
have been optimized and the most frequently accessed nodes and fields have a higher priority.

Because in practice the next accessor results in a function call, there is some overhead involved.
The next code does the same and performs a tiny bit faster (but not that much because it is still
a function call but one that knows what to look up).

local next = node.next(current)
if next then

-- do something
end

Some accessors are used frequently and for these we provide more efficient helpers:

FUNCTION EXPLANATION

getnext parsing nodelist always involves this one

getprev used less but a logical companion to getnext

getboth returns the next and prev pointer of a node

getid consulted a lot

getsubtype consulted less but also a topper

getfont used a lot in OpenType handling (glyph nodes are consulted a lot)

getchar idem and also in other places

getwhd returns the width, height and depth of a list, rule or (unexpanded) glyph as well
as glue (its spec is looked at) and unset nodes

getdisc returns the pre, post and replace fields and optionally when true is passed also
the tail fields

getlist we often parse nested lists so this is a convenient one too

getleader comparable to list, seldom used in TgX (but needs frequent consulting like lists;
leaders could have been made a dedicated node type)

getfield generic getter, sufficient for the rest (other field names are often shared so a spe-
cific getter makes no sense then)
getbox gets the given box (a list node)

getoffsets getsthe xoffset and yoffset of a glyph or left and right values of a rule

In the direct namespace there are more such helpers and most of them are accompanied by
setters. The getters and setters are clever enough to see what node is meant. We don’t deal with
whatsit nodes: their fields are always accessed by name. It doesn’t make sense to add getters
for all fields, we just identifier the most likely candidates. In complex documents, many node
and fields types never get seen, or seen only a few times, but for instance glyphs are candidates
for such optimization. The node.direct interface has some more helpers.?

The setdisc helper takes three (optional) arguments plus an optional fourth indicating the sub-
type. Its getdisc takes an optional boolean; when its value is true the tail nodes will also be
returned. The setfont helper takes an optional second argument, it being the character. The
directmode setter setlink takes a list of nodes and will link them, thereby ignoring nil entries.

2 We can define the helpers in the node namespace with getfield which is about as efficient, so at some point we might

provide that as module.

- ~

*/ I 156 Nodes
i)

hy -

The first valid node is returned (beware: for good reason it assumes single nodes). For rarely
used fields no helpers are provided and there are a few that probably are used seldom too but
were added for consistency. You can of course always define additional accessors using get-
field and setfield with little overhead. When the second argument of setattributelist is
true the current attribute list is assumed.

FUNCTION

check discretionaries
check discretionary
copy_list

copy

count

current attr
dimensions
effective glue
end_of math

family font

fields

find attribute
first glyph
flatten discretionaries
flush list

flush _node

free

get attribute

get synctex fields
getattributelist
getboth

getbox

getchar
getcomponents
getdepth
getdirection
getdir

getdisc

getfam

getfield

getfont

getglue

getheight

getid

getkern

getlang

getleader

getlist

getnext

NODE

node.check discretionaries+
node.check discretionary+
node.copy list+
node. copy+
node.count+
node.current attr+
node.dimensions+
node.effective glue+
node.end of math+
node.family font+
node.fields+
node.find attribute+
node.first glyph+
node.flatten discretionaries+
node.flush_ list+
node.flush node+
node. free+
node.get attribute+

node.getboth+

node.getchar+
node.getdisc+
node.getfield+
node.getfont+
node.getglue+
node.getid+

node.getleader+
node.getlist+
node.getnext+

DIRECT

node.direct.check discretionaries
node.direct.check discretionary+
node.direct.copy list+
node.direct.copy+
node.direct.count+
node.direct.current attr+
node.direct.dimensions+
node.direct.effective glue+
node.direct.end of math+

node.direct.find attribute+
node.direct.first glyph+
node.direct.flatten discretionarie
node.direct.flush list+
node.direct.flush node+
node.direct.free+
node.direct.get attribute+
node.direct.get synctex fields+
node.direct.getattributelist+
node.direct.getboth+
node.direct.getbox+
node.direct.getchar+
node.direct.getcomponents+
node.direct.getdepth+
node.direct.getdirection+
node.direct.getdir+
node.direct.getdisc+
node.direct.getfam+
node.direct.getfield+
node.direct.getfont+
node.direct.getglue+
node.direct.getheight+
node.direct.getid+
node.direct.getkern+
node.direct.getlang+
node.direct.getleader+
node.direct.getlist+
node.direct.getnext+

Nodes 157 | \,
odes .!lli’,

getnucleus
getoffsets
getpenalty
getprev
getproperty
getshift
getsubtype
getsub

getsup
getdata
getwhd
getwidth

has _attribute
has field

has glyph
hpack

id
insert_after
insert before
is char

is direct

is glyph

is node

is zero glue
kerning

last node
length
ligaturing
mlist to hlist
new

next

prepend prevdepth
prev

protect glyphs
protect glyph

protrusion skippable

rangedimensions
remove

set attribute

set synctex fields
setattributelist
setboth

setbox

setchar
setcomponents
setdepth

- ~

;‘) 158 Nodes

hy -

node.getprev+
node.getproperty+
node.getsubtype+
node.getwhd+
node.has attribute+
node.has field+
node.has glyph+
node.hpack+
node.id+
node.insert after+
node.insert before+
node.is char+
node.is glyph+
node.is node+
node.is zero glue+
node.kerning+
node.last node+
node.length+
node.ligaturing+
node.mlist to hlist+
node.new+
node.next+
node.prev+
node.protect glyphs+
node.protect glyph+

node.protrusion skippable+

node.rangedimensions+
node. remove+
node.set attribute+

node.direct.getnucleus+
node.direct.getoffsets+
node.direct.getpenalty+
node.direct.getprev+
node.direct.getproperty+
node.direct.getshift+
node.direct.getsubtype+
node.direct.getsub+
node.direct.getsup+
node.direct.getdata+
node.direct.getwhd+
node.direct.getwidth+
node.direct.has attribute+
node.direct.has field+
node.direct.has glyph+
node.direct.hpack+
node.direct.insert after+
node.direct.insert before+
node.direct.is char+
node.direct.is direct+
node.direct.is glyph+
node.direct.is node+
node.direct.is zero glue+
node.direct.kerning+
node.direct.last node+
node.direct.length+
node.direct.ligaturing+

node.direct.new+

node.direct.prepend prevdepth+
node.direct.protect glyphs+
node.direct.protect glyph+
node.direct.protrusion skippable-
node.direct.rangedimensions+
node.direct.remove+
node.direct.set attribute+
node.direct.set synctex fields+
node.direct.setattributelist+
node.direct.setboth+
node.direct.setbox+
node.direct.setchar+
node.direct.setcomponents+
node.direct.setdepth+

setdirection

node.direct.setdirection+

setdir — node.direct.setdir+
setdisc - node.direct.setdisc+
setfam - node.direct.setfam+
setfield node.setfield+ node.direct.setfield+
setfont - node.direct.setfont+
setexpansion — node.direct.setexpansion+
setglue node.setglue+ node.direct.setglue+
setheight — node.direct.setheight+
setkern - node.direct.setkern+
setlang - node.direct.setlang+
setleader - node.direct.setleader+
setlink - node.direct.setlink+
setlist — node.direct.setlist+
setnext - node.direct.setnext+
setnucleus - node.direct.setnucleus+
setoffsets - node.direct.setoffsets+
setpenalty - node.direct.setpenalty+
setprev — node.direct.setprev+
setproperty node.setproperty+ node.direct.setproperty+
setshift - node.direct.setshift+
setsplit — node.direct.setsplit+
setsubtype - node.direct.setsubtype+
setsub - node.direct.setsub+
setsup — node.direct.setsup+
setwhd - node.direct.setwhd+
setwidth - node.direct.setwidth+
slide node.slide+ node.direct.slide+
subtypes node.subtypes+ —

subtype node.subtype+ —

tail node.tail+ node.direct.tail+
todirect node.todirect+ node.direct.todirect+
tonode node.tonode+ node.direct.tonode+
tostring node.tostring+ node.direct.tostring+

traverse char
traverse glyph

traverse id

node.traverse char+
node.traverse glyph+
node.traverse id+

node.direct.traverse char+
node.direct.traverse glyph+
node.direct.traverse id+

traverse node.traverse+ node.direct.traverse+
types node.types+ —
type node.type+ —

unprotect glyphs
unprotect glyph
unset attribute

node.unprotect glyphs+
node.unprotect glyph+
node.unset attribute+

node.direct.unprotect glyphs+
node.direct.unprotect glyph+
node.direct.unset attribute+

usedlist node.usedlist+ node.direct.usedlist+
uses font node.uses font+ node.direct.uses font+
vpack node.vpack+ node.direct.vpack+

Nodes 159 “/

whatsits node.whatsits+ -
write node.write+ node.direct.write+

The node.next and node.prev functions will stay but for consistency there are variants called
getnext and getprev. We had to use get because node.id and node.subtype are already taken
for providing meta information about nodes. Note: The getters do only basic checking for valid
keys. You should just stick to the keys mentioned in the sections that describe node properties.

Some of the getters and setters handle multiple node types, given that the field is relevant. In
that case, some field names are considered similar (like kern and width, or data and value. In
retrospect we could have normalized field names better but we decided to stick to the original
(internal) names as much as possible. After all, at the Lua end one can easily create synonyms.

Some nodes have indirect references. For instance a math character refers to a family instead
of a font. In that case we provide a virtual font field as accessor. So, getfont and . font can be
used on them. The same is true for the width, height and depth of glue nodes. These actually
access the spec node properties, and here we can set as well as get the values.

In some places LuaTgX can do a bit of extra checking for valid node lists and you can enable that
with:

node.fix _node lists(<boolean> b)

You can set and query the SyncTgX fields, a file number aka tag and a line number, for a glue,
kern, hlist, vlist, rule and math nodes as well as glyph nodes (although this last one is not used
in native SyncTgX).

node.set synctex fields(<integer> f, <integer> 1)
<integer> f, <integer> 1 =
node.get synctex fields(<node> n)

Of course you need to know what you’'re doing as no checking on sane values takes place. Also,
the synctex interpreter used in editors is rather peculiar and has some assumptions (heuristics).

8.11 Properties

Attributes are a convenient way to relate extra information to a node. You can assign them at the
TeX end as well as at the Lua end and and consult them at the Lua end. One big advantage is that
they obey grouping. They are linked lists and normally checking for them is pretty efficient, even
if you use a lot of them. A macro package has to provide some way to manage these attributes
at the TgX end because otherwise clashes in their usage can occur.

Each node also can have a properties table and you can assign values to this table using the
setproperty function and get properties using the getproperty function. Managing properties
is way more demanding than managing attributes.

Take the following example:

\directlua {
local n = node.new("glyph")

- ~

*“; 160 Nodes

hy -

node.setproperty(n,"foo")
print(node.getproperty(n))

node.setproperty(n, "bar")
print(node.getproperty(n))

node. free(n)

}

This will print foo and bar which in itself is not that useful when multiple mechanisms want to
use this feature. A variant is:

\directlua {
local n = node.new("glyph")

node.setproperty(n,{ one = "foo", two = "bar" })
print(node.getproperty(n).one)
print(node.getproperty(n).two)

node. free(n)

}

This time we store two properties with the node. It really makes sense to have a table as property
because that way we can store more. But in order for that to work well you need to do it this way:

\directlua {
local n

node.new("glyph")

local t

node.getproperty(n)

if not t then

t=A{1}
node.setproperty(n,t)

end
t.one = "foo"
t.two = "bar"

print(node.getproperty(n).one)
print(node.getproperty(n).two)

node. free(n)

}

Here our own properties will not overwrite other users properties unless of course they use the
same keys. So, eventually you will end up with something:

\directlua {
local n = node.new("glyph")

Nodes 161 {

local t = node.getproperty(n)

if not t then
t=A{1
node.setproperty(n,t)
end
t.myself = { one = "foo", two = "bar" }

print(node.getproperty(n).myself.one)
print(node.getproperty(n).myself.two)

node. free(n)

}

This assumes that only you use myself as subtable. The possibilities are endless but care is
needed. For instance, the generic font handler that ships with ConTEXt uses the injections
subtable and you should not mess with that one!

There are a few helper functions that you normally should not touch as user: flush proper-
ties table will wipe the table (normally a bad idea), get properties table and will give the
table that stores properties (using direct entries) and you can best not mess too much with that
one either because LuaTlgX itself will make sure that entries related to nodes will get wiped when
nodes get freed, so that the Lua garbage collector can do its job. In fact, the main reason why
we have this mechanism is that it saves the user (or macro package) some work. One can easily
write a property mechanism in Lua where after a shipout properties gets cleaned up but it’s not
entirely trivial to make sure that with each freed node also its properties get freed, due to the
fact that there can be nodes left over for a next page. And having a callback bound to the node
deallocator would add way to much overhead.

Managing properties in the node (de)allocator functions is disabled by default and is enabled
by:

node.set properties mode(true)

When we copy a node list that has a table as property, there are several possibilities: we do the
same as a new node, we copy the entry to the table in properties (a reference), we do a deep copy
of a table in the properties, we create a new table and give it the original one as a metatable.
After some experiments (that also included timing) with these scenarios we decided that a deep
copy made no sense, nor did nilling. In the end both the shallow copy and the metatable variant
were both ok, although the second one is slower. The most important aspect to keep in mind is
that references to other nodes in properties no longer can be valid for that copy. We could use
two tables (one unique and one shared) or metatables but that only complicates matters.

When defining a new node, we could already allocate a table but it is rather easy to do that at
the lua end e.g. using a metatable index method. That way it is under macro package control.
When deleting a node, we could keep the slot (e.g. setting it to false) but it could make memory
consumption raise unneeded when we have temporary large node lists and after that only small
lists. Both are not done.

So in the end this is what happens now: when a node is copied, and it has a table as property, the
new node will share that table. If the second argument of set _properties mode is true then a

- ~

*“; 162 Nodes

hy -

metatable approach is chosen: the copy gets its own table with the original table as metatable.
If you use the generic font loader the mode is enabled that way.

A few more xperiments were done. For instance: copy attributes to the properties so that we
have fast access at the Lua end. In the end the overhead is not compensated by speed and
convenience, in fact, attributes are not that slow when it comes to accessing them. So this was
rejected.

Another experiment concerned a bitset in the node but again the gain compared to attributes
was neglectable and given the small amount of available bits it also demands a pretty strong
agreement over what bit represents what, and this is unlikely to succeed in the TEX community.
It doesn’t pay off.

Just in case one wonders why properties make sense: it is not so much speed that we gain, but
more convenience: storing all kind of (temporary) data in attributes is no fun and this mechanism
makes sure that properties are cleaned up when a node is freed. Also, the advantage of a more or
less global properties table is that we stay at the Lua end. An alternative is to store a reference
in the node itself but that is complicated by the fact that the register has some limitations (no
numeric keys) and we also don’t want to mess with it too much.

Nodes 163 */

/

- ~

, \
‘01 164 Nodes
\ //

hy -

9 LUA callbacks

9.1 Registering callbacks

This library has functions that register, find and list callbacks. Callbacks are Lua functions
that are called in well defined places. There are two kind of callbacks: those that mix with
existing functionality, and those that (when enabled) replace functionality. In mosty cases the
second category is expected to behave similar to the built in functionality because in a next step
specific data is expected. For instance, you can replace the hyphenation routine. The function
gets a list that can be hyphenated (or not). The final list should be valid and is (normally) used
for constructing a paragraph. Another function can replace the ligature builder and/or kerner.
Doing something else is possible but in the end might not give the user the expected outcome.

The first thing you need to do is registering a callback:

id, error =

callback.register(<string> callback name, <function> func)
id, error =

callback.register(<string> callback name, nil)
id, error =

callback.register(<string> callback name, false)

Here the callback name is a predefined callback name, see below. The function returns the
internal id of the callback or nil, if the callback could not be registered. In the latter case,
error contains an error message, otherwise it is nil.

LuaTgX internalizes the callback function in such a way that it does not matter if you redefine a
function accidentally.

Callback assignments are always global. You can use the special value nil instead of a function
for clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks,
doing so will prevent LuaTgX from executing whatever it would execute by default (when no
callback function is registered at all). Be warned: this may cause all sorts of grief unless you
know exactly what you are doing!

<table> info =
callback.list()

The keys in the table are the known callback names, the value is a boolean where true means
that the callback is currently set (active).

<function> f = callback.find(callback name)

If the callback is not set, find returns nil.

9.2 File discovery callbacks

The behaviour documented in this subsection is considered stable in the sense that there will
not be backward-incompatible changes any more.

Lua callbacks 165 {‘,\

-

I

9.2.1 find _read file and find write_ file

Your callback function should have the following conventions:

<string> actual name =
function (<number> id number, <string> asked name)

Arguments:

id number
This number is zero for the log or \input files. For TgX’s \read or \write the number is
incremented by one, so \read0 becomes 1.

asked name
This is the user-supplied filename, as found by \input, \openin or \openout.

Return value:

actual name
This is the filename used. For the very first file that is read in by TgX, you have to make sure
you return an actual name that has an extension and that is suitable for use as jobname. If
you don’t, you will have to manually fix the name of the log file and output file after LuaTgX
is finished, and an eventual format filename will become mangled. That is because these file
names depend on the jobname.
You have to return nil if the file cannot be found.

9.2.2 find_font_file
Your callback function should have the following conventions:

<string> actual name =
function (<string> asked name)

The asked name is an otf or tfm font metrics file.

Return nil if the file cannot be found.

9.2.3 find output_file
Your callback function should have the following conventions:

<string> actual name =
function (<string> asked name)

The asked name is the pdf or dvi file for writing.

9.2.4 find_format_file
Your callback function should have the following conventions:

<string> actual name =

/0) 166 Lua callbacks

function (<string> asked name)
The asked name is a format file for reading (the format file for writing is always opened in the
current directory).
9.2.5 find_vf_file

Like find font file, but for virtual fonts. This applies to both Aleph’s ovf files and traditional
Knuthian vf files.

9.2.6 find _map file

Like find font file, but for map files.

9.2.7 find_enc_file

Like find font_ file, but for enc files.

9.2.8 find_pk_file

Like find font file, but for pk bitmap files. This callback takes two arguments: name and dpi.
In your callback you can decide to look for:

<base res>dpi/<fontname>.<actual res>pk

but other strategies are possible. It is up to you to find a ‘reasonable’ bitmap file to go with that
specification.

9.2.9 find_data_file

Like find font file, but for embedded files (\pdfobj file '...").

9.2.10 find_opentype_file

Like find font file, but for OpenType font files.

9.2.11 find_truetype_file and find_typel_ file
Your callback function should have the following conventions:

<string> actual name =
function (<string> asked name)

The asked name is a font file. This callback is called while LuaTgX is building its internal list of
needed font files, so the actual timing may surprise you. Your return value is later fed back into

the matching read file callback.
Lua callbacks 167 ‘/‘)

Strangely enough, find typel file is also used for OpenType (otf) fonts.

9.2.12 find_image_file
Your callback function should have the following conventions:

<string> actual name =
function (<string> asked name)

The asked name is an image file. Your return value is used to open a file from the hard disk, so
make sure you return something that is considered the name of a valid file by your operating
system.

9.2.13 File reading callbacks

The behavior documented in this subsection is considered stable in the sense that there will not
be backward-incompatible changes any more.

9.2.14 open_read file
Your callback function should have the following conventions:

<table> env =
function (<string> file name)

Argument:

file name
The filename returned by a previous find read file or the return value of
kpse.find file() if there was no such callback defined.

Return value:

env
This is a table containing at least one required and one optional callback function for this file.
The required field is reader and the associated function will be called once for each new line
to be read, the optional one is close that will be called once when LuaTgX is done with the
file.
LuaTgX never looks at the rest of the table, so you can use it to store your private per-file
data. Both the callback functions will receive the table as their only argument.

9.2.14.1 reader
LuaTgX will run this function whenever it needs a new input line from the file.

function(<table> env)
return <string> line
end

- ~

“) 168 Lua callbacks

hy -

Your function should return either a string or nil. The value nil signals that the end of file has
occurred, and will make TgX call the optional close function next.

9.2.14.2 close

LuaTgX will run this optional function when it decides to close the file.

function(<table> env)
end

Your function should not return any value.

9.2.15 General file readers
There is a set of callbacks for the loading of binary data files. These all use the same interface:

function(<string> name)
return <boolean> success, <string> data, <number> data size
end

The name will normally be a full path name as it is returned by either one of the file discovery
callbacks or the internal version of kpse.find file().

success

Return false when a fatal error occurred (e.g. when the file cannot be found, after all).
data

The bytes comprising the file.
data size

The length of the data, in bytes.

Return an empty string and zero if the file was found but there was a reading problem.

The list of functions is:

FUNCTION USAGE

read font file ofm or tfm files

read vf file virtual fonts

read map file map files

read enc file encoding files

read pk file pk bitmap files

read data file embedded files (as is possible with pdf objects)

read truetype file TrueType font files
read typel file Typel font files
read opentype file OpenType font files

Lua callbacks 169 “\

~

-

\

I
/

9.3 Data processing callbacks

9.3.1 process_input_buffer

This callback allows you to change the contents of the line input buffer just before LuaTgX actu-
ally starts looking at it.

function(<string> buffer)
return <string> adjusted buffer
end

If you return nil, LuaTgX will pretend like your callback never happened. You can gain a small
amount of processing time from that. This callback does not replace any internal code.

9.3.2 process_output_buffer

This callback allows you to change the contents of the line output buffer just before LuaTgX
actually starts writing it to a file as the result of a \write command. It is only called for output
to an actual file (that is, excluding the log, the terminal, and so called \write 18 calls).

function(<string> buffer)
return <string> adjusted buffer
end

If you return nil, LuaTgX will pretend like your callback never happened. You can gain a small
amount of processing time from that. This callback does not replace any internal code.
9.3.3 process_jobname

This callback allows you to change the jobname given by \ jobname in TEX and tex.jobname in
Lua. It does not affect the internal job name or the name of the output or log files.

function(<string> jobname)
return <string> adjusted jobname
end

The only argument is the actual job name; you should not use tex. jobname inside this function
or infinite recursion may occur. If you return nil, LuaTgX will pretend your callback never
happened. This callback does not replace any internal code.

9.4 Node list processing callbacks

The description of nodes and node lists is in chapter 8.

9.4.1 contribute_filter

This callback is called when LuaTgX adds contents to list:

- ~

‘0,\' 170 Lua callbacks

hy -

function(<string> extrainfo)
end

The string reports the group code. From this you can deduce from what list you can give a treat.

VALUE EXPLANATION

pre_box interline material is being added

pre adjust \vadjust material is being added

box a typeset box is being added (always called)
adjust \vadjust material is being added

9.4.2 buildpage filter

This callback is called whenever LuaTgX is ready to move stuff to the main vertical list. You can
use this callback to do specialized manipulation of the page building stage like imposition or
column balancing.

function(<string> extrainfo)
end

The string extrainfo gives some additional information about what TgX’s state is with respect
to the ‘current page’. The possible values for the buildpage filter callback are:

VALUE EXPLANATION

alignment a (partial) alignment is being added
after output an output routine has just finished
new graf the beginning of a new paragraph
vmode par \par was found in vertical mode
hmode par \par was found in horizontal mode
insert an insert is added

penalty a penalty (in vertical mode)

before display immediately before a display starts
after display a display is finished
end LuaTgX is terminating (it’s all over)

9.4.3 build_page_insert

This callback is called when the pagebuilder adds an insert. There is not much control over this
mechanism but this callback permits some last minute manipulations of the spacing before an
insert, something that might be handy when for instance multiple inserts (types) are appended
in a row.

function(<number> n, <number> i)
return <number> register
end

with

Lua callbacks 171 “/\r

VALUE EXPLANATION

n the insert class
i the order of the insert

The return value is a number indicating the skip register to use for the prepended spacing. This
permits for instance a different top space (when i equals one) and intermediate space (when i
is larger than one). Of course you can mess with the insert box but you need to make sure that
LuaTgX is happy afterwards.

9.4.4 pre_linebreak_filter

This callback is called just before LuaTgX starts converting a list of nodes into a stack of \hboxes,
after the addition of \parfillskip.

function(<node> head, <string> groupcode)
return true | false | <node> newhead
end

The string called groupcode identifies the nodelist’s context within TgX'’s processing. The range
of possibilities is given in the table below, but not all of those can actually appear in pre_line-
break filter, some are for the hpack filter and vpack filter callbacks that will be ex-
plained in the next two paragraphs.

VALUE EXPLANATION

<empty> main vertical list

hbox \hbox in horizontal mode
adjusted hbox \hbox in vertical mode
vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert
vcenter \vcenter

local box \localleftbox or \localrightbox
split off top of a \vsplit

split keep remainder of a \vsplit
align_set alignment cell

fin row alignment row

As for all the callbacks that deal with nodes, the return value can be one of three things:

> boolean true signals successful processing
» <node> signals that the ‘head’ node should be replaced by the returned node
» boolean false signals that the ‘head’ node list should be ignored and flushed from memory

This callback does not replace any internal code.

- ~

Q/‘) 172 Lua callbacks

hy -

9.4.5 linebreak filter
This callback replaces LuaTgX's line breaking algorithm.

function(<node> head, <boolean> is display)
return <node> newhead
end

The returned node is the head of the list that will be added to the main vertical list, the boolean
argument is true if this paragraph is interrupted by a following math display.

If you return something that is not a <node>, LuaTgX will apply the internal linebreak algorithm
on the list that starts at <head>. Otherwise, the <node> you return is supposed to be the head
of a list of nodes that are all allowed in vertical mode, and at least one of those has to represent
a hbox. Failure to do so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up
in an unfixable ‘deadcycles loop’.

9.4.6 append_to vlist filter
This callback is called whenever LuaTgX adds a box to a vertical list:

function(<node> box, <string> locationcode, <number prevdepth>,
<boolean> mirrored)
return list, prevdepth

end

It is ok to return nothing in which case you also need to flush the box or deal with it yourself.
The prevdepth is also optional. Locations are box, alignment, equation, equation number and
post linebreak.

9.4.7 post_linebreak_filter

This callback is called just after LuaTgX has converted a list of nodes into a stack of \hboxes.

function(<node> head, <string> groupcode)
return true | false | <node> newhead
end

This callback does not replace any internal code.

9.4.8 hpack_filter

This callback is called when TgX is ready to start boxing some horizontal mode material. Math
items and line boxes are ignored at the moment.

function(<node> head, <string> groupcode, <number> size,
<string> packtype [, <string> direction] [, <node> attributelist])

- ~

Lua callbacks 173 Q/‘/\r

hy -

return true | false | <node> newhead
end

The packtype is either additional or exactly. If additional, then the size is a \hbox spread
. argument. If exactly, then the size is a \hbox to In both cases, the number is in
scaled points.

The direction is either one of the three-letter direction specifier strings, or nil.

This callback does not replace any internal code.

9.4.9 vpack_filter

This callback is called when TgX is ready to start boxing some vertical mode material. Math
displays are ignored at the moment.

This function is very similar to the hpack filter. Besides the fact that it is called at different
moments, there is an extra variable that matches TgX’s \maxdepth setting.

function(<node> head, <string> groupcode, <number> size, <string> packtype,
<number> maxdepth [, <string> direction] [, <node> attributelist]))
return true | false | <node> newhead
end

This callback does not replace any internal code.

9.4.10 hpack_quality

This callback can be used to intercept the overfull messages that can result from packing a
horizontal list (as happens in the par builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,
<number> last)
return <node> whatever
end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of
overflow in case of overfull, or the badness otherwise. The head is the list that is constructed
(when protrusion or expansion is enabled, this is an intermediate list). Optionally you can return
a node, for instance an overfull rule indicator. That node will be appended to the list (just like
TEX’s own rule would).

9.4.11 vpack _quality

This callback can be used to intercept the overfull messages that can result from packing a
vertical list (as happens in the page builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,
<number> last)

- ~

Q/‘) 174 Lua callbacks

hy -

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of
overflow in case of overfull, or the badness otherwise. The head is the list that is constructed.

9.4.12 process_rule

This is an experimental callback. It can be used with rules of subtype 4 (user). The callback gets
three arguments: the node, the width and the height. The callback can use pdf.print to write
code to the pdf file but beware of not messing up the final result. No checking is done.

9.4.13 pre_output_filter
This callback is called when TgX is ready to start boxing the box 255 for \output.

function(<node> head, <string> groupcode, <number> size, <string> packtype,
<number> maxdepth [, <string> direction])
return true | false | <node> newhead
end

This callback does not replace any internal code.

9.4.14 hyphenate

function(<node> head, <node> tail)
end
No return values. This callback has to insert discretionary nodes in the node list it receives.

Setting this callback to false will prevent the internal discretionary insertion pass.

9.4.15 ligaturing

function(<node> head, <node> tail)
end

No return values. This callback has to apply ligaturing to the node list it receives.

You don’t have to worry about return values because the head node that is passed on to the
callback is guaranteed not to be a glyph node (if need be, a temporary node will be prepended),
and therefore it cannot be affected by the mutations that take place. After the callback, the
internal value of the ‘tail of the list’ will be recalculated.

The next of head is guaranteed to be non-nil.

The next of tail is guaranteed to be nil, and therefore the second callback argument can often
be ignored. It is provided for orthogonality, and because it can sometimes be handy when special
processing has to take place.

Setting this callback to false will prevent the internal ligature creation pass.

- ~

Lua callbacks 175 Q/‘)

hy -

You must not ruin the node list. For instance, the head normally is a local par node, and the tail
a glue. Messing too much can push LuaTgX into panic mode.

9.4.16 kerning

function(<node> head, <node> tail)
end

No return values. This callback has to apply kerning between the nodes in the node list it
receives. See ligaturing for calling conventions.
Setting this callback to false will prevent the internal kern insertion pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail
a glue. Messing too much can push LuaTgX into panic mode.

9.4.17 insert_local_par

Each paragraph starts with a local par node that keeps track of for instance the direction. You
can hook a callback into the creator:

function(<node> local par, <string> location)
end

There is no return value and you should make sure that the node stays valid as otherwise TgX
can get confused.

9.4.18 mlist_to_hlist
This callback replaces LuaTgX’s math list to node list conversion algorithm.

function(<node> head, <string> display type, <boolean> need penalties)
return <node> newhead
end

The returned node is the head of the list that will be added to the vertical or horizontal list, the
string argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean
argument is true if penalties have to be inserted in this list, false otherwise.

Setting this callback to false is bad, it will almost certainly result in an endless loop.
9.5 Information reporting callbacks

9.5.1 pre_dump

function()
end

~

Q‘) 176 Lua callbacks

hy -

This function is called just before dumping to a format file starts. It does not replace any code
and there are neither arguments nor return values.

9.5.2 start_run

function()
end

This callback replaces the code that prints LuaTgX’s banner. Note that for successful use, this
callback has to be set in the Lua initialization script, otherwise it will be seen only after the run
has already started.

9.5.3 stop_run

function()
end

This callback replaces the code that prints LuaTgX'’s statistics and ‘output written to’ messages.
The engine can still do housekeeping and therefore you should not rely on this hook for postpro-
cessing the pdf or log file.

9.5.4 start_page_number

function()
end

Replaces the code that prints the [and the page number at the begin of \shipout. This callback
will also override the printing of box information that normally takes place when \tracingout-
put is positive.

9.5.5 stop_page_number

function()
end

Replaces the code that prints the] at the end of \shipout.

9.5.6 show_error_hook

function()
end

This callback is run from inside the TgX error function, and the idea is to allow you to do some
extra reporting on top of what TgX already does (none of the normal actions are removed). You
may find some of the values in the status table useful. This callback does not replace any
internal code.

- ~

Lua callbacks 177 0:‘,\'

hy -

9.5.7 show_error_message

function()
end

This callback replaces the code that prints the error message. The usual interaction after the
message is not affected.

9.5.8 show_lua_error_hook

function()
end

This callback replaces the code that prints the extra Lua error message.

9.5.9 start_file

function(category, filename)
end

This callback replaces the code that prints LuaTgX’s when a file is opened like (filename for
regular files. The category is a number:

VALUE MEANING

1 a normal data file, like a TEX source

a font map coupling font names to resources
an image file (png, pdf, etc)

an embedded font subset

a fully embedded font

O WwN

9.5.10 stop_file

function(category)
end

This callback replaces the code that prints LuaTgX's when a file is closed like the) for regular
files.

9.5.11 call_edit

function(filename, linenumber)
end

This callback replaces the call to an external editor when ‘E’ is pressed in reply to an error mes-
sage. Processing will end immediately after the callback returns control to the main program.

- ~

0:‘) 178 Lua callbacks

hy -

9.5.12 finish_synctex

This callback can be used to wrap up alternative synctex methods. It kicks in after the normal
synctex finalizer (that happens to remove the synctex files after a run when native synctex is not
enabled).

9.5.13 wrapup_run

This callback is called after the pdf and log files are closed. Use it at your own risk.

9.6 PDF related callbacks

9.6.1 finish_pdffile

function()
end

This callback is called when all document pages are already written to the pdf file and LuaTgX
is about to finalize the output document structure. Its intended use is final update of pdf dictio-
naries such as /Catalog or /Info. The callback does not replace any code. There are neither
arguments nor return values.

9.6.2 finish_pdfpage

function(shippingout)
end

This callback is called after the pdf page stream has been assembled and before the page object
gets finalized.

9.6.3 page_objnum_provider

This is one that experts can use to juggle the page tree, a data structure that determines the
order in a pdf file:

function(objnum)
return objnum
end

We can for instance swap the first and last page:

local n =0
callback.register("page objnum provider",function(objnum)
n=n+1

if n == 1 then
return pdf.getpageref(tex.count[0])

- ~

Lua callbacks 179 QZ‘)

hy -

elseif n == tex.count[0@] then
return pdf.getpageref(1)
else
return objnum
end
end)

When you mess things up ... don’t complain.

9.6.4 process_pdf_image_content

When a page from a pdf file is embedded its page stream as well as related objects are copied
to the target file. However, it can be that the page stream has operators that assume additional
resources, for instance marked text. You can decide to filter that for which LuaTgX provides a
callback. Here is a simple demonstration of use:

pdf.setrecompress(1)

callback.register("process pdf image content",function(s)
print(s)
return s

end)

You need to explicitly enable recompression because otherwise the content stream gets just
passed on in its original compressed form.

9.7 Font-related callbacks

9.7.1 define_font

function(<string> name, <number> size, <number> id)
return <table> font | <number> id
end

The string name is the filename part of the font specification, as given by the user.

The number size is a bit special:

» Ifit is positive, it specifies an ‘at size’ in scaled points.

» If it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of
the font.

The id is the internal number assigned to the font.

The internal structure of the font table that is to be returned is explained in chapter 6. That
table is saved internally, so you can put extra fields in the table for your later Lua code to use.
In alternative, retval can be a previously defined fontid. This is useful if a previous definition
can be reused instead of creating a whole new font structure.

‘/‘, 180 Lua callbacks

Setting this callback to false is pointless as it will prevent font loading completely but will
nevertheless generate errors.

9.7.2 glyph_not_found

This callback kicks in when the backend cannot insert a glyph. When no callback is defined a
message is written to the log.

function(<number> id, <number> char)
-- do something with font id and char code
end

Lua callbacks 181 ‘\‘)

- ~

‘\‘) 182 Lua callbacks

Ny -

10 The TgX related libraries

10.1 The lua library

10.1.1 Version information
This library contains one read-only item:
<string> s = lua.version

This returns the Lua version identifier string. The value is currently Lua 5.3.

10.1.2 Bytecode registers

Lua registers can be used to store Lua code chunks. The accepted values for assignments are
functions and nil. Likewise, the retrieved value is either a function or nil.

lua.bytecode[<number> n] = <function> f
lua.bytecode[<number> n] ()

The contents of the lua.bytecode array is stored inside the format file as actual Lua bytecode,
so it can also be used to preload Lua code. The function must not contain any upvalues. The
associated function calls are:

<function> f = lua.getbytecode(<number> n)
lua.setbytecode(<number> n, <function> f)

Note: Since a Lua file loaded using loadfile(filename) is essentially an anonymous function,
a complete file can be stored in a bytecode register like this:

lua.bytecode[n] = loadfile(filename)

Now all definitions (functions, variables) contained in the file can be created by executing this
bytecode register:

lua.bytecode[n] ()

Note that the path of the file is stored in the Lua bytecode to be used in stack backtraces and
therefore dumped into the format file if the above code is used in iniTgX. If it contains private
information, i.e. the user name, this information is then contained in the format file as well. This
should be kept in mind when preloading files into a bytecode register in iniTgX.

10.1.3 Chunk name registers

There is an array of 65536 (0-65535) potential chunk names for use with the \directlua and
\latelua primitives.

The TgX related libraries 183 Q‘ﬁ

lua.name[<number> n] = <string> s
<string> s = lua.name[<number> n]

If you want to unset a Lua name, you can assign nil to it. The function accessors are:

lua.setluaname(<string> s,<number> n])
<string> s = lua.getluaname(<number> n)

10.1.4 Introspection

The getstacktop andgetcalllevel functions return numbers indicating how much nesting is
going on. They are only of use as breakpoints when checking some mechanism going haywire.

10.2 The status library

This contains a number of run-time configuration items that you may find useful in message
reporting, as well as an iterator function that gets all of the names and values as a table.

<table> info = status.list()

The keys in the table are the known items, the value is the current value. Almost all of the
values in status are fetched through a metatable at run-time whenever they are accessed, so
you cannot use pairs on status, but you can use pairs on info, of course. If you do not need
the full list, you can also ask for a single item by using its name as an index into status. The
current list is:

KEY EXPLANATION

banner terminal display banner

best page break the current best break (a node)

buf size current allocated size of the line buffer
callbacks total number of executed callbacks so far
cs_count number of control sequences

dest names size pdf destination table size

dvi _gone written dvi bytes

dvi ptr not yet written dvi bytes

dyn used token (multi-word) memory in use

filename name of the current input file

fix_mem_end maximum number of used tokens

fix_mem min minimum number of allocated words for tokens
fix_mem_max maximum number of allocated words for tokens
font _ptr number of active fonts

hash extra extra allowed hash

hash size size of hash

indirect callbacks number of those that were themselves a result of other callbacks (e.g.
file readers)

ini_version true if this is an iniTEX run

init pool ptr iniTgX string pool index

- ~

’

.\0) 184 The TgX related libraries

\
-

init str ptr
input ptr

inputid
largest used mark
lasterrorcontext
lasterrorstring
lastluaerrorstring
lastwarningstring
lastwarningtag
linenumber
log_name
luabytecode bytes
luabytecodes
luastate bytes
luatex_engine
luatex_hashchars
luatex_hashtype
luatex version
luatex_revision
max_buf stack
max_in stack
max_nest stack
max_param_stack
max_save stack
max_strings

nest size
node_mem _usage
obj ptr

obj tab size
output active
output file name
param size

pdf dest names ptr
pdf gone

pdf _mem ptr

pdf mem size
pdf os cntr

pdf os objidx

pdf ptr

pool ptr

pool size

save size

shell escape
safer _option

kpse used

stack size

number of iniTEX strings

the level of input we’re at

numeric id of the current input

max referenced marks class

last error context string (with newlines)
last TgX error string

last Lua error string

last warning tag, normally an indication of in what part
last warning string

location in the current input file

name of the log file

number of bytes in Lua bytecode registers
number of active Lua bytecode registers
number of bytes in use by Lua interpreters
the LuaTgX engine identifier

length to which Lua hashes strings (2™)
the hash method used (in LuajitTEX)

the LuaTgX version number

the LuaTgX revision string

max used buffer position

max used input stack entries

max used nesting stack entries

max used parameter stack entries

max used save stack entries

maximum allowed strings

nesting stack size

a string giving insight into currently used nodes
max pdf object pointer

pdf object table size

true if the \output routine is active

name of the pdf or dvi file

parameter stack size

max pdf destination pointer

written pdf bytes

max pdf memory used

pdf memory size

max pdf object stream pointer

pdf object stream index

not yet written pdf bytes

string pool index

current size allocated for string characters
save stack size

0 means disabled, 1 means anything is permitted, and 2 is restricted
1 means safer is enforced

1 means that kpse is used

input stack size

The TgX related libraries 185 Q\“,

str _ptr number of strings

total pages number of written pages

var_mem_max number of allocated words for nodes

var_used variable (one-word) memory in use

lc collate the value of LC_COLLATE at startup time (becomes C at startup)
lc ctype the value of LC_CTYPE at startup time (becomes C at startup)
lc_numeric the value of LC_NUMERIC at startup time

The error and warning messages can be wiped with the resetmessages function. A return value
can be set with setexitcode.

10.3 The tex library

10.3.1 Introduction

The tex table contains a large list of virtual internal TgX parameters that are partially writable.

The designation ‘virtual’ means that these items are not properly defined in Lua, but are only
frontends that are handled by a metatable that operates on the actual TgX values. As a result,
most of the Lua table operators (like pairs and #) do not work on such items.

At the moment, it is possible to access almost every parameter that you can use after \the,
is a single tokens or is sort of special in TgX. This excludes parameters that need extra argu-
ments, like \the\scriptfont. The subset comprising simple integer and dimension registers
are writable as well as readable (like \tracingcommands and \parindent).

10.3.2 Internal parameter values, set and get

For all the parameters in this section, it is possible to access them directly using their names as
index in the tex table, or by using one of the functions tex.get and tex.set.

The exact parameters and return values differ depending on the actual parameter, and so does
whether tex.set has any effect. For the parameters that can be set, it is possible to use global
as the first argument to tex.set; this makes the assignment global instead of local.

tex.set (["global",] <string> n, ...)
. = tex.get (<string> n)

Glue is kind of special because there are five values involved. The return value is a glue_spec
node but when you pass false as last argument to tex.get you get the width of the glue and
when you pass true you get all five values. Otherwise you get a node which is a copy of the
internal value so you are responsible for its freeing at the Lua end. When you set a glue quantity
you can either pass a glue spec or upto five numbers. If you pass true to get you get 5 values
returned for a glue and when you pass false you only get the width returned.

10.3.2.1 Integer parameters

The integer parameters accept and return Lua numbers. These are read-write:

- ~

’

'\‘) 186 The TgX related libraries

\
-

tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.

adjdemerits
binoppenalty
brokenpenalty
catcodetable
clubpenalty

day
defaulthyphenchar
defaultskewchar
delimiterfactor
displaywidowpenalty
doublehyphendemerits
tex.endlinechar
tex.errorcontextlines
tex.escapechar
tex.exhyphenpenalty
tex. fam

tex. finalhyphendemerits
tex.floatingpenalty
tex.globaldefs
tex.hangafter
tex.hbadness
tex.holdinginserts
tex.hyphenpenalty
tex.interlinepenalty
tex.language
tex.lastlinefit

tex. lefthyphenmin
tex.linepenalty
tex.localbrokenpenalty
tex.localinterlinepenalty
tex.looseness

tex.mag
tex.maxdeadcycles
tex.month

These are read-only:

tex.deadcycles
tex.insertpenalties

tex.parshape
tex.prevgraf

10.3.2.2 Dimension parameters

tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
.time
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
tex.
.tracingparagraphs
tex.
tex.
tex.
tex.
.vbadness

.widowpenalty
tex.

tex

tex

tex
tex

newlinechar
outputpenalty
pausing
postdisplaypenalty
predisplaydirection
predisplaypenalty
pretolerance
relpenalty
righthyphenmin
savinghyphcodes
savingvdiscards
showboxbreadth
showboxdepth

tolerance
tracingassigns
tracingcommands
tracinggroups
tracingifs
tracinglostchars
tracingmacros
tracingnesting
tracingonline
tracingoutput
tracingpages

tracingrestores
tracingscantokens

tracingstats
uchyph

year

tex.spacefactor

The dimension parameters accept Lua numbers (signifying scaled points) or strings (with in-
cluded dimension). The result is always a number in scaled points. These are read-write:

tex.boxmaxdepth

tex.delimitershortfall

tex.displayindent

The TgX related libraries 187 '\“f

tex.displaywidth tex.nulldelimiterspace tex.predisplaysize

tex.emergencystretch tex.overfullrule tex.scriptspace
tex.hangindent tex.pagebottomoffset tex.splitmaxdepth
tex.hfuzz tex.pageheight tex.vfuzz
tex.hoffset tex.pageleftoffset tex.voffset
tex.hsize tex.pagerightoffset tex.vsize
tex.lineskiplimit tex.pagetopoffset tex.prevdepth
tex.mathsurround tex.pagewidth tex.prevgraf
tex.maxdepth tex.parindent tex.spacefactor

These are read-only:

tex.pagedepth tex.pagefilstretch tex.pagestretch
tex.pagefilllstretch tex.pagegoal tex.pagetotal
tex.pagefillstretch tex.pageshrink

Beware: as with all Lua tables you can add values to them. So, the following is valid:
tex.foo = 123

When you access a TgX parameter a look up takes place. For read-only variables that means
that you will get something back, but when you set them you create a new entry in the table
thereby making the original invisible.

There are a few special cases that we make an exception for: prevdepth, prevgraf and space-
factor. These normally are accessed via the tex.nest table:

tex.nest[tex.nest.ptr].prevdepth
tex.nest[tex.nest.ptr].spacefactor

Y
S

However, the following also works:

tex.prevdepth
tex.spacefactor

p
S

Keep in mind that when you mess with node lists directly at the Lua end you might need to
update the top of the nesting stack’s prevdepth explicitly as there is no way LuaTgX can guess
your intentions. By using the accessor in the tex tables, you get and set the values at the top of
the nesting stack.

10.3.2.3 Direction parameters
The direction parameters are read-only and return a Lua string.

tex.bodydir tex.pagedir tex.textdir
tex.mathdir tex.pardir

- ~

/7

.\‘) 188 The TgX related libraries

\
-

10.3.2.4 Glue parameters

The glue parameters accept and return a userdata object that represents a glue spec node.

tex.abovedisplayshortskip tex.leftskip tex.spaceskip
tex.abovedisplayskip tex.lineskip tex.splittopskip
tex.baselineskip tex.parfillskip tex.tabskip
tex.belowdisplayshortskip tex.parskip tex.topskip
tex.belowdisplayskip tex.rightskip tex.xspaceskip

10.3.2.5 Muglue parameters
All muglue parameters are to be used read-only and return a Lua string.

tex.medmuskip tex.thickmuskip tex.thinmuskip

10.3.2.6 Tokenlist parameters

The tokenlist parameters accept and return Lua strings. Lua strings are converted to and from
token lists using \the \toks style expansion: all category codes are either space (10) or other
(12). It follows that assigning to some of these, like ‘tex.output’, is actually useless, but it feels
bad to make exceptions in view of a coming extension that will accept full-blown token strings.

tex.errhelp tex.everyhbox tex.everyvbox
tex.everycr tex.everyjob tex.output
tex.everydisplay tex.everymath

tex.everyeof tex.everypar

10.3.3 Convert commands

All ‘convert’ commands are read-only and return a Lua string. The supported commands at this
moment are:

tex.eTeXVersion tex. fontname (number)
tex.eTeXrevision tex.uniformdeviate (number)
tex. formatname tex.number(number)
tex.jobname tex.romannumeral (number)
tex.luatexbanner tex.fontidentifier (number)

tex.luatexrevision

If you are wondering why this list looks haphazard; these are all the cases of the ‘convert’ in-
ternal command that do not require an argument, as well as the ones that require only a simple
numeric value. The special (Lua-only) case of tex.fontidentifier returns the csname string
that matches a font id number (if there is one).

\

The TgX related libraries 189 ?‘f

/

/

\

~

-

10.3.4 Last item commands

All ‘last item’ commands are read-only and return a number. The supported commands at this
moment are:

tex.lastpenalty tex.lastypos tex.currentgrouptype
tex.lastkern tex.randomseed tex.currentiflevel
tex.lastskip tex.luatexversion tex.currentiftype
tex.lastnodetype tex.eTeXminorversion tex.currentifbranch
tex.inputlineno tex.eTeXversion

tex.lastxpos tex.currentgrouplevel

10.3.5 Accessing registers: set*, get* and is*

TEX’s attributes (\attribute), counters (\count), dimensions (\dimen), skips (\skip, \muskip)
and token (\toks) registers can be accessed and written to using two times five virtual sub-tables
of the tex table:

tex.attribute tex.skip tex.muglue
tex.count tex.glue tex.toks
tex.dimen tex.muskip

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, \skipdef, or
\toksdef control sequences as indices to these tables:

tex.count.scratchcounter = 0
enormous = tex.dimen['maxdimen']

In this case, LuaTgX looks up the value for you on the fly. You have to use a valid \countdef (or
\attributedef, or \dimendef, or \skipdef, or \toksdef), anything else will generate an error
(the intent is to eventually also allow <chardef tokens> and even macros that expand into a
number).

» The count registers accept and return Lua numbers.

» The dimension registers accept Lua numbers (in scaled points) or strings (with an included
absolute dimension; em and ex and px are forbidden). The result is always a number in scaled
points.

» The token registers accept and return Lua strings. Lua strings are converted to and from
token lists using \the \toks style expansion: all category codes are either space (10) or
other (12).

» The skip registers accept and return glue spec userdata node objects (see the description
of the node interface elsewhere in this manual).

» The glue registers are just skip registers but instead of userdata are verbose.

» Like the counts, the attribute registers accept and return Lua numbers.

As an alternative to array addressing, there are also accessor functions defined for all cases, for
example, here is the set of possibilities for \skip registers:

’\‘) 190 The TgX related libraries

tex.setskip (["global",] <number> n, <node> s)
tex.setskip (["global",] <string> s, <node> s)
<node> s = tex.getskip (<number> n)
<node> s = tex.getskip (<string> s)

We have similar setters for count, dimen, muskip, and toks. Counters and dimen are represented
by numbers, skips and muskips by nodes, and toks by strings.

Again the glue variants are not using the glue-spec userdata nodes. The setglue function ac-
cepts upto 5 arguments: width, stretch, shrink, stretch order and shrink order and the getglue
function reports them, unless the second argument is false in which care only the width is re-
turned.

Here is an example usign a threesome:

local d = tex.getdimen("foo")

if tex.isdimen("bar") then
tex.setdimen("bar",d)

end

There are six extra skip (glue) related helpers:

tex.setglue (["global"], <number> n,
width, stretch, shrink, stretch order, shrink order)
tex.setglue (["global"], <string> s,
width, stretch, shrink, stretch order, shrink order)
width, stretch, shrink, stretch order, shrink order =
tex.getglue (<number> n)
width, stretch, shrink, stretch order, shrink order
tex.getglue (<string> s)

The other two are tex.setmuglue and tex.getmuglue.

There are such helpers for dimen, count, skip, muskip, box and attribute registers but the
glue ones are special because they have to deal with more properties.

As with the general get and set function discussed before, for the skip registers getskip returns
a node and getglue returns numbers, while setskip accepts a node and setglue expects upto
5 numbers. Again, when you pass false as second argument to getglue you only get the width
returned. The same is true for the mu variants getmuskip, setmuskip, getmuskip andsetmuskip.

For tokens registers we have an alternative where a catcode table is specified:

tex.scantoks (0,3, "$e=mc"2$")
tex.scantoks("global",0,"$\int\limits™1 2$")

In the function-based interface, it is possible to define values globally by using the string global

as the first function argument.

10.3.6 Character code registers: [get|set]*code[s]

TgX’s character code tables (\lccode, \uccode, \sfcode, \catcode, \mathcode, \delcode) can
be accessed and written to using six virtual subtables of the tex table

The TgX related libraries 191 ®

tex.lccode tex.sfcode tex.mathcode
tex.uccode tex.catcode tex.delcode

The function call interfaces are roughly as above, but there are a few twists. sfcodes are the
simple ones:

tex.setsfcode (["global",] <number> n, <number> s)
<number> s = tex.getsfcode (<number> n)

The function call interface for 1ccode and uccode additionally allows you to set the associated
sibling at the same time:

tex.setlccode (["global"], <number> n, <number> 1lc)
tex.setlccode (["global"], <number> n, <number> lc, <number> uc)
<number> 1lc tex.getlccode (<number> n)

tex.setuccode (["global"], <number> n, <number> uc)
tex.setuccode (["global"], <number> n, <number> uc, <number> 1c)
<number> uc = tex.getuccode (<number> n)

The function call interface for catcode also allows you to specify a category table to use on
assignment or on query (default in both cases is the current one):

tex.setcatcode (["global"], <number> n, <number> c)

tex.setcatcode (["global"], <number> cattable, <number> n, <number> c)
<number> lc = tex.getcatcode (<number> n)

<number> lc = tex.getcatcode (<number> cattable, <number> n)

The interfaces for delcode and mathcode use small array tables to set and retrieve values:

tex.setmathcode (["global"], <number> n, <table> mval)
<table> mval = tex.getmathcode (<number> n)
tex.setdelcode (["global"], <number> n, <table> dval)
<table> dval = tex.getdelcode (<number> n)

Where the table for mathcode is an array of 3 numbers, like this:

{
<number> class,
<number> family,
<number> character
}

And the table for delcode is an array with 4 numbers, like this:

{

<number> small fam,
<number> small char,
<number> large fam,
<number> large char

0) 192 The TgX related libraries

}

You can also avoid the table:

tex.setmathcode (["global"], <number> n, <number> class,
<number> family, <number> character)
class, family, char =
tex.getmathcodes (<number> n)
tex.setdelcode (["global"], <number> n, <number> smallfam,
<number> smallchar, <number> largefam, <number> largechar)
smallfam, smallchar, largefam, largechar =
tex.getdelcodes (<number> n)

Normally, the third and fourth values in a delimiter code assignment will be zero according to
\Udelcode usage, but the returned table can have values there (if the delimiter code was set
using \delcode, for example). Unset delcode’s can be recognized because dval[1l] is —1.

10.3.7 Box registers: [get|set]box

It is possible to set and query actual boxes, coming for instance from \hbox, \vbox or \vtop,
using the node interface as defined in the node library:

tex.box
for array access, or

tex.setbox(["global",] <number> n, <node> s)
tex.setbox(["global",] <string> cs, <node> s)
<node> n = tex.getbox(<number> n)
<node> n = tex.getbox(<string> cs)

for function-based access. In the function-based interface, it is possible to define values globally
by using the string global as the first function argument.

Be warned that an assignment like
tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX com-
mands later on, the contents of \box0 becomes invalid as well. To prevent this from happening,
always use node.copy list unless you are assigning to a temporary variable:

tex.box[0] = node.copy list(tex.box[2])

10.3.8 Reusing boxes: [use|save]boxresource and
getboxresourcedimensions

The following function will register a box for reuse (this is modelled after so called xforms in
pdf). You can (re)use the box with \useboxresource or by creating a rule node with subtype 2.

'Y oY
The TgX related libraries 193 \‘;

~

-

local index = tex.saveboxresource(n,attributes,resources,immediate,type,margin)

The optional second and third arguments are strings, the fourth is a boolean. The fifth argument
is a type. When set to non-zero the /Type entry is omitted. A value of 1 or 3 still writes a
/BBox, while 2 or 3 will write a /Matrix. The sixth argument is the (virtual) margin that extends
beyond the effective boundingbox as seen by TgX. Instead of a box number one can also pass a
[h|v]list node.

You can generate the reference (a rule type) with:
local reused = tex.useboxresource(n,wd,ht,dp)

The dimensions are optional and the final ones are returned as extra values. The following is
just a bonus (no dimensions returned means that the resource is unknown):

local w, h, d, m = tex.getboxresourcedimensions(n)

This returns the width, height, depth and margin of the resource.

10.3.9 triggerbuildpage

You should not expect to much from the triggerbuildpage helpers because often TgX doesn’t
do much if it thinks nothing has to be done, but it might be useful for some applications. It just
does as it says it calls the internal function that build a page, given that there is something to
build.

10.3.10 splitbox

You can split a box:

local vlist = tex.splitbox(n,height,mode)

The remainder is kept in the original box and a packaged vlist is returned. This operation is
comparable to the \vsplit operation. The mode can be additional or exactly and concerns
the split off box.

10.3.11 Accessing math parameters: [get|set]math

It is possible to set and query the internal math parameters using:

tex.setmath(["global",] <string> n, <string> t, <number> n)
<number> n = tex.getmath(<string> n, <string> t)
As before an optional first parameter global indicates a global assignment.

The first string is the parameter name minus the leading ‘Umath’, and the second string is the
style name minus the trailing ‘style’. Just to be complete, the values for the math parameter
name are:

quad axis operatorsize

[] \
\0; 194 The TgX related libraries

overbarkern overbarrule overbarvgap

underbarkern underbarrule underbarvgap

radicalkern radicalrule radicalvgap

radicaldegreebefore radicaldegreeafter radicaldegreeraise

stackvgap stacknumup stackdenomdown

fractionrule fractionnumvgap fractionnumup

fractiondenomvgap fractiondenomdown fractiondelsize

limitabovevgap limitabovebgap limitabovekern

limitbelowvgap limitbelowbgap limitbelowkern

underdelimitervgap underdelimiterbgap

overdelimitervgap overdelimiterbgap

subshiftdrop supshiftdrop subshiftdown

subsupshiftdown subtopmax supshiftup

supbottommin supsubbottommax subsupvgap

spaceafterscript connectoroverlapmin

ordordspacing ordopspacing ordbinspacing ordrelspacing
ordopenspacing ordclosespacing ordpunctspacing ordinnerspacing
opordspacing opopspacing opbinspacing oprelspacing
opopenspacing opclosespacing oppunctspacing opinnerspacing
binordspacing binopspacing binbinspacing binrelspacing
binopenspacing binclosespacing binpunctspacing bininnerspacing
relordspacing relopspacing relbinspacing relrelspacing
relopenspacing relclosespacing relpunctspacing relinnerspacing
openordspacing openopspacing openbinspacing openrelspacing
openopenspacing openclosespacing openpunctspacing openinnerspacing
closeordspacing closeopspacing closebinspacing closerelspacing
closeopenspacing closeclosespacing closepunctspacing closeinnerspacing
punctordspacing punctopspacing punctbinspacing punctrelspacing
punctopenspacing punctclosespacing punctpunctspacing punctinnerspacing
innerordspacing inneropspacing innerbinspacing innerrelspacing
inneropenspacing innerclosespacing innerpunctspacing innerinnerspacing

The values for the style parameter are:

display crampeddisplay

text crampedtext

script crampedscript
scriptscript crampedscriptscript

The value is either a number (representing a dimension or number) or a glue spec node repre-
senting a muskip for ordordspacing and similar spacing parameters.

10.3.12 Special list heads: [get|set]list

The virtual table tex.lists contains the set of internal registers that keep track of building

page lists.

- ~

\

] \
The TgX related libraries 195 \‘;

hy -

~

-

FIELD EXPLANATION

page _ins head circular list of pending insertions
contrib head the recent contributions

page head the current page content

hold head used for held-over items for next page
adjust head head of the current \vadjust list

pre adjust head head of the current \vadjust pre list

page discards head head of the discarded items of a page break
split discards head head of the discarded items in a vsplit

The getter and setter functions are getlist and setlist. You have to be careful with what you
set as TEX can have expectations with regards to how a list is constructed or in what state it is.

10.3.13 Semantic nest levels: getnest and ptr

The virtual table nest contains the currently active semantic nesting state. It has two main parts:
a zero-based array of userdata for the semantic nest itself, and the numerical value ptr, which
gives the highest available index. Neither the array items in nest[] nor ptr can be assigned to
(as this would confuse the typesetting engine beyond repair), but you can assign to the individual
values inside the array items, e.g. tex.nest[tex.nest.ptr].prevdepth.

tex.nest[tex.nest.ptr] is the current nest state, nest[0] the outermost (main vertical list)
level. The getter function is getnest. You can pass a number (which gives you a list), nothing or
top, which returns the topmost list, or the string ptr which gives you the index of the topmost
list.

The known fields are:

KEY TYPE MODES EXPLANATION

mode number all a string: none (this happens during \write), vmode, hmode,
displaymath, innervmode, innerhmode, inlinemath; these
fields cannot be set

modeline number all source input line where this mode was entered in, negative
inside the output routine

head node all the head of the current list

tail node all the tail of the current list

prevgraf number vmode number of lines in the previous paragraph

prevdepth number vmode depth of the previous paragraph
spacefactor number hmode the current space factor

dirs node hmode used for temporary storage by the line break algorithm

noad node mmode used for temporary storage of a pending fraction numerator,
for \over etc.

delimptr node mmode used for temporary storage of the previous math delimiter, for
\middle

mathdir boolean mmode true when during math processing the \mathdir is not the

same as the surrounding \textdir
mathstyle number mmode the current \mathstyle

(7 oY
\0; 196 The TgX related libraries

10.3.14 Print functions

The tex table also contains the three print functions that are the major interface from Lua
scripting to TgX. The arguments to these three functions are all stored in an in-memory virtual
file that is fed to the TgX scanner as the result of the expansion of \directlua.

The total amount of returnable text from a \directlua command is only limited by available
system ram. However, each separate printed string has to fit completely in TgX’s input buffer.
The result of using these functions from inside callbacks is undefined at the moment.

10.3.14.1 print

tex.print(<string> s, ...)
tex.print(<number> n, <string> s, ...)
tex.print(<table> t)
tex.print(<number> n, <table> t)

Each string argument is treated by TEX as a separate input line. If there is a table argument
instead of a list of strings, this has to be a consecutive array of strings to print (the first nonB
Astring value will stop the printing process).

The optional parameter can be used to print the strings using the catcode regime defined by
\catcodetable n. If nis —1, the currently active catcode regime is used. If n is —2, the resulting
catcodes are the result of \the \toks: all category codes are 12 (other) except for the space
character, that has category code 10 (space). Otherwise, if n is not a valid catcode table, then it
is ignored, and the currently active catcode regime is used instead.

The very last string of the very last tex.print command in a \directlua will not have the
\endlinechar appended, all others do.

10.3.14.2 sprint

tex.sprint(<string> s, ...)
tex.sprint(<number> n, <string> s, ...)
tex.sprint(<table> t)
tex.sprint(<number> n, <table> t)

Each string argument is treated by TgX as a special kind of input line that makes it suitable for
use as a partial line input mechanism:

» TgX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

» No \endlinechar is inserted.

» Trailing spaces are not removed. Note that this does not prevent TgX itself from eating spaces
as result of interpreting the line. For example, in

before\directlua{tex.sprint("\\relax")tex.sprint(" inbetween")}after
the space before in between will be gobbled as a result of the ‘normal’ scanning of \relax.

If there is a table argument instead of a list of strings, this has to be a consecutive array of
strings to print (the first non-string value will stop the printing process).

- ~

\

(7 oY
The TgX related libraries 197 \‘;

hy -

The optional argument sets the catcode regime, as with tex.print. This influences the string
arguments (or numbers turned into strings).

Although this needs to be used with care, you can also pass token or node userdata objects.
These get injected into the stream. Tokens had best be valid tokens, while nodes need to be
around when they get injected. Therefore it is important to realize the following:

» When you inject a token, you need to pass a valid token userdata object. This object will be
collected by Lua when it no longer is referenced. When it gets printed to TgX the token itself
gets copied so there is no interference with the Lua garbage collection. You manage the
object yourself. Because tokens are actually just numbers, there is no real extra overhead at
the TgX end.

» When you inject a node, you need to pass a valid node userdata object. The node related
to the object will not be collected by Lua when it no longer is referenced. It lives on at the
TEX end in its own memory space. When it gets printed to TgX the node reference is used
assuming that node stays around. There is no Lua garbage collection involved. Again, you
manage the object yourself. The node itself is freed when TgX is done with it.

If you consider the last remark you might realize that we have a problem when a printed mix
of strings, tokens and nodes is reused. Inside TgX the sequence becomes a linked list of input
buffers. So, "123" or "\foo{123}" gets read and parsed on the fly, while <token userdata>
already is tokenized and effectively is a token list now. A <node userdata> is also tokenized into
a token list but it has a reference to a real node. Normally this goes fine. But now assume that
you store the whole lot in a macro: in that case the tokenized node can be flushed many times.
But, after the first such flush the node is used and its memory freed. You can prevent this by
using copies which is controlled by setting \luacopyinputnodes to a non-zero value. This is one
of these fuzzy areas you have to live with if you really mess with these low level issues.

10.3.14.3 tprint
tex.tprint({<number> n, <string> s, ...}, {...})

This function is basically a shortcut for repeated calls to tex.sprint(<number> n, <string>
s, ...),once for each of the supplied argument tables.

10.3.14.4 cprint

This function takes a number indicating the to be used catcode, plus either a table of strings or
an argument list of strings that will be pushed into the input stream.

tex.cprint(1," 1: $&{\\foo}") tex.print("\\par") -- a lot of \bgroup s

tex.cprint(2," 2: $&{\\foo}") tex.print("\\par") -- matching \egroup s

tex.cprint(9," 9: $&{\\foo}") tex.print("\\par") -- all get ignored

tex.cprint(10,"10: $&{\\foo}") tex.print("\\par") -- all become spaces

tex.cprint(11,"11: $&{\\foo}") tex.print("\\par") -- letters

tex.cprint(12,"12: $&{\\foo}") tex.print("\\par") -- other characters
(1)

2
tex.cprint(14,"12: $&{\\foo}") tex.print("\\par") -- comment triggers

- ~

® \
\0; 198 The TgX related libraries

hy -

10.3.14.5 write, twrite, nwrite

tex.write(<string> s, ...)
tex.write(<table> t)

Each string argument is treated by TgX as a special kind of input line that makes it suitable for
use as a quick way to dump information:

» All catcodes on that line are either ‘space’ (for ’ ’) or ‘character’ (for all others).
» There is no \endlinechar appended.

If there is a table argument instead of a list of strings, this has to be a consecutive array of
strings to print (the first non-string value will stop the printing process).

The functions twrite and nwrite can be used to write a token or node back to TEX possibly
intermixed with regular strings that will be tokenized. You have to make sure that you pass the
right data because sometimes TEX has expectations that need to be met.

10.3.15 Helper functions

10.3.15.1 round
<number> n = tex.round(<number> o)

Rounds Lua number o, and returns a number that is in the range of a valid TgX register value.
If the number starts out of range, it generates a ‘number too big’ error as well.

10.3.15.2 scale

<number> n = tex.scale(<number> o, <number> delta)
<table> n = tex.scale(table o, <number> delta)

Multiplies the Lua numbers o and delta, and returns a rounded number that is in the range of
a valid TgX register value. In the table version, it creates a copy of the table with all numeric
top-level values scaled in that manner. If the multiplied number(s) are of range, it generates
‘number too big’ error(s) as well.

Note: the precision of the output of this function will depend on your computer’s architecture
and operating system, so use with care! An interface to LuaTgX’s internal, 100% portable scale
function will be added at a later date.

10.3.15.3 number and romannumeral

These are the companions to the primitives \number and \romannumeral. They can be used like:

tex.print(tex.romannumeral(123))

10.3.15.4 fontidentifier and fontname

The first one returns the name only, the second one reports the size too.

- ~

\

(7 oY
The TgX related libraries 199 \‘;

hy -

~

-

tex.print(tex.fontname(tex.fontname))
tex.print(tex.fontname(tex.fontidentidier))

10.3.15.5 sp

<number> n = tex.sp(<number> o)
<number> n = tex.sp(<string> s)

Converts the number o or a string s that represents an explicit dimension into an integer number
of scaled points.

For parsing the string, the same scanning and conversion rules are used that LuaTgX would use
if it was scanning a dimension specifier in its TgX-like input language (this includes generating
errors for bad values), expect for the following:

1. only explicit values are allowed, control sequences are not handled
2. infinite dimension units (fil...) are forbidden

3. mu units do not generate an error (but may not be useful either)
10.3.15.6 tex.getlinenumber and tex.setlinenumber

You can mess with the current line number:

local n = tex.getlinenumber()
tex.setlinenumber(n+10)

which can be shortcut to:
tex.setlinenumber (10, true)

This might be handy when you have a callback that read numbers from a file and combines
them in one line (in which case an error message probably has to refer to the original line).
Interference with TgX’s internal handling of numbers is of course possible.

10.3.15.7 error and show_context

tex.error(<string> s)
tex.error(<string> s, <table> help)

This creates an error somewhat like the combination of \errhelp and \errmessage would. Dur-
ing this error, deletions are disabled.
The array part of the help table has to contain strings, one for each line of error help.

In case of an error the show context function will show the current context where we’re at (in
the expansion).
10.3.15.8 run, runtoks, finish

These two functions start the interpretations and force its end. A runs normally boils down to TEX
entering the so called main loop. A token is fetched and depending on it current meaning some

7 oY
\0; 200 The TgX related libraries

actions takes place. Sometimes that actions comes immediately, sometimes more scanning is
needed. Quite often tokens get pushed back into the input. This all means that the TgX scanner
is constantly pushing and popping input states, but in the end after all the action is done returns
to the main loop.

Because of the fact that TEX is in a complex dance of expanding, dealing with fonts, typesetting
paragraphs, messing around with boxes, building pages, and so on, you cannot easily run a
nested TgX run (read nested main loop). However, there is an option to force a local run with
runtoks. The content of the given token list register gets expanded locally after which we return
to where we triggered this expansion, at the Lua end. Instead a function can get passed that
does some work. You have to make sure that at the end TgX is in a sane state and this is not
always trivial. A more complex mechanism would complicate TgX itself (and probably also harm
performance) so this simple local expansion loop has to do.

tex.runtoks(<token register>)
tex.runtoks(<lua function>)

When the \tracingnesting parameter is set to a value larger than 2 some information is re-
ported about the state of the local loop.
10.3.15.9 run, runtoks, finish

An example of a (possible error triggering) complication is that TgX expects to be in some state,
say horizontal mode, and you have to make sure it is when you start feeding back something
from Lua into TEX. Normally a user will not run into issues but when you start writing tokens or
nodes or have a nested run there can be situations that you need to run forcehmode. There is
no recipe for this and intercepting possible cases would weaken LuaTgX's flexibility.
10.3.15.10 hashtokens

for i,v in pairs (tex.hashtokens()) do ... end

Returns a list of names. This can be useful for debugging, but note that this also reports control
sequences that may be unreachable at this moment due to local redefinitions: it is strictly a
dump of the hash table. You can use token.create to inspect properties, for instance when the
command key in a created table equals 123, you have the cmdname value undefined cs.

10.3.15.11 definefont

tex.definefont (<string> csname, <number> fontid)
tex.definefont (<boolean> global, <string> csname, <number> fontid)

Associates csname with the internal font number fontid. The definition is global if (and only if)
global is specified and true (the setting of globaldefs is not taken into account).

10.3.16 Functions for dealing with primitives

10.3.16.1 enableprimitives

tex.enableprimitives(<string> prefix, <table> primitive names)

odr
The TgX related libraries 201 \‘,

~

-

\

I

~

-

This function accepts a prefix string and an array of primitive names. For each combination of
‘prefix’ and ‘name’, the tex.enableprimitives first verifies that ‘name’ is an actual primitive
(it must be returned by one of the tex.extraprimitives calls explained below, or part of TgX82,
or \directlua). If it is not, tex.enableprimitives does nothing and skips to the next pair.

But if it is, then it will construct a csname variable by concatenating the ‘prefix’ and ‘name’,
unless the ‘prefix’ is already the actual prefix of ‘name’. In the latter case, it will discard the
‘prefix’, and just use ‘name’.

Then it will check for the existence of the constructed csname. If the csname is currently un-
defined (note: that is not the same as \relax), it will globally define the csname to have the
meaning: run code belonging to the primitive ‘name’. If for some reason the csname is already
defined, it does nothing and tries the next pair.

An example:
tex.enableprimitives('LuaTeX', {'formatname'})

will define \LuaTeXformatname with the same intrinsic meaning as the documented primitive
\formatname, provided that the control sequences \LuaTeXformatname is currently undefined.

When LuaTgX is run with - -ini only the TgX82 primitives and \directlua are available, so no
extra primitives at all.

If you want to have all the new functionality available using their default names, as it is now,
you will have to add

\ifx\directlua\undefined \else
\directlua {tex.enableprimitives('',tex.extraprimitives ())}
\fi

near the beginning of your format generation file. Or you can choose different prefixes for
different subsets, as you see fit.

Calling some form of tex.enableprimitives is highly important though, because if you do not,
you will end up with a TgX82-lookalike that can run Lua code but not do much else. The defined
csnames are (of course) saved in the format and will be available at runtime.

10.3.16.2 extraprimitives
<table> t = tex.extraprimitives(<string> s, ...)

This function returns a list of the primitives that originate from the engine(s) given by the re-
quested string value(s). The possible values and their (current) return values are given in the
following table. In addition the somewhat special primitives ‘\ ’, ‘\/’ and ‘-’ are defined.

NAME VALUES

tex vskip write vsize boundary unhcopy output unskip unvbox boxmaxdepth muskipdef
string toksdef floatingpenalty righthyphenmin voffset escapechar topmark
splitfirstmark vsplit everydisplay badness xleaders textfont showlists lan-
guage mathchoice topskip abovedisplayshortskip underline tracinglostchars
pagefillstretch unvcopy splitbotmark finalhyphendemerits atopwithdelims

7 oY
\0; 202 The TgX related libraries

pretolerance fi dp setlanguage ht mathchardef nulldelimiterspace or wd page-
goal advance chardef catcode mathchar scriptscriptfont mathcode leftskip
pageshrink pagefilstretch delcode fontname brokenpenalty lastkern belowdis-
playshortskip tolerance mathopen exhyphenpenalty maxdepth futurelet above-
withdelims hangindent lastskip linepenalty everyjob xspaceskip globaldefs
everypar scriptfont delimiter afterassignment firstmark wordboundary line-
skiplimit lineskip def fam day iffalse textstyle end mag box belowdisplayskip
ifx let errmessage exhyphenchar hss expandafter the displaywidth Uright math-
surround pagedepth looseness leaders vss ifhmode botmark displaystyle ac-
cent immediate ifmmode meaning abovedisplayskip medmuskip emergencystretch
rightskip mathclose hangafter hoffset aftergroup cleaders romannumeral hbad-
ness mathbin showboxbreadth ifvmode jobname vbadness patterns nonstopmode
errhelp predisplaypenalty endlinechar mathinner lastbox showboxdepth post-
displaypenalty mathrel holdinginserts radical mathord pagetotal everycr ad-
jdemerits halign defaultskewchar errorcontextlines splitmaxdepth Uleft if-
case noindent tracingmacros moveright predisplaysize tracingrestores mes-
sage ifhbox deadcycles interlinepenalty mathpunct lccode noboundary dis-
playindent nonscript everyhbox global penalty tracingcommands everymath no-
limits noalign inputlineno pagestretch parskip indent dimendef widowpenalty
ifvbox above spaceskip middle displaylimits pausing everyvbox iftrue moveleft
mathop endcsname dimen ifcat clubpenalty splittopskip doublehyphendemerits
ifdim limits ifeof ignorespaces insert delimitershortfall ifodd insertpenal-
ties tracingpages hpack vadjust tracingonline count ifnum edef char begin-
group tracingparagraphs hyphenation hfuzz openout legno hyphenpenalty vcen-
ter hfil thickmuskip maxdeadcycles mkern hbox overfullrule else hsize raise
thinmuskip spacefactor input hrule left eqno parfillskip font valign dump re-
lax prevdepth read shipout batchmode right setbox baselineskip special mskip
endgroup uchyph binoppenalty endinput omit pagefilllstretch overwithdelims
newlinechar vfilneg time tpack skip vfill span prevgraf over show vbox trac-
ingstats year defaulthyphenchar nullfont muskip vpack toks outer multiply
tracingoutput firstvalidlanguage parindent protrusionboundary displaywid-
owpenalty unhbox lefthyphenmin vtop mathaccent vfuzz overline unkern closeout
showthe showbox uppercase lowercase closein openin errorstopmode scrollmode
skewchar hyphenchar sfcode uccode skipdef countdef glet xdef gdef long Umiddle
atop scriptscriptstyle scriptstyle discretionary unpenalty copy lower kern
vfil hfilneg hfill hskip crcr cr ifvoid ifinner if number lastpenalty par vrule
parshape noexpand mark fontdimen divide csname scriptspace outputpenalty
month delimiterfactor relpenalty tabskip

core directlua

etex unless botmarks currentiftype pagediscards mutoglue displaywidowpenalties
fontcharic fontchardp fontcharht fontcharwd widowpenalties tracingifs if-
fontchar eTeXVersion protected topmarks showgroups glueexpr splitfirstmarks
predisplaydirection everyeof eTeXversion clubpenalties savingvdiscards
splitbotmarks showtokens tracingassigns dimexpr parshapedimen readline trac-
ingscantokens tracingnesting ifdefined currentifbranch firstmarks lastnode-
type marks currentgrouplevel interlinepenalties muexpr unexpanded ifcsname

- ~

\
\

°
The TgX related libraries 203 | i

hy -

~

-

luatex

parshapeindent showifs parshapelength splitdiscards gluetomu glueshrink
gluestretch glueshrinkorder gluestretchorder numexpr scantokens interac-
tionmode detokenize currentiflevel currentgrouptype savinghyphcodes last-
linefit tracinggroups eTeXrevision eTeXminorversion

Umathcloseopspacing textdir Umathordpunctspacing Udelimiterunder mathsur-
roundmode Uskewedwithdelims bodydirection Umathopenpunctspacing pagebotto-
moffset luabytecodecall mathsurroundskip endlocalcontrol Umathordinnerspac-
ing Umathbinclosespacing toksapp rightghost Umathlimitbelowbgap Umath-
openinnerspacing textdirection tokspre Umathnolimitsubfactor Uoverdelimiter
Umathpunctpunctspacing Umathclosepunctspacing mathdisplayskipmode saveim-
ageresource mathrulesfam Umathrelordspacing Umathsupbottommin Umathlimit-
belowkern copyfont pagedirection Umathstackdenomdown localrightbox Umath-
fractionrule Umathcharfam Umathcloseinnerspacing Umathopenrelspacing Uhex-
tensible Umathsupsubbottommax leftmarginkern Umathcloserelspacing linedi-
rection ifincsname Umathcharnum Umathinnerordspacing synctex luabytecode
formatname letterspacefont boxdirection pdfextension Umathrelinnerspacing
Umathsubtopmax randomseed suppressoutererror Umathsubsupshiftdown Umath-
opbinspacing Umathordbinspacing Umathrelopspacing Umathopenbinspacing sup-
pressprimitiveerror Umathoverdelimiterbgap localleftbox alignmark Uunderde-
limiter hyphenationmin Umathclosebinspacing Umathcodenum dvifeedback out-
putmode luafunction compoundhyphenmode Umathpunctopenspacing luacopyinputn-
odes Umathconnectoroverlapmin crampedscriptscriptstyle csstring Umathrad-
icaldegreeafter uniformdeviate luatexversion Umathfractionnumup rightmar-
ginkern Umathopclosespacing mathrulesmode explicithyphenpenalty Umathord-
closespacing Umathoverdelimitervgap etokspre expanded suppressmathparerror
Udelcode bodydir immediateassigned shapemode attribute Umathsubshiftdrop
Umathsubshiftdown mathegnogapstep Umathpunctrelspacing lastsavedimagere-
sourceindex lastsavedimageresourcepages mathoption Umathradicaldegreeraise
fixupboxesmode adjustspacing Umathsupshiftdrop Umathcharslot Umathclose-
closespacing luatexrevision insertht localinterlinepenalty useboxresource
explicitdiscretionary Umathchar Udelimiterover Ustack Umathcode mathde-
limitersmode saveboxresource Udelcodenum gtoksapp suppresslongerror ig-
noreligaturesinfont Umathaxis Umathfractionnumvgap gtokspre mathflatten-
mode Umathskewedfractionhgap Umathrelclosespacing Umathpunctbinspacing
Ustopdisplaymath quitvmode crampedscriptstyle letcharcode setrandomseed hy-
phenationbounds crampedtextstyle pagedir Umathbinrelspacing Umathopordspac-
ing dvivariable attributedef mathdirection Umathordordspacing pdffeedback
Umathskewedfractionvgap Umathopenordspacing mathitalicsmode mathdir output-
box Umathcloseordspacing Umathnolimitsupfactor pagewidth Ustopmath aligntab
prehyphenchar dviextension luafunctioncall Umathpunctopspacing breakafter-
dirmode Umathsubsupvgap luaescapestring prerelpenalty begincsname Umath-
radicalrule Umathunderbarrule postexhyphenchar Umathradicaldegreebefore
Umathstacknumup normaldeviate Umathbinopspacing xtoksapp boxdir Ustartdis-
playmath savecatcodetable Umathbinpunctspacing mathscriptboxmode tagcode
Uroot lastsavedboxresourceindex Unosuperscript Umathoperatorsize xtokspre
Uradical mathstyle Umathopopenspacing Umathordopenspacing automatichyphen-

® \
\ ! 204 The TgX related libraries

penalty Umathbininnerspacing Umathinnerrelspacing clearmarks Umathoverbarv-
gap fontid Umathopenopenspacing immediateassignment Umathunderdelimiterbgap
Umathoverbarrule setfontid crampeddisplaystyle ifabsdim Umathlimitabove-
bgap Umathcharclass Umathstackvgap Umathinneropspacing Umathrelbinspacing
Umathcloseopenspacing ifcondition pardir initcatcodetable nokerns pageleft-
offset luadef tracingfonts nospaces Umathrelopenspacing Umathlimitabovekern
Udelimiter savepos nohrule mathrulethicknessmode localbrokenpenalty Umath-
fractiondelsize exceptionpenalty automaticdiscretionary gleaders Umath-
underdelimitervgap Umathinnerbinspacing noligs hyphenpenaltymode draft-
mode automatichyphenmode prebinoppenalty Usubscript Umathcharnumdef rpcode
mathpenaltiesmode mathscriptcharmode Umathaccent pagetopoffset pageheight
catcodetable Umathspaceafterscript predisplaygapfactor primitive Umathin-
neropenspacing Uskewed pxdimen Umathordopspacing Umathopenopspacing ifab-
snum scantextokens mathnolimitsmode mathscriptsmode suppressifcsnameerror
suppressfontnotfounderror pardirection pdfvariable lateluafunction latelua
useimageresource pagerightoffset linedir efcode lpcode hjcode preexhyphen-
char posthyphenchar Umathinnerinnerspacing Umathinnerpunctspacing Umathin-
nerclosespacing Umathpunctinnerspacing Umathpunctclosespacing Umathpunc-
tordspacing Umathopenclosespacing Umathrelpunctspacing Umathrelrelspac-
ing Umathbinopenspacing Umathbinbinspacing Umathbinordspacing Umathopin-
nerspacing Umathoppunctspacing Umathoprelspacing Umathopopspacing Umathor-
drelspacing Umathsupshiftup Umathlimitbelowvgap Umathlimitabovevgap Umath-
fractiondenomdown Umathfractiondenomvgap Umathradicalvgap Umathradicalk-
ern Umathunderbarvgap Umathunderbarkern Umathoverbarkern Umathquad Umath-
chardef Uvextensible Unosubscript Usuperscript Ustartmath ifprimitive Uchar
luatexbanner lastypos lastxpos novrule etoksapp leftghost expandglyphsinfont
lastnamedcs protrudechars

Note that luatex does not contain directlua, as that is considered to be a core primitive, along
with all the TEX82 primitives, so it is part of the list that is returned from 'core".

Running tex.extraprimitives will give you the complete list of primitives -ini startup. It is
exactly equivalent to tex.extraprimitives("etex","luatex").

10.3.16.3 primitives
<table> t = tex.primitives()

This function returns a list of all primitives that LuaTgX knows about.

10.3.17 Core functionality interfaces

10.3.17.1 badness

<number> b = tex.badness(<number> t, <number> s)

The TgX related libraries 205 |

This helper function is useful during linebreak calculations. t and s are scaled values; the
function returns the badness for when total t is supposed to be made from amounts that sum to
s. The returned number is a reasonable approximation of 100(t/s)3;

10.3.17.2 tex.resetparagraph

This function resets the parameters that TgX normally resets when a new paragraph is seen.

10.3.17.3 linebreak

local <node> nodelist, <table> info =
tex.linebreak(<node> listhead, <table> parameters)

The understood parameters are as follows:

NAME TYPE EXPLANATION
pardir string
pretolerance number
tracingparagraphs number
tolerance number
looseness number
hyphenpenalty number
exhyphenpenalty number
pdfadjustspacing number
adjdemerits number
pdfprotrudechars number
linepenalty number
lastlinefit number

doublehyphendemerits number
finalhyphendemerits number

hangafter number

interlinepenalty number or table if a table, then it is an array like \interlinepenal-
ties

clubpenalty number or table if a table, then it is an array like \clubpenalties

widowpenalty number or table if a table, then it is an array like \widowpenalties

brokenpenalty number

emergencystretch number in scaled points

hangindent number in scaled points

hsize number in scaled points

leftskip glue spec node

rightskip glue spec node

parshape table

Note that there is no interface for \displaywidowpenalties, you have to pass the right choice
for widowpenalties yourself.

It is your own job to make sure that listhead is a proper paragraph list: this function does
not add any nodes to it. To be exact, if you want to replace the core line breaking, you may

7 o\
\0) 206 The TgX related libraries

\
-

have to do the following (when you are not actually working in the pre linebreak filter or
linebreak filter callbacks, or when the original list starting at listhead was generated in
horizontal mode):

» add an ‘indent box’ and perhaps a local par node at the start (only if you need them)

» replace any found final glue by an infinite penalty (or add such a penalty, if the last node is
not a glue)

» add a glue node for the \parfillskip after that penalty node

» make sure all the prev pointers are OK

The result is a node list, it still needs to be vpacked if you want to assign it to a \vbox. The
returned info table contains four values that are all numbers:

NAME EXPLANATION

prevdepth depth of the last line in the broken paragraph
prevgraf number of lines in the broken paragraph

looseness the actual looseness value in the broken paragraph
demerits the total demerits of the chosen solution

Note there are a few things you cannot interface using this function: You cannot influence font
expansion other than via pdfadjustspacing, because the settings for that take place elsewhere.
The same is true for hbadness and hfuzz etc. All these are in the hpack routine, and that fetches
its own variables via globals.

10.3.17.4 shipout

tex.shipout (<number> n)

Ships out box number n to the output file, and clears the box register.

10.3.17.5 getpagestate

This helper reports the current page state: empty, box thereor inserts only as integer value.

10.3.17.6 getlocallevel

This integer reports the current level of the local loop. It’s only useful for debugging and the
(relative state) numbers can change with the implementation.

10.3.18 Randomizers

For practical reasons LuaTgX has its own random number generator. The original Lua random
function is available as tex.lua math random. You can initialize with a new seed with init rand
(lua_math_randomseed is equivalent to this one.

There are three generators: normal rand (no argument is used), uniform rand (takes a number
that will get rounded before being used) and uniformdeviate which behaves like the primitive
and expects a scaled integer, so

The TgX related libraries 207 ‘

tex.print(tex.uniformdeviate(65536)/65536)

will give a random number between zero and one.

10.3.19 Functions related to synctex

The next helpers only make sense when you implement your own synctex logic. Keep in mind
that the library used in editors assumes a certain logic and is geared for plain and I£TgX, so after
a decade users expect a certain behaviour.

NAME EXPLANATION

set _synctex mode 0 is the default and used normal synctex logic, 1 uses the values set by
the next helpers while 2 also sets these for glyph nodes; 3 sets glyphs
and glue and 4 sets only glyphs

set synctex tag set the current tag (file) value (obeys save stack)
set synctex line set the current line value (obeys save stack)

set _synctex no files disable synctex file logging

get synctex mode returns the current mode (for values see above)
get synctex tag get the currently set value of tag (file)

get synctex line get the currently set value of line

force synctex tag overload the tag (file) value (0 resets)

force synctex line overload the line value (0 resets)

The last one is somewhat special. Due to the way files are registered in SyncTgX we need to
explicitly disable that feature if we provide our own alternative if we want to avoid that overhead.
Passing a value of 1 disables registering.

10.4 The texconfig table

This is a table that is created empty. A startup Lua script could fill this table with a number of
settings that are read out by the executable after loading and executing the startup file.

KEY TYPE DEFAULT EXPLANATION

kpse init boolean true false totally disables kpathsea initialisation, and
enables interpretation of the following numeric
key-value pairs. (only ever unset this if you im-
plement all file find callbacks!)

shell escape string 'f! Use 'y'or 't'or 'l' toenable \write 18 uncon-
ditionally, 'p' to enable the commands that are
listed in shell escape commands

shell escape commands string Comma-separated list of command names that may
be executed by \write 18 even if shell escape
is set to 'p'. Do not use spaces around commas,
separate any required command arguments by us-
ing a space, and use the ascii double quote (") for
any needed argument or path quoting

- ~

[/ \
\0) 208 The TgX related libraries

\
-

string vacancies number 75000 cf. web2c docs

pool free number 5000 cf. web2c docs
max_strings number 15000 cf. web2c docs
strings free number 100 cf. web2c docs
nest size number 50 cf. web2c docs
max_in_open number 15 cf. web2c docs
param size number 60 cf. web2c docs
save _size number 4000 cf. web2c docs
stack size number 300 cf. web2c docs
dvi buf size number 16384 cf. web2c docs
error_line number 79 cf. web2c docs
half _error_line number 50 cf. web2c docs
max_print line number 79 cf. web2c docs
hash_extra number 0 cf. web2c docs
pk dpi number 72 cf. web2c docs
trace file names boolean true false disables TEX’'s normal file open-close feed-

back (the assumption is that callbacks will take
care of that)

file line error boolean false do file:line style error messages

halt on error boolean false abort run on the first encountered error

formatname string if no format name was given on the command line,
this key will be tested first instead of simply quit-
ting

jobname string if no input file name was given on the command
line, this key will be tested first instead of simply
giving up

Note: the numeric values that match web2c parameters are only used if kpse init is explicitly
set to false. In all other cases, the normal values from texmf.cnf are used.

10.5 The texio library

This library takes care of the low-level I/O interface: writing to the log file and/or console.

10.5.1 write

texio.write(<string> target, <string> s, ...)
texio.write(<string> s, ...)

Without the target argument, writes all given strings to the same location(s) TEX writes mes-
sages to at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes
to the log and the terminal. The optional target can be one of three possibilities: term, log or
term and log.

Note: If several strings are given, and if the first of these strings is or might be one of the targets
above, the target must be specified explicitly to prevent Lua from interpreting the first string
as the target.

The TgX related libraries 209 ‘

10.5.2 write nl

texio.write nl(<string> target, <string> s, ...)
texio.write nl(<string> s, ...)

This function behaves like texio.write, but make sure that the given strings will appear at the
beginning of a new line. You can pass a single empty string if you only want to move to the next
line.

10.5.3 setescape

You can disable *" escaping of control characters by passing a value of zero.

10.5.4 closeinput

This function that should be used with care. It acts as \endinput but at the Lua end. You can
use it to (sort of) force a jump back to TgX. Normally a Lua will just collect prints and at the end
bump an input level and flush these prints. This function can help you stay at the current level
but you need to know what you're doing (or more precise: what TgX is doing with input).

10.6 The token library

10.6.1 The scanner

The token library provides means to intercept the input and deal with it at the Lua level. The
library provides a basic scanner infrastructure that can be used to write macros that accept
a wide range of arguments. This interface is on purpose kept general and as performance is
quite ok. One can build additional parsers without too much overhead. It’s up to macro package
writers to see how they can benefit from this as the main principle behind LuaTgX is to provide
a minimal set of tools and no solutions. The scanner functions are probably the most intriguing.

FUNCTION ARGUMENT RESULT

scan_keyword string returns true if the given keyword is gobbled; as with the
regular TEX keyword scanner this is case insensitive (and
ascii based)

scan_keywordcs string returns true if the given keyword is gobbled; this variant
is case sensitive and also suitable for utf8

scan_int returns an integer

scan_real returns a number from e.g. 1, 1.1, .1 with optional col-
lapsed signs

scan_float returns a number from e.g. 1, 1.1, .1, 1.1E10, , .1le-10
with optional collapsed signs

scan_dimen infinity, mu-units returns a number representing a dimension and or two
numbers being the filler and order

scan_glue mu-units returns a glue spec node

- ~

o, N
‘:‘,\' 210 The TgX related libraries

\
-

scan_toks definer, expand returns a table of tokens tokens

scan_code bitset returns a character if its category is in the given bitset
(representing catcodes)

scan_string returns a string given between {}, as \macro or as se-
quence of characters with catcode 11 or 12

scan_argument this one is simular to scanstring but also accepts a \cs
(which then get expanded)

scan_word returns a sequence of characters with catcode 11 or 12 as
string

scan_csname returns foo after scanning \foo

scan_list picks up a box specification and returns a [h|v]list node

The scanners can be considered stable apart from the one scanning for a token. The scan_code
function takes an optional number, the keyword function a normal Lua string. The infinity
boolean signals that we also permit fill as dimension and the mu-units flags the scanner that
we expect math units. When scanning tokens we can indicate that we are defining a macro, in
which case the result will also provide information about what arguments are expected and in
the result this is separated from the meaning by a separator token. The expand flag determines
if the list will be expanded.

The string scanner scans for something between curly braces and expands on the way, or when
it sees a control sequence it will return its meaning. Otherwise it will scan characters with
catcode letter or other. So, given the following definition:

\def\bar{bar}

\def\foo{foo-\bar}

we get:

\directlua{token.scan string()}{foo} foo full expansion
\directlua{token.scan string()}foo foo letters and others

\directlua{token.scan string()}\foo foo-bar meaning

The \ foo case only gives the meaning, but one can pass an already expanded definition (\edef’d).
In the case of the braced variant one can of course use the \detokenize and \unexpanded prim-
itives since there we do expand.

The scan_word scanner can be used to implement for instance a number scanner:

function token.scan number(base)
return tonumber(token.scan word(),hbase)
end

This scanner accepts any valid Lua number so it is a way to pick up floats in the input.

You can use the Lua interface as follows:

\directlua {
function mymacro(n)

7 o\
The TgX related libraries 211 ‘:‘\'

end

\def\mymacro#1{%
\directlua {
mymacro (\number\dimexpr#1l)

[*)
}%

\mymacro{12pt}
\mymacro{\dimen0}

You can also do this:

\directlua {
function mymacro()
local d = token.scan dimen()

end
}
\def\mymacro{%
\directlua {
mymacro ()
}%
}

\mymacro 12pt
\mymacro \dimen0®

It is quite clear from looking at the code what the first method needs as argument(s). For the
second method you need to look at the Lua code to see what gets picked up. Instead of passing
from TgX to Lua we let Lua fetch from the input stream.

In the first case the input is tokenized and then turned into a string, then it is passed to Lua
where it gets interpreted. In the second case only a function call gets interpreted but then the
input is picked up by explicitly calling the scanner functions. These return proper Lua variables
so no further conversion has to be done. This is more efficient but in practice (given what TgX
has to do) this effect should not be overestimated. For numbers and dimensions it saves a bit
but for passing strings conversion to and from tokens has to be done anyway (although we can
probably speed up the process in later versions if needed).

10.6.2 Picking up one token

The scanners look for a sequence. When you want to pick up one token from the input you use
get next. This creates a token with the (low level) properties as discussed next. This token
is just the next one. If you want to enforce expansion first you can use scan_token. Internally

N
‘:0,\' 212 The TgX related libraries

\
-

tokens are characterized by a number that packs a lot of information. In order to access the bits
of information a token is wrapped in a userdata object.

The expand function will trigger expansion of the next token in the input. This can be quite
unpredictable but when you call it you probably know enough about TgX not to be too worried
about that. It basically is a call to the internal expand related function.

10.6.3 Creating tokens

The creator function can be used as follows:

local t = token.create("relax")

This gives back a token object that has the properties of the \relax primitive. The possible
properties of tokens are:

NAME EXPLANATION

command a number representing the internal command number

cmdname the type of the command (for instance the catcode in case of a character or the
classifier that determines the internal treatment

csname the associated control sequence (if applicable)

id the unique id of the token

tok the full token number as stored in TgX

active a boolean indicating the active state of the token

expandable a boolean indicating if the token (macro) is expandable

protected a boolean indicating if the token (macro) is protected

mode a number either representing a character or another entity

index a number running from 0x0000 upto OxFFFF indicating a TgX register index

Alternatively you can use a getter get <fieldname> to access a property of a token.

The numbers that represent a catcode are the same as in TgX itself, so using this information
assumes that you know a bit about TEX’s internals. The other numbers and names are used
consistently but are not frozen. So, when you use them for comparing you can best query a
known primitive or character first to see the values.

You can ask for a list of commands:

local t = token.commands()

The id of a token class can be queried as follows:
local id = token.command id("math_shift")

If you really know what you’re doing you can create character tokens by not passing a string but
a number:

local letter x = token.create(string.byte("x"))
local other x = token.create(string.byte("x"),12)

The TgX related libraries 213 \‘

Passing weird numbers can give side effects so don’t expect too much help with that. As said,
you need to know what you’'re doing. The best way to explore the way these internals work is
to just look at how primitives or macros or \chardef’d commands are tokenized. Just create a
known one and inspect its fields. A variant that ignores the current catcode table is:

local whatever = token.new(123,12)

You can test if a control sequence is defined with is _defined, which accepts a string and returns
a boolean:

local okay = token.is defined("foo")

The largest character possible is returned by biggest char, just in case you need to know that
boundary condition.

10.6.4 Macros
The set macro function can get upto 4 arguments:

set macro("csname","content")
set macro("csname","content","global")
set macro("csname")

You can pass a catcodetable identifier as first argument:

set macro(catcodetable, "csname", "content")
set macro(catcodetable, "csname","content","global")
set macro(catcodetable, "csname")

The results are like:

\def\csname{content}
\gdef\csname{content}
\def\csname{}

The get macro function can be used to get the content of a macro while the get _meaning func-
tion gives the meaning including the argument specification (as usual in TEX separated by ->).

The set char function can be used to do a \chardef at the Lua end, where invalid assignments
are silently ignored:

set char("csname",number)
set char("csname",number, "global")

A special one is the following:

set lua("mycode",id)
set lua("mycode",id,"global","protected")

This creates a token that refers to a Lua function with an entry in the table that you can access
with lua.get functions table. It is the companion to \ luadef

LN
‘:‘,\' 214 The TgX related libraries

\
-

10.6.5 Pushing back

There is a (for now) experimental putter:

local tl1 = token.get next()
local t2 = token.get next()
local t3 = token.get next()
local t4 = token.get next()

-- watch out, we flush in sequence
token.put next { t1, t2 }

-- but this one gets pushed in front
token.put next (t3, t4)

When we scan wxyz! we get yzwx! back. The argument is either a table with tokens or a list of
tokens. The token.expand function will trigger expansion but what happens really depends on
what you’re doing where.

10.6.6 Nota bene

When scanning for the next token you need to keep in mind that we’re not scanning like TEX
does: expanding, changing modes and doing things as it goes. When we scan with Lua we just
pick up tokens. Say that we have:

\bar
but \bar is undefined. Normally TgX will then issue an error message. However, when we have:
\def\foo{\bar}

We get no error, unless we expand \foo while \bar is still undefined. What happens is that as
soon as TEX sees an undefined macro it will create a hash entry and when later it gets defined
that entry will be reused. So, \bar really exists but can be in an undefined state.

bar : bar
foo : foo
myfirstbar :

This was entered as:

bar : \directlua{tex.print(token.scan csname())}\bar
foo : \directlua{tex.print(token.scan csname())}\foo
myfirstbar : \directlua{tex.print(token.scan csname())}\myfirstbar

The reason that you see bar reported and not myfirstbar is that \bar was already used in a
previous paragraph.

If we now say:

\def\foo{}

L7 o\
The TgX related libraries 215 ‘

we get:

bar : bar
foo : foo
myfirstbar :

And if we say
\def\foo{\bar}
we get:

bar : bar
foo : foo
myfirstbar :

When scanning from Lua we are not in a mode that defines (undefined) macros at all. There we
just get the real primitive undefined macro token.

726858 536941998
734671 536941998
731602 536941998

This was generated with:

\directlua{local t = token.get next() tex.print(t.id.." "..t.tok)}\myfirstbar
\directlua{local t = token.get next() tex.print(t.id.." "..t.tok)}\mysecondbar
\directlua{local t = token.get next() tex.print(t.id.." "..t.tok)}\mythirdbar

So, we do get a unique token because after all we need some kind of Lua object that can be
used and garbage collected, but it is basically the same one, representing an undefined control
sequence.

10.7 The kpse library

This library provides two separate, but nearly identical interfaces to the kpathsea file search
functionality: there is a ‘normal’ procedural interface that shares its kpathsea instance with
LuaTgX itself, and an object oriented interface that is completely on its own.

10.7.1 set_program_name and new

The way the library looks up variables is driven by the texmf.cmf file where the currently set
program name acts as filter. You can check what file is used by with default texmfcnf.

Before the search library can be used at all, its database has to be initialized. There are three
possibilities, two of which belong to the procedural interface.

First, when LuaTgX is used to typeset documents, this initialization happens automatically and
the kpathsea executable and program names are set to Luatex (that is, unless explicitly prohib-
ited by the user’s startup script. See section 4.1 for more details).

LN\
‘:‘,\' 216 The TgX related libraries

\
-

Second, in TgXLua mode, the initialization has to be done explicitly via the kpse.set pro-
gram_name function, which sets the kpathsea executable (and optionally program) name.

kpse.set program name(<string> name)
kpse.set program name(<string> name, <string> progname)

The second argument controls the use of the ‘dotted’ values in the texmf.cnf configuration file,
and defaults to the first argument.
Third, if you prefer the object oriented interface, you have to call a different function. It has the

same arguments, but it returns a userdata variable.

local kpathsea = kpse.new(<string> name)
local kpathsea kpse.new(<string> name, <string> progname)

Apart from these two functions, the calling conventions of the interfaces are identical. Depend-
ing on the chosen interface, you either call kpse.find file or kpathsea:find file, with iden-
tical arguments and return values.

10.7.2 find_file
The most often used function in the library is find file:

<string> f = kpse.find file(<string> filename)

<string> f = kpse.find file(<string> filename, <string> ftype)

<string> f = kpse.find file(<string> filename, <boolean> mustexist)

<string> f kpse.find file(<string> filename, <string> ftype, <boolean> mustex-
ist)
<string> f

kpse.find file(<string> filename, <string> ftype, <number> dpi)
Arguments:

filename
the name of the file you want to find, with or without extension.

ftype
maps to the -format argument of kpsewhich. The supported ftype values are the same as
the ones supported by the standalone kpsewhich program: MetaPost support, PostScript
header, TeX system documentation, TeX system sources, Troff fonts, afm, base,
bib, bitmap font, bst, cid maps, clua, cmap files, cnf, cweb, dvips config,
enc files, fmt, font feature files, gf, graphic/figure, ist, lig files, 1ls-R,
lua, map, mem, mf, mfpool, mft, misc fonts, mlbib, mlbst, mp, mppool, ocp,
ofm, opentype fonts, opl, other binary files, other text files, otp, ovf,
ovp, pdftex config, pk, subfont definition files, tex, texmfscripts, texpool,
tfm, truetype fonts, typel fonts, typed42 fonts, vf, web, web2c files
The default type is tex. Note: this is different from kpsewhich, which tries to deduce the file
type itself from looking at the supplied extension.

mustexist
is similar to kpsewhich’s -must-exist, and the default is false. If you specify true (or a
non-zero integer), then the kpse library will search the disk as well as the 1s-R databases.

dpi

The TgX related libraries 217

This is used for the size argument of the formats pk, gf, and bitmap font.

10.7.3 lookup

A more powerful (but slower) generic method for finding files is also available. It returns a string
for each found file.

<string> f, ... = kpse.lookup(<string> filename, <table> options)

The options match commandline arguments from kpsewhich:

KEY TYPE EXPLANATION

debug number set debugging flags for this lookup

format string use specific file type (see list above)

dpi number use this resolution for this lookup; default 600
path string search in the given path

all boolean output all matches, not just the first

mustexist boolean search the disk as well as Is-R if necessary
mktexpk boolean disable/enable mktexpk generation for this lookup
mktextex boolean disable/enable mktextex generation for this lookup
mktexmf boolean disable/enable mktexmf generation for this lookup
mktextfm boolean disable/enable mktextfm generation for this lookup
subdir string or table only output matches whose directory part ends with the given string(s)

10.7.4 init_prog
Extra initialization for programs that need to generate bitmap fonts.

kpse.init prog(<string> prefix, <number> base dpi, <string> mfmode)
kpse.init prog(<string> prefix, <number> base dpi, <string> mfmode, <string>
fallback)

10.7.5 readable_file
Test if an (absolute) file name is a readable file.

<string> f = kpse.readable file(<string> name)

The return value is the actual absolute filename you should use, because the disk name is not
always the same as the requested name, due to aliases and system-specific handling under e.g.
msdos. Returns nil if the file does not exist or is not readable.

10.7.6 expand_path
Like kpsewhich’s -expand-path:

<string> r = kpse.expand path(<string> s)

o
‘:‘,\' 218 The TgX related libraries

\

hy -

10.7.7 expand_var
Like kpsewhich’s -expand-var:

<string> r = kpse.expand var(<string> s)

10.7.8 expand_braces
Like kpsewhich’s -expand-braces:

<string> r = kpse.expand braces(<string> s)

10.7.9 show_path
Like kpsewhich’s -show-path:

<string> r = kpse.show path(<string> ftype)

10.7.10 var_value
Like kpsewhich’s -var-value:

<string> r = kpse.var value(<string> s)

10.7.11 version

Returns the kpathsea version string.

<string> r = kpse.version()

The TgX related libraries 219

[P
N

7

‘:‘,\' 220 The TgX related libraries

\
-

11 The graphic libraries

11.1 The img library

The img library can be used as an alternative to \pdfximage and \pdfrefximage, and the asso-
ciated ‘satellite’ commands like \pdfximagebbox. Image objects can also be used within virtual
fonts via the image command listed in section 6.3.

11.1.1 new

<image> var
<image> var

img.new()
img.new(<table> image spec)

This function creates a userdata object of type ‘image’. The image spec argument is optional.
If it is given, it must be a table, and that table must contain a filename key. A number of other
keys can also be useful, these are explained below.

You can either say

a = img.new()

followed by

a.filename = "foo.png"

or you can put the file name (and some or all of the other keys) into a table directly, like so:
a = img.new({filename="'foo.pdf', page=1})

The generated <image> userdata object allows access to a set of user-specified values as well as
a set of values that are normally filled in and updated automatically by LuaTgX itself. Some of
those are derived from the actual image file, others are updated to reflect the pdf output status
of the object.

There is one required user-specified field: the file name (filename). It can optionally be aug-
mented by the requested image dimensions (width, depth, height), user-specified image attrib-
utes (attr), the requested pdf page identifier (page), the requested boundingbox (pagebox) for
pdf inclusion, the requested color space object (colorspace).

The function img.new does not access the actual image file, it just creates the <image> userdata
object and initializes some memory structures. The <image> object and its internal structures
are automatically garbage collected.

Once the image is scanned, all the values in the <image> except width, height and depth, be-
come frozen, and you cannot change them any more.

You can use pdf.setignoreunknownimages (1) (or at the TgX end the \pdfvariable ignoreun-
knownimages) to get around a quit when no known image type is found (based on name or pre-
amble). Beware: this will not catch invalid images and we cannot guarantee side effects. A zero

o .
The graphic libraries 221 ‘:‘,\'

dimension image is still included when requested. No special flags are set. A proper workflow
will not rely in such a catch but make sure that images are valid.

11.1.2 fields
<table> keys = img.fields()

This function returns a list of all the possible image spec keys, both user-supplied and automatic

ones.

FIELD NAME TYPE DESCRIPTION

attr string the image attributes for LuaTgX

bbox table table with 4 boundingbox dimensions 11x, 11y, urx and ury over-
ruling the pagebox entry

colordepth number the number of bits used by the color space

colorspace number the color space object number

depth number the image depth for LuaTgX

filename string the image file name

filepath string the full (expanded) file name of the image

height number the image height for LuaTgX

imagetype string one of pdf, png, jpg, jp2 or jbig2

index number the pdfimage name suffix

objnum number the pdfimage object number

page number the identifier for the requested image page

pagebox string the requested bounding box, one of none, media, crop, bleed,
trim, art

pages number the total number of available pages

rotation number the image rotation from included pdf file, in multiples of 90 deg.

stream string the raw stream data for an /Xobject /Form object

transform number the image transform, integer number 0..7

orientation number the (jpeg) image orientation, integer number 1..8 (0 for unset)

width number the image width for LuaTgX

xres number the horizontal natural image resolution (in dpi)

xsize number the natural image width

yres number the vertical natural image resolution (in dpi)

ysize number the natural image height

visiblefilename string when set, this name will find its way in the pdf file as PTEX specifi-
cation; when an empty string is assigned nothing is written to file;
otherwise the natural filename is taken

userpassword string the userpassword needed for opening a pdf file
ownerpassword string the ownerpassword needed for opening a pdf file
keepopen boolean keep the pdf file open

nobbox boolean don’t add a boundingbox specification for streams
nolength boolean don’t add length key nor compress for streams
nosize boolean don’t add size fields for streams

~

[» N
‘:‘,\' 222 The graphic libraries

\
-

A running (undefined) dimension in width, height, or depth is represented as nil in Lua, so if
you want to load an image at its ‘natural’ size, you do not have to specify any of those three fields.

The stream parameter allows to fabricate an /X0bject /Form object from a string giving the
stream contents, e.g., for a filled rectangle:

a.stream = "0 0 20 10 re f"

When writing the image, an /Xobject /Form object is created, like with embedded pdf file writ-
ing. The object is written out only once. The stream key requires that also the bbox table is
given. The stream key conflicts with the filename key. The transform key works as usual also
with stream.

The bbox key needs a table with four boundingbox values, e.g.:
a.bbox = { "30bp", 0, "225bp", "200bp" }

This replaces and overrules any given pagebox value; with given bbox the box dimensions coming
with an embedded pdf file are ignored. The xsize and ysize dimensions are set accordingly,
when the image is scaled. The bbox parameter is ignored for non-pdf images.

The transform allows to mirror and rotate the image in steps of 90 deg. The default value O
gives an unmirrored, unrotated image. Values 1 — 3 give counterclockwise rotation by 90, 180,
or 270 degrees, whereas with values 4 — 7 the image is first mirrored and then rotated coun-
terclockwise by 90, 180, or 270 degrees. The transform operation gives the same visual result
as if you would externally preprocess the image by a graphics tool and then use it by LuaTgX.
If a pdf file to be embedded already contains a /Rotate specification, the rotation result is the
combination of the /Rotate rotation followed by the transform operation.

11.1.3 scan

<image> var = img.scan(<image> var)
<image> var = img.scan(<table> image spec)

When you say img.scan(a) for a new image, the file is scanned, and variables such as xsize,
ysize, image type, number of pages, and the resolution are extracted. Each of the width,
height, depth fields are set up according to the image dimensions, if they were not given an
explicit value already. An image file will never be scanned more than once for a given image
variable. With all subsequent img.scan(a) calls only the dimensions are again set up (if they
have been changed by the user in the meantime).

For ease of use, you can do right-away a
<image> a = img.scan { filename = "foo.png" }

without a prior img.new.

Nothing is written yet at this point, so you can do a=img.scan, retrieve the available info like
image width and height, and then throw away a again by saying a=nil. In that case no image
object will be reserved in the PDF, and the used memory will be cleaned up automatically.

The graphic libraries 223 {\“

11.1.4 copy

<image> var
<image> var

img.copy(<image> var)
img.copy(<table> image spec)

If you say a = b, then both variables point to the same <image> object. if you want to write out
an image with different sizes, you cando b = img.copy(a).

Afterwards, a and b still reference the same actual image dictionary, but the dimensions for b
can now be changed from their initial values that were just copies from a.

11.1.5 write, immediatewrite, immediatewriteobject

<image> var
<image> var

img.write(<image> var)
img.write(<table> image spec)

By img.write(a) a pdfobject numberis allocated, and a rule node of subtype image is generated
and put into the output list. By this the image a is placed into the page stream, and the image
file is written out into an image stream object after the shipping of the current page is finished.

Again you can do a terse call like
img.write { filename = "foo.png" }

The <image> variable is returned in case you want it for later processing. You can also write an
object.

By img.immediatewrite(a) a pdf object number is allocated, and the image file for image a is
written out immediately into the pdf file as an image stream object (like with \immediate\pdfx-
image). The object number of the image stream dictionary is then available by the objnum key.
No pdf refximage whatsit node is generated. You will need an img.write(a) or img.node(a)
call to let the image appear on the page, or reference it by another trick; else you will have a
dangling image object in the pdf file.

<image> var
<image> var

img.immediatewrite(<image> var)
img.immediatewrite(<table> image spec)

Also here you can do a terse call like
a = img.immediatewrite { filename = "foo.png" }

The <image> variable is returned and you will most likely need it.

The next function is kind of special as it copies an object from a (pdf) image file. This features
is experimental and might disappear.

<integer> objnum
<integer> objnum
jnum)

img.immediatewriteobject(<image> var, <integer> objnum)
img.immediatewriteobject(<table> image spec, <integer> ob-

| Sy

‘:‘,\' 224 The graphic libraries

hy -

11.1.6 node

<node> n
<node> n

img.node(<image> var)
img.node(<table> image spec)

This function allocates a pdf object number and returns a whatsit node of subtype pdf refxim-
age, filled with the image parameters width, height, depth, and objnum. Also here you can do
a terse call like:

n = img.node ({ filename = "foo.png" })
This example outputs an image:

node.write(img.node{filename="foo0.png"})

11.1.7 types
<table> types = img.types()

This function returns a list with the supported image file type names, currently these are pdf,
png, jpg, jp2 (JPEG 2000), and jbig2.

11.1.8 boxes

<table> boxes = img.boxes()

This function returns a list with the supported pdf page box names, currently these are media,
crop, bleed, trim, and art, all in lowercase

The pdf file is kept open after its properties are determined. After inclusion, which happens
when the page that references the image is flushed, the file is closed. This means that when
you have thousands of images on one page, your operating system might decide to abort the
run. When you include more than one page from a pdf file you can set the keepopen flag when
you allocate an image object, or pass the keepopen directive when you refer to the image with
\useimageresource. This only makes sense when you embed many pages. An \immediate
applied to \saveimageresource will also force a close after inclusion.

\immediate\useimageresource{foo.pdf}%

\saveimageresource \lastsavedimageresourceindex % closed
\useimageresource{foo.pdf}%
\saveimageresource \lastsavedimageresourceindex % kept open

\useimageresource{foo.pdf}%
\saveimageresource keepopen\lastsavedimageresourceindex % kept open

\directlua{img.write(img.scan{ file
\directlua{img.write(img.scan{ file

"foo.pdf" })} % closed
"foo.pdf", keepopen = true })} % kept open

The graphic libraries 225 ‘:‘,\'

11.2 The mplib library

The MetaPost library interface registers itself in the table mplib. It is based on mplib version
2.00.

11.2.1 new
To create a new MetaPost instance, call
<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The argument hash can have a number of different fields,

as follows:

NAME TYPE DESCRIPTION DEFAULT

error _line number error line width 79

print line number line length in ps output 100

random_seed number the initial random seed variable

math mode string the number system to use: scaled
scaled, double or decimal

interaction string the interaction mode: batch, errorstop
nonstop, scroll or errorstop

job _name string --jobname mpout

find file function a function to find files only local files

The binary mode is no longer available in the LuaTgX version of mplib. It offers no real advantage
and brings a ton of extra libraries with platform specific properties that we can now avoid.
We might introduce a high resolution scaled variant at some point but only when it pays of
performance wise.

The find_file function should be of this form:
<string> found = finder (<string> name, <string> mode, <string> type)

with:

NAME THE REQUESTED FILE

mode the file mode: r orw
type the kind of file, one of: mp, tfm, map, pfb, enc

Return either the full path name of the found file, or nil if the file cannot be found.

Note that the new version of mplib no longer uses binary mem files, so the way to preload a set
of macros is simply to start off with an input command in the first execute call.

When you are processing a snippet of text starting with btex and ending with either etex or
verbatimtex, the MetaPost texscriptmode parameter controls how spaces and newlines get
honoured. The default value is 1. Possible values are:

0 no newlines

o -

‘:‘,\' 226 The graphic libraries

hy -

newlines in verbatimtex

newlines in verbatimtex and etex

no leading and trailing strip in verbatimtex

no leading and trailing strip in verbatimtex and btex

A W N R

That way the Lua handler (assigned to make text) can do what it likes. An etex has to be
followed by a space or ; or be at the end of a line and preceded by a space or at the beginning
of a line.

11.2.2 statistics
You can request statistics with:

<table> stats = mp:statistics()

This function returns the vital statistics for an mplib instance. There are four fields, giving the
maximum number of used items in each of four allocated object classes:

FIELD TYPE EXPLANATION

main memory number memory size

hash _size number hash size

param size number simultaneous macro parameters
max_in open number input file nesting levels

Note that in the new version of mplib, this is informational only. The objects are all allocated
dynamically, so there is no chance of running out of space unless the available system memory
is exhausted.

11.2.3 execute
You can ask the MetaPost interpreter to run a chunk of code by calling

<table> rettable = execute(mp, "metapost code")

for various bits of MetaPost language input. Be sure to check the rettable.status (see below)
because when a fatal MetaPost error occurs the mplib instance will become unusable thereafter.

Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey
proper syntax, like each of them is a small file. For instance, you cannot split a single statement
over multiple chunks.

In contrast with the normal stand alone mpost command, there is no implied ‘input’ at the start
of the first chunk.

11.2.4 finish

<table> rettable = finish(mp)

The graphic libraries 227 {\“

If for some reason you want to stop using an mplib instance while processing is not yet actually
done, you can call inish}. Eventually, used memory will be reed and open files will be
closed by the Lua garbage collector, but an explicit inish} is the only way to capture the
inal part of the output streams.

11.2.5 Result table

The return value of execute and finish is a table with a few possible keys (only status is always
guaranteed to be present).

FIELD TYPE EXPLANATION
log string output to the ‘log’ stream
term string output to the ‘term’ stream

error string output to the ‘error’ stream (only used for ‘out of memory’)
status number the return value: 0 = good, 1 = warning, 2 = errors, 3 = fatal error
fig table an array of generated figures (if any)

When status equals 3, you should stop using this mplib instance immediately, it is no longer
capable of processing input.

If it is present, each of the entries in the fig array is a userdata representing a figure object,
and each of those has a number of object methods you can call:

FIELD TYPE EXPLANATION

boundingbox function returns the bounding box, as an array of 4 values

postscript function returns a string that is the ps output of the fig. this function accepts
two optional integer arguments for specifying the values of prologues
(first argument) and procset (second argument)

svg function returns a string that is the svg output of the fig. This function accepts
an optional integer argument for specifying the value of prologues

objects function returns the actual array of graphic objects in this fig

copy_objects function returns a deep copy of the array of graphic objects in this fig

filename function the filename this fig’s PostScript output would have written to in
stand alone mode

width function the fontcharwd value

height function the fontcharht value

depth function the fontchardp value

italcorr function the fontcharit value

charcode function the (rounded) charcode value

Note: you can call fig:objects() only once for any one fig object!

When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates is
larger than the second set, the picture is empty.

Graphical objects come in various types that each has a different list of accessible values. The
types are: fill, outline, text, start clip, stop clip, start bounds, stop bounds, special.

There is a helper function (mplib.fields (obj)) to get thelist of accessible values for a particular
object, but you can just as easily use the tables given below.

o

‘:‘,\' 228 The graphic libraries

hy -

All graphical objects have a field type that gives the object type as a string value; it is not explicit
mentioned in the following tables. In the following, numbers are PostScript points represented
as a floating point number, unless stated otherwise. Field values that are of type table are
explained in the next section.

11.2.5.1 fill

FIELD TYPE EXPLANATION

path table the list of knots

htap table the list of knots for the reversed trajectory
pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)
miterlimit number miterlimit

prescript string the prescript text
postscript string the postscript text

The entries htap and pen are optional.

11.2.5.2 outline

FIELD TYPE EXPLANATION

path table the list of knots

pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)
miterlimit number miterlimit

linecap number line cap style (bare number)
dash table representation of a dash list

prescript string the prescript text
postscript string the postscript text

The entry dash is optional.

11.2.5.3 text

FIELD TYPE EXPLANATION

text string the text

font string font tfm name

dsize number font size

color table the object’s color
width number

height number

depth number

transform table a text transformation

The graphic libraries 229 ‘:‘,\'

prescript string the prescript text
postscript string the postscript text

11.2.5.4 special

FIELD TYPE EXPLANATION

prescript string special text

11.2.5.5 start_bounds, start_clip

FIELD TYPE EXPLANATION
path table the list of knots

11.2.5.6 stop_bounds, stop_clip

Here are no fields available.

11.2.6 Subsidiary table formats

11.2.6.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as mplib is concerned) are
represented by an array where each entry is a table that represents a knot.

FIELD TYPE EXPLANATION

left type string when present: endpoint, but usually absent
right type string like left type

x_coord number X coordinate of this knot

y coord number Y coordinate of this knot

left x number X coordinate of the precontrol point of this knot
left vy number Y coordinate of the precontrol point of this knot
right x number X coordinate of the postcontrol point of this knot
right vy number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra stringB
Avalued key type with value elliptical besides the array part containing the knot list.

11.2.6.2 Colors
A color is an integer array with 0, 1, 3 or 4 values:

FIELD TYPE EXPLANATION

0 marking only no values
1 greyscale one value in the range (0, 1), ‘black’ is 0

o

‘:‘,\' 230 The graphic libraries

hy -

3 rgb three values in the range (0, 1), ‘black’ is 0,0, 0
4 cmyk four values in the range (0, 1), ‘black’ is 0,0,0, 1

If the color model of the internal object was uninitialized, then it was initialized to the values
representing ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the
shipout.

11.2.6.3 Transforms
Each transform is a six-item array.

INDEX TYPE EXPLANATION

number represents x
number representsy
number represents xx
number represents yx
number represents xy
number represents yy

SO Uk, WN -

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript,
where the translation comes last.

11.2.6.4 Dashes

Each dash is two-item hash, using the same model as PostScript for the representation of the
dashlist. dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

FIELD TYPE EXPLANATION

dashes hash an array of on-off numbers
offset number the starting offset value

11.2.7 Pens and pen_info

There is helper function (pen_info(obj)) that returns a table containing a bunch of vital char-
acteristics of the used pen (all values are floats):

FIELD TYPE EXPLANATION
width number width of the pen
SX number x scale

rx number xy multiplier

ry number yx multiplier
sy number y scale

tx number x offset

ty number y offset

The graphic libraries 231 {\“

11.2.8 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the
argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

11.2.8.1 char_width

<number> w = char width(mp,<string> fontname, <number> char)

11.2.8.2 char_height

<number> w = char_height(mp,<string> fontname, <number> char)

11.2.8.3 char_depth

<number> w = char depth(mp,<string> fontname, <number> char)

11.2.8.4 get_[boolean|numeric|string]|path]

When a script call brings you from the MetaPost run (temporarily) back to Lua you can access
variables, but only if they are known (so for instance anonymous capsules like loop variables are
not accessible).

<boolean> w = get boolean(mp,<string> name)
<number> n = get numeric(mp,<string> name)
<string> s = get string (mp,<string> name)
<table> p = get path (mp,<string> name)

The path is returned a a table with subtables that have six numbers: the coordinates of the point,
pre- and postcontrol. A cycle fields indicates if a path is cyclic.

o .

‘:‘,\' 232 The graphic libraries

hy -

12 The fontloader

The fontloader library is sort of independent of the rest in the sense that it can load font into a
Lua table that then can be converted into a table suitable for TgX. The library is an adapted subset
of FontForge and as such gives a similar view on a font (which has advantages when you want
to debug). We will not discuss OpenType in detail here as the Microsoft website offers enough
information about it. The tables returned by the loader are not that far from the standard. We
have no plans to extend the loader (it may even become an external module at some time).

12.1 Getting quick information on a font

When you want to locate font by name you need some basic information that is hidden in the
font files. For that reason we provide an efficient helper that gets the basic information without
loading all of the font. Normally this helper is used to create a font (name) database.

<table> info =
fontloader.info(<string> filename)

This function returns either nil, or a table, or an array of small tables (in the case of a TrueType
collection). The returned table(s) will contain some fairly interesting information items from the
font(s) defined by the file:

KEY TYPE EXPLANATION

fontname string the PostScript name of the font

fullname string the formal name of the font

familyname string the family name this font belongs to

weight string a string indicating the color value of the font

version string the internal font version

italicangle float the slant angle

units per em number 1000 for PostScript-based fonts, usually 2048 for TrueType
pfminfo table (see section 12.6.6)

Getting information through this function is (sometimes much) more efficient than loading the
font properly, and is therefore handy when you want to create a dictionary of available fonts
based on a directory contents.

12.2 Loading an OPENTYPE or TRUETYPE file

If you want to use an OpenType font, you have to get the metric information from somewhere.
Using the fontloader library, the simplest way to get that information is thus:

function load font (filename)
local metrics = nil
local font = fontloader.open(filename)
if font then

The fontloader 233 ‘

metrics = fontloader.to table(font)
fontloader.close(font)
end
return metrics
end

myfont = load font('/opt/tex/texmf/fonts/data/arial.ttf')

The main function call is

<userdata> f, <table> w
<userdata> f, <table> w

fontloader.open(<string> filename)
fontloader.open(<string> filename, <string> fontname)

The first return value is a userdata representation of the font. The second return value is a table
containing any warnings and errors reported by fontloader while opening the font. In normal
typesetting, you would probably ignore the second argument, but it can be useful for debugging
purposes.

For TrueType collections (when filename ends in ’ttc’) and dfont collections, you have to use a
second string argument to specify which font you want from the collection. Use the fontname
strings that are returned by fontloader.info for that.

To turn the font into a table, fontloader.to table is used on the font returned by font-
loader.open.

<table> f = fontloader.to table(<userdata> font)

This table cannot be used directly by LuaTgX and should be turned into another one as described
in chapter 6. Do not forget to store the fontname value in the psname field of the metrics table to
be returned to LuaTgX, otherwise the font inclusion backend will not be able to find the correct
font in the collection.

See section 12.5 for details on the userdata object returned by fontloader.open and the layout
of the metrics table returned by fontloader.to table.

The font file is parsed and partially interpreted by the font loading routines from FontForge. The
file format can be OpenType, TrueType, TrueType Collection, cff, or Typel.

There are a few advantages to this approach compared to reading the actual font file ourselves:

» The font is automatically re-encoded, so that the metrics table for TrueType and OpenType
fonts is using Unicode for the character indices.

» Many features are pre-processed into a format that is easier to handle than just the bare
tables would be.

» PostScript-based OpenType fonts do not store the character height and depth in the font file,
so the character boundingbox has to be calculated in some way.

A loaded font is discarded with:

fontloader.close(<userdata> font)

@ -.

{\0) 234 The fontloader

hy -

12.3 Applying a ‘feature file’

You can apply a ‘feature file’ to a loaded font:

<table> errors = fontloader.apply featurefile(<userdata> font, <string> file-
name)

A ‘feature file’ is a textual representation of the features in an OpenType font. See
http://www.adobe.com/devnet/opentype/afdko/topic_ feature file syntax.html
and

http://fontforge.sourceforge.net/featurefile.html

for a more detailed description of feature files.

If the function fails, the return value is a table containing any errors reported by fontloader while
applying the feature file. On success, nil is returned.

12.4 Applying an ‘AFM file’

You can apply an ‘afm file’ to a loaded font:

<table> errors = fontloader.apply afmfile(<userdata> font, <string> filename)
An afm file is a textual representation of (some of) the meta information in a Typel font. See
ftp://ftp.math.utah.edu/u/ma/hohn/linux/postscript/5004.AFM Spec.pdf

for more information about afm files.

Note: Ifyou fontloader.opena Typel file named font.pfb, the library will automatically search
for and apply font.afm if it exists in the same directory as the file font.pfb. In that case, there
is no need for an explicit call to apply _afmfile().

If the function fails, the return value is a table containing any errors reported by fontloader while
applying the AFM file. On success, nil is returned.

12.5 Fontloader font tables

As mentioned earlier, the return value of fontloader.open is a userdata object. One way to
have access to the actual metrics is to call fontloader.to table on this object, returning the
table structure that is explained in the following sections. In teh following sections we will not
explain each field in detail. Most fields are self descriptive and for the more technical aspects
you need to consult the relevant font references.

It turns out that the result from fontloader.to table sometimes needs very large amounts of
memory (depending on the font’s complexity and size) so it is possible to access the userdata

object directly.
The fontloader 235 {\‘,\'

» All top-level keys that would be returned by to table() can also be accessed directly.

» The top-level key ‘glyphs’ returns a virtual array that allows indices from f.glyphmin to
(f.glyphmax).

» The items in that virtual array (the actual glyphs) are themselves also userdata objects, and
each has accessors for all of the keys explained in the section ‘Glyph items’ below.

» The top-level key ‘subfonts’ returns an actual array of userdata objects, one for each of the
subfonts (or nil, if there are no subfonts).

A short example may be helpful. This code generates a printout of all the glyph names in the
font PunkNova.kern.otf:

local f = fontloader.open('PunkNova.kern.otf"')
print (f.fontname)
local i =0
if f.glyphcnt > 0 then
for i=f.glyphmin, f.glyphmax do
local g = f.glyphs[i]
if g then
print(g.name)
end
i=1i+1
end
end
fontloader.close(f)

In this case, the LuaTgX memory requirement stays below 100MB on the test computer, while
the internal structure generated by to table() needs more than 2GB of memory (the font itself
is 6.9MB in disk size).

Only the top-level font, the subfont table entries, and the glyphs are virtual objects, everything
else still produces normal Lua values and tables.

If you want to know the valid fields in a font or glyph structure, call the fields function on an
object of a particular type (either glyph or font):

<table> fields
<table> fields

fontloader.fields(<userdata> font)
fontloader.fields(<userdata> font glyph)

For instance:

local fields = fontloader.fields(f)
local fields = fontloader.fields(f.glyphs[0])

12.6 Table types

12.6.1 The main table

The top-level keys in the returned table are (the explanations in this part of the documentation
are not yet finished):

o -

{\0) 236 The fontloader

hy -

KEY

table version
fontname
fullname
familyname
weight
copyright
filename
version
italicangle
units per_em

ascent

descent

upos

uwidth

uniqueid

glyphs

glyphcnt
glyphmax
glyphmin

notdef loc
hasvmetrics
onlybitmaps
serifcheck
isserif

issans
encodingchanged
strokedfont

use typo metrics
weight width_slope only
head optimized for cleartype
uni interp

origname
map
private
xuid
pfminfo
names
cidinfo
subfonts
commments
fontlog
cvt _names
anchor_classes

TYPE

number
string
string
string
string
string
string
string
float
number

number
number
float
float
number
array
number
number
number
number
number
number
number
number
number
number
number
number
number
number
enum

string
table
table
string
table
table
table
array
string
string
string
table

indicates the metrics version (currently 0.3)
PostScript font name

official (human-oriented) font name

family name

weight indicator

copyright information

the file name

font version

slant angle

1000 for PostScript-based fonts, usually 2048 for
TrueType

height of ascender in units per_em

depth of descender in units per_em

number of included glyphs

maximum used index the glyphs array

minimum used index the glyphs array

location of the . notdef glyph or -1 when not present

unset, none, adobe, greek, japanese, trad chi-
nese, simp_chinese, korean, ams
the file name, as supplied by the user

/‘ N N
The fontloader 237 (‘)

ttf tables table

ttf tab saved table
kerns table
vkerns table
texdata table
lookups table
gpos table
gsub table
mm table
chosenname string
macstyle number
fondname string
fontstyle id number
fontstyle name table
strokewidth float

mark classes table
creationtime number
modificationtime number
0s2 _version number
math table
validation state table
horiz base table
vert base table
extrema bound number
truetype boolean signals a TrueType font

12.6.2 glyphs

The glyphs is an array containing the per-character information (quite a few of these are only
present if non-zero).

KEY TYPE EXPLANATION

name string the glyph name

unicode number unicode code point, or -1

boundingbox array array of four numbers, see note below

width number only for horizontal fonts

vwidth number only for vertical fonts

tsidebearing number only for vertical ttf/otf fonts, and only if non-zero

lsidebearing number only if non-zero and not equal to boundingbox[1]

class string one of "none", "base", "ligature", "mark", "component" (if not
present, the glyph class is ‘automatic’)

kerns array only for horizontal fonts, if set

vkerns array only for vertical fonts, if set

dependents array linear array of glyph name strings, only if nonempty

lookups table only if nonempty

ligatures table only if nonempty

o -

{\0) 238 The fontloader

hy -

anchors table only if set

comment string only if set

tex height number only if set

tex _depth number only if set

italic_correction number only if set

top accent number only if set

is extended shape number only if this character is part of a math extension list
altuni table alternate Unicode items

vert variants table

horiz variants table

mathkern table

On boundingbox: The boundingbox information for TrueType fonts and TrueType-based otf fonts
is read directly from the font file. PostScript-based fonts do not have this information, so the
boundingbox of traditional PostScript fonts is generated by interpreting the actual bezier curves
to find the exact boundingbox. This can be a slow process, so the boundingboxes of Post-
Script-based otf fonts (and raw cff fonts) are calculated using an approximation of the glyph
shape based on the actual glyph points only, instead of taking the whole curve into account.
This means that glyphs that have missing points at extrema will have a too-tight boundingbox,
but the processing is so much faster that in our opinion the tradeoff is worth it.

The kerns and vkerns are linear arrays of small hashes:

KEY TYPE EXPLANATION

char string
off number
lookup string

The lookups is a hash, based on lookup subtable names, with the value of each key inside that
a linear array of small hashes:

KEY TYPE EXPLANATION

type enum position, pair, substitution, alternate, multiple, ligature, lcaret,
kerning, vkerning, anchors, contextpos, contextsub, chainpos, chain-
sub, reversesub, max, kernback, vkernback

specification table extra data

For the first seven values of type, there can be additional sub-information, stored in the subB
Atable specification:

VALUE TYPE EXPLANATION

position table a table of the offset specs type

pair table one string: paired, and an array of one or two offset specs tables:
offsets

substitution table one string: variant

alternate table one string: components

multiple table one string: components

The fontloader 239 ‘

ligature table two strings: components, char
lcaret array linear array of numbers

Tables for offset specs contain up to four number-valued fields: x (a horizontal offset), y (a
vertical offset), h (an advance width correction) and v (an advance height correction).

The ligatures is a linear array of small hashes:

KEY TYPE EXPLANATION

lig table uses the same substructure as a single item in the lookups table ex-
plained above

char string

components array linear array of named components

cent number

The anchor table is indexed by a string signifying the anchor type, which is one of:

KEY TYPE EXPLANATION

mark table placement mark

basechar table mark for attaching combining items to a base char
baselig table mark for attaching combining items to a ligature
basemark table generic mark for attaching combining items to connect to
centry table cursive entry point

cexit table cursive exit point

The content of these is a short array of defined anchors, with the entry keys being the anchor
names. For all except baselig, the value is a single table with this definition:

KEY TYPE EXPLANATION
X number x location
y number v location

ttf pt index number truetype pointindex, only if given

For baselig, the value is a small array of such anchor sets sets, one for each constituent item
of the ligature.

For clarification, an anchor table could for example look like this :

[*anchor'] = {
['basemark'] = {

['Anchor-7'] = { ['x']=170, ['y']=1080 }

b

['mark'] ={
['Anchor-1'] = { ['x']=160, ['y']=810 },
['Anchor-4'] = { ['x']=160, ['y']=800 }

b

['baselig'] = {
[1] = { ['Anchor-2'] = { ['x']=160, ['y']=650 } },
[2] = { ['Anchor-2'] = { ['x']=460, ['y']=640 } }

o

{\0) 240 The fontloader

hy -

}

Note: The baselig table can be sparse!

12.6.3 map

The top-level map is a list of encoding mappings. Each of those is a table itself.

KEY TYPE EXPLANATION

enccount number
encmax number
backmax number

remap table

map array non-linear array of mappings

backmap array non-linear array of backward mappings
enc table

The remap table is very small:

KEY TYPE EXPLANATION

firstenc number
lastenc number
infont number

The enc table is a bit more verbose:

KEY TYPE EXPLANATION

enc_name string

char _cnt number

char_max number

unicode array of Unicode position numbers
psnhames array of PostScript glyph names
builtin number

hidden number

only lbyte number

has_1byte number

has 2byte number

is unicodebmp number only if non-zero

is unicodefull number only if non-zero

is custom number only if non-zero

is original number only if non-zero

is compact number only if non-zero

is japanese number only if non-zero

is korean number only if non-zero

is tradchinese number only if non-zero [name?]
is simplechinese number only if non-zero

The fontloader 241 ‘:O\

low page number
high page number
iconv_name string
iso 2022 escape string

12.6.4 private

This is the font’s private PostScript dictionary, if any. Keys and values are both strings.

12.6.5 cidinfo

KEY TYPE EXPLANATION
registry string

ordering string

supplement number

version number

12.6.6 pfminfo

The pfminfo table contains most of the OS/2 information:

KEY TYPE EXPLANATION
pfmset number
winascent add number
windescent add number

hheadascent add number
hheaddescent add number
typoascent add number
typodescent add number

subsuper_set number
panose_ set number
hheadset number
vheadset number
pfmfamily number
weight number
width number
avgwidth number
firstchar number
lastchar number
fstype number
linegap number
vlinegap number
hhead ascent number
hhead descent number

0s2_typoascent number

®-.

{\0) 242 The fontloader

hy -

0s2 typodescent
0s2_typolinegap
0s2 winascent
0s2 windescent
0s2 subxsize
0s2 subysize
0s2_subxoff

0s2 subyoff

0S2 supxsize
0s2 _supysize
0s2_ supxoff

0s2 supyoff

0s2 strikeysize
0s2 strikeypos
os2 family class
0s2 xheight

0s2 capheight
0s2 defaultchar
0s2_breakchar
0s2 _vendor
codepages
unicoderages
panose

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
string
table
table
table

A two-number array of encoded code pages
A four-number array of encoded unicode ranges

The panose subtable has exactly 10 string keys:

KEY
familytype

serifstyle
weight
proportion
contrast
strokevariation
armstyle
letterform
midline

xheight

TYPE

EXPLANATION

string Values as in the OpenType font specification: Any, No Fit, Text and
Display, Script, Decorative, Pictorial

string See the OpenType font specification for values
string idem

string idem

string idem

string idem

string idem

string idem

string idem

string idem

12.6.7 names

Each item has two top-level keys:

KEY TYPE EXPLANATION

lang string language for this entry

names table

The fontloader 243 (‘)

The names keys are the actual TrueType name strings. The possible keys are: copyright, fam-
ily, subfamily, uniqueid, fullname, version, postscriptname, trademark, manufacturer,
designer, descriptor, venderurl, designerurl, license, licenseurl, idontknow, preffami-
lyname, prefmodifiers, compatfull, sampletext, cidfindfontname, wwsfamily and wwssub-
family.

12.6.8 anchor_classes

The anchor classes classes:

KEY TYPE EXPLANATION

name string a descriptive id of this anchor class
lookup string
type string one of mark, mkmk, curs, mklg

12.6.9 gpos

The gpos table has one array entry for each lookup. (The gpos_ prefix is somewhat redundant.)

KEY TYPE EXPLANATION

type string one of gpos_single, gpos pair, gpos cursive, gpos _mark2base,
gpos _mark2ligature, gpos mark2mark, gpos context,
gpos_contextchain

flags table

name string

features array

subtables array

The flags table has a true value for each of the lookup flags that is actually set:

KEY TYPE EXPLANATION
ra21 boolean
ignorebaseglyphs boolean
ignoreligatures boolean
ignorecombiningmarks boolean

mark class string

The features subtable items of gpos have:

KEY TYPE EXPLANATION
tag string
scripts table

The scripts table within features has:

/0) 244 The fontloader

KEY TYPE EXPLANATION

script string
langs array of strings

The subtables table has:

KEY TYPE EXPLANATION
name string

suffix string (only if used)
anchor_classes number (only if used)
vertical kerning number (only if used)
kernclass table (only if used)

The kernclass with subtables table has:

KEY TYPE EXPLANATION

firsts array of strings

seconds array of strings

lookup string or array associated lookup(s)
offsets array of numbers

Note: the kernclass (as far as we can see) always has one entry so it could be one level deep
instead. Also the seconds start at [2] which is close to the fontforge internals so we keep that
too.

12.6.10 gsub
This has identical layout to the gpos table, except for the type:

KEY TYPE EXPLANATION

type string one of gsub single, gsub multiple, gsub alternate, gsub ligature,
gsub_context, gsub _contextchain, gsub_reversecontextchain

12.6.11 ttf_tables and ttf_tab_saved

KEY TYPE EXPLANATION
t

ag string
len number
maxlen number
data number

12.6.12 mm
KEY TYPE EXPLANATION
axes table array of axis names

The fontloader 245 ‘

instance count number

positions table array of instance positions (#axes * instances)
defweights table array of default weights for instances

cdv string

ndv string

axismaps table

The axismaps:

KEY TYPE EXPLANATION

blends table an array of blend points
designs table an array of design values
min number

def number

max number

12.6.13 mark_classes

The keys in this table are mark class names, and the values are a space-separated string of glyph
names in this class.

12.6.14 math

The math table has the variables that are also discussed in the chapter aboout math: Script-
PercentScaleDown, ScriptScriptPercentScaleDown, DelimitedSubFormulaMinHeight, Dis-
playOperatorMinHeight, MathLeading, AxisHeight, AccentBaseHeight, FlattenedAccent-
BaseHeight, SubscriptShiftDown, SubscriptTopMax, SubscriptBaselineDropMin, Super-
scriptShiftUp, SuperscriptShiftUpCramped, SuperscriptBottomMin, SuperscriptBase-
lineDropMax, SubSuperscriptGapMin, SuperscriptBottomMaxWithSubscript, SpaceAfter-
Script, UpperLimitGapMin, UpperLimitBaselineRiseMin, LowerLimitGapMin, LowerLimit-
BaselineDropMin, StackTopShiftUp, StackTopDisplayStyleShiftUp, StackBottomShiftDown,
StackBottomDisplayStyleShiftDown, StackGapMin, StackDisplayStyleGapMin, Stretch-
StackTopShiftUp, StretchStackBottomShiftDown, StretchStackGapAboveMin, Stretch-
StackGapBelowMin, FractionNumeratorShiftUp, FractionNumeratorDisplayStyleShiftUp,
FractionDenominatorShiftDown, FractionDenominatorDisplayStyleShiftDown, Fraction-
NumeratorGapMin, FractionNumeratorDisplayStyleGapMin FractionRuleThickness, Frac-
tionDenominatorGapMin, FractionDenominatorDisplayStyleGapMin, SkewedFractionHor-
izontalGap, SkewedFractionVerticalGap, OverbarVerticalGap, OverbarRuleThickness,
OverbarExtraAscender, UnderbarVerticalGap, UnderbarRuleThickness, UnderbarExtraDe-
scender, RadicalVerticalGap, RadicalDisplayStyleVerticalGap, RadicalRuleThickness,
RadicalExtraAscender, RadicalKernBeforeDegree, RadicalKernAfterDegree, RadicalDe-
greeBottomRaisePercent, MinConnectorOverlap, FractionDelimiterSize and FractionDe-
limiterDisplayStyleSize.

-

{\0) 246 The fontloader

hy -

12.6.15 validation_ state

This is just a bonus table with keys: bad ps fontname, bad glyph table, bad cff ta-
ble, bad metrics table, bad cmap table, bad bitmaps table, bad gx table, bad ot table,
bad 0s2 version and bad sfnt_header.

12.6.16 horiz_base and vert_base

KEY TYPE EXPLANATION

tags table an array of script list tags
scripts table

The scripts subtable:

KEY TYPE EXPLANATION
baseline table

default baseline number

lang table

The lang subtable:

KEY TYPE EXPLANATION
tag string a script tag
ascent number

descent number
features table

The features points to an array of tables with the same layout except that in those nested tables,
the tag represents a language.

12.6.17 altuni
An array of alternate Unicode values. Inside that array are hashes with:

KEY TYPE EXPLANATION

unicode number this glyph is also used for this unicode
variant number the alternative is driven by this unicode selector

12.6.18 vert_variants and horiz_variants

KEY TYPE EXPLANATION
variants string
italic_correction number

parts table

The parts table is an array of smaller tables:

The fontloader 247 ‘:

P ~
\
1
/
N s

KEY TYPE EXPLANATION

component string

extender number
start number
end number
advance number

12.6.19 mathkern

KEY TYPE EXPLANATION
top right table
bottom right table
top left table

bottom left table

Each of the subtables is an array of small hashes with two keys:

KEY TYPE EXPLANATION

height number
kern number

12.6.20 kerns

Substructure is identical to the per-glyph subtable.

12.6.21 vkerns

Substructure is identical to the per-glyph subtable.

12.6.22 texdata

KEY TYPE EXPLANATION

type string unset, text, math, mathext
params array 22 fontnumeric parameters

12.6.23 lookups

Top-level lookups is quite different from the ones at character level. The keys in this hash are
strings, the values the actual lookups, represented as dictionary tables.

KEY TYPE EXPLANATION
type string
format enum one of glyphs, class, coverage, reversecoverage

| 248 The fontloader

tag string
current class array
before class array
after class array
rules array an array of rule items

Rule items have one common item and one specialized item:

KEY TYPE EXPLANATION

lookups array a linear array of lookup names

glyphs array only if the parent’s format is glyphs
class array only if the parent’s format is class
coverage array only if the parent’s format is coverage

reversecoverage array only if the parent’s format is reversecoverage

A glyph table is:

KEY TYPE EXPLANATION

names string
back string
fore string

A class table is:

KEY TYPE EXPLANATION

current array of numbers
before array of numbers
after array of numbers

for coverage:

KEY TYPE EXPLANATION

current array of strings
before array of strings
after array of strings

and for reverse coverage:

KEY TYPE EXPLANATION
current array of strings
before array of strings
after array of strings

replacements string

The fontloader 249 ‘

@

{\0) 250 The fontloader

hy -

13 The backend libraries

13.1 The pdf library

This library contains variables and functions that are related to the pdf backend. You can find
more details about the expected values to setters in section 3.2.

13.1.1 mapfile, mapline

pdf.mapfile(<string> map file)
pdf.mapline(<string> map line)

These two functions can be used to replace primitives \pdfmapfile and \pdfmapline inherited
from pdfIgX. They expect a string as only parameter and have no return value. The first char-
acter in a map line can be -, + or = which means as much as remove, add or replace this line.
They are not state setters but act immediately.

13.1.2 [set|get][catalog|info|names|trailer]

These functions complement the corresponding pdf backend token lists dealing with metadata.
The value types are strings and they are written to the pdf file directly after the token registers
set at the TgX end are written.

13.1.3 [set|get][pageattributes|pageresources|pagesattributes]

These functions complement the corresponding pdf backend token lists dealing with page re-
sources. The variables have no interaction with the corresponding pdf backend token register.
They are written to the pdf file directly after the token registers set at the TgX end are written.

13.1.4 [set|get][xformattributes|xformresources]

These functions complement the corresponding pdf backend token lists dealing with reuseable
boxes and images. The variables have no interaction with the corresponding pdf backend token
register. They are written to the pdf file directly after the token registers set at the TgX end are
written.

13.1.5 [set|get][major|minor]version

You can set both the major and minor version of the output. The major version is normally 1 but
when set to 2 some data will not be written to the file in order to comply with the standard. What
minor version you set depends on what pdf features you use. This is out of control of LuaTgX.

The backend libraries 251 *:

13.1.6 getcreationdate

This function returns a string with the date in the format that ends up in the pdf file, in this case
it’'s: D:20190302003850+01'00".

13.1.7 [set|get]linclusionerrorlevel and
[set|get]ignoreunknownimages

These variable control how error in included image are treated. They are modeled after the
pdfTEX equivalents.

13.1.8 [set|get]suppressoptionalinfo, [set|get]trailerid and
[set|get]omitcidset

The optional info bitset (a number) determines what kind of info gets flushed. By default we
flush all. See section 3.2.2 for more details.

You can set your own trailer id. This has to be string containing valid pdf array content with
checksums.

The cidset and charset flags (numbers) disables inclusion of a so called CIDSet and CharSet
entries, which can be handy when aiming at some of the many pdf substandards.

13.1.9 [set|get][obj|]compresslevel and [set]|get]recompress

These functions set the level stream compression. When object compression is enabled multiple
objects will be packed in a compressed stream which saves space. The minimum values are O,
the maxima are 9.

When recompression is to 1 compressed objects will be decompressed and when compresslevel
is larger than zero they will then be recompressed. This is mostly a debugging feature and
should not be relied upon.

13.1.10 [set|get]gentounicode

This flag enables tounicode generation (like in pdfTEX). Normally the values are provided by the
font loader.

13.1.11 [set|get]decimaldigits

These two functions set the accuracy of floats written to the pdffile. You can set any value but
the backend will not go below 3 and above 6.

13.1.12 [set|get]pkresolution

These setter takes two arguments: the resolution and an optional zero or one that indicates if
this is a fixed one. The getter returns these two values.

N N

‘:‘,\' 252 The backend libraries

hy -

13.1.13 getlast[obj|link|annot] and getretval

These status variables are similar to the ones traditionally used in the backend interface at the
TEX end.

13.1.14 getmaxobjnum and getobjtype, getfontname, getfontobjnunm,
getfontsize, getxformname

These introspective helpers are mostly used when you construct pdf objects yourself and need
for instance information about a (to be) embedded font.

13.1.15 [set|get]origin

This one is used to set the horizonal and/or vertical offset, a traditional backend property.

pdf.setorigin() -- sets both to Opt
pdf.setorigin(tex.sp("1in")) -- sets both to 1lin
pdf.setorigin(tex.sp("1in"),tex.sp("1in"))

The counterpart of this function returns two values.

13.1.16 [set|get]imageresolution

These two functions relate to the imageresolution that is used when the image itself doesn’t
provide a non-zero x or y resolution.

13.1.17 [set|get][link|dest|thread|xform]margin

These functions can be used to set and retrieve the margins that are added to the natural bound-
ing boxes of the respective objects.

13.1.18 get[pos|hpos|vpos]

These functions get current location on the output page, measured from its lower left corner.
The values return scaled points as units.

local h, v = pdf.getpos()

13.1.19 [has|get]lmatrix

The current matrix transformation is available via the getmatrix command, which returns 6
values: sx, rx, ry, sy, tx, and ty. The hasmatrix function returns true when a matrix is applied.

if pdf.hasmatrix() then
local sx, rx, ry, sy, tx, ty = pdf.getmatrix()
-- do something useful or not

The backend libraries 253 {\‘)

end

13.1.20 print

You can print a string to the pdf document from within a \latelua call. This function is not to
be used inside \directlua unless you know exactly what you are doing.

pdf.print(<string> s)
pdf.print(<string> type, <string> s)

The optional parameter can be used to mimic the behavior of pdf literals: the type is direct or
page.

13.1.21 immediateobj

This function creates a pdf object and immediately writes it to the pdf file. It is modelled after
pdfTEX’'s \immediate \pdfobj primitives. All function variants return the object number of the
newly generated object.

<number> n =
pdf.immediateobj(<string> objtext)
<number> n =
pdf.immediateobj ("file", <string> filename)
<number> n =
pdf.immediateobj ("stream", <string> streamtext, <string> attrtext)
<number> n =
pdf.immediateobj ("streamfile", <string> filename, <string> attrtext)

The first version puts the objtext raw into an object. Only the object wrapper is automatically
generated, but any internal structure (like << >> dictionary markers) needs to be provided by
the user. The second version with keyword file as first argument puts the contents of the
file with name filename raw into the object. The third version with keyword stream creates a
stream object and puts the streamtext raw into the stream. The stream length is automatically
calculated. The optional attrtext goes into the dictionary of that object. The fourth version with
keyword streamfile does the same as the third one, it just reads the stream data raw from a file.

An optional first argument can be given to make the function use a previously reserved pdf object.

<number> n =

pdf.immediateobj(<integer> n, <string> objtext)
<number> n =

pdf.immediateobj (<integer> n, "file", <string> filename)
<number> n =

pdf.immediateobj (<integer> n, "stream", <string> streamtext, <string> attr-
text)
<number> n =

pdf.immediateobj(<integer> n, "streamfile", <string> filename, <string> at-
trtext)

N
s N

‘:‘,\' 254 The backend libraries

hy -

13.1.22 obj

This function creates a pdf object, which is written to the pdf file only when referenced, e.g., by
refobj ().

All function variants return the object number of the newly generated object, and there are two
separate calling modes. The first mode is modelled after pdfTgX’s \pdfobj primitive.

<number> n =

pdf.obj(<string> objtext)
<number> n

(

(

<number> n

pdf.obj("streamfile", <string> filename, <string> attrtext)

pdf.obj("file", <string> filename)
<number> n =
pdf.obj("stream", <string> streamtext, <string> attrtext)

An optional first argument can be given to make the function use a previously reserved pdf object.

<number> n =
pdf.obj(<integer> n, <string> objtext)
<number> n =
pdf.obj(<integer> n, "file", <string> filename)
<number> n =
pdf.obj(<integer> n, "stream", <string> streamtext, <string> attrtext)
<number> n =
pdf.obj(<integer> n, "streamfile", <string> filename, <string> attrtext)

The second mode accepts a single argument table with key-value pairs.

<number> n = pdf.obj {

type = <string>,
immediate = <boolean>,
objnum = <number>,
attr = <string>,
compresslevel = <number>,
objcompression = <boolean>,
file = <string>,
string = <string>,
nolength = <boolean>,

}

The type field can have the values raw and stream, this field is required, the others are optional
(within constraints). When nolength is set, there will be no /Length entry added to the dictio-
nary.

Note: this mode makes obj look more flexible than it actually is: the constraints from the sep-

arate parameter version still apply, so for example you can’t have both string and file at the
same time.

The backend libraries 255 {“,

13.1.23 refobj

This function, the Lua version of the \pdfrefobj primitive, references an object by its object
number, so that the object will be written to the pdf file.

pdf.refobj(<integer> n)

This function works in both the \directlua and \latelua environment. Inside \directlua a
new whatsit node ‘pdf refobj’ is created, which will be marked for flushing during page output
and the object is then written directly after the page, when also the resources objects are written
to the pdf file. Inside \latelua the object will be marked for flushing.

This function has no return values.

13.1.24 reserveobj
This function creates an empty pdf object and returns its number.

<number> n = pdf.reserveobj()
<number> n = pdf.reserveobj("annot")

13.1.25 getpageref

The object number of a page can be fetched with this function. This can be a forward reference
so when you ask for a future page, you do get a number back.

<number> n = pdf.getpageref(123)

13.1.26 registerannot

This function adds an object number to the /Annots array for the current page without doing
anything else. This function can only be used from within \latelua.

pdf.registerannot (<number> objnum)

13.1.27 newcolorstack

This function allocates a new color stack and returns it’s id. The arguments are the same as for
the similar backend extension primitive.

pdf.newcolorstack("® g","page",true) -- page|direct|origin

13.1.28 setfontattributes

This function will force some additional code into the font resource. It can for instance be used
to add a custom ToUnicode vector to a bitmap file.

pdf.setfontattributes(<number> font id, <string> pdf code)

N N
s N

‘:‘,\' 256 The backend libraries

hy -

13.2 The pdfe library

13.2.1 Introduction

The pdfe library replaces the epdf library and provides an interface to pdf files. It uses the
same code as is used for pdf image inclusion. The pplib library by Pawet Jackowski replaces
the poppler (derived from xpdf) library.

A pdf file is basically a tree of objects and one descends into the tree via dictionaries (key/value)
and arrays (index/value). There are a few topmost dictionaries that start at root that are accessed
more directly.

Although everything in pdf is basically an object we only wrap a few in so called userdata Lua
objects.

pdf Lua

null nil

boolean boolean

integer integer

float number

name string

string string

array array userdatum

dictionary dictionary userdatum

stream stream userdatum (with related dictionary)

reference reference userdatum

The regular getters return these Lua data types but one can also get more detailed information.

13.2.2 open, new, status, close, unencrypt
A document is loaded from a file or string

<pdfe document>
<pdfe document>

pdfe.open(filename)
pdfe.new(somestring, somelength)

Such a document is closed with:
pdfe.close(<pdfe document>)

You can check if a document opened well by:
pdfe.status(<pdfe document>)

The returned codes are:

VALUE EXPLANATION

-2 the document failed to open
-1 the document is (still) protected

The backend libraries 257 *:

0 the document is not encrypted
2 the document has been unencrypted

An encrypted document can be unencrypted by the next command where instead of either pass-
word you can give nil:

pdfe.unencrypt(<pdfe document>,userpassword,ownerpassword)

13.2.3 size, version, getnofobjects, getnofpages
A successfully opened document can provide some information:

bytes = size(<pdfe document>)

major, minor = version(<pdfe document>)

n = getnofobjects(<pdfe document>)

n = getnofpages(<pdfe document>)

bytes, waste = getnofpages(<pdfe document>)

13.2.4 get[catalog|trailer|info]
For accessing the document structure you start with the so called catalog, a dictionary:

<pdfe dictionary> = pdfe.getcatalog(<pdfe document>)

The other two root dictionaries are accessed with:

<pdfe dictionary>
<pdfe dictionary>

pdfe.gettrailer(<pdfe document>)
pdfe.getinfo(<pdfe document>)

13.2.5 getpage, gethox

A specific page can conveniently be reached with the next command, which returns a dictionary.
The first argument is to be a page dictionary.

<pdfe dictionary> = pdfe.getpage(<pdfe dictionary>,pagenumber)

Another convenience command gives you the (bounding) box of a (normally page) which can be
inheritted from the document itself. An example of a valid box name is MediaBox.

pages = pdfe.getbox(<pdfe document>,boxname)

13.2.6 get[string]|integer|number|boolean|name]

Common values in dictionaries and arrays are strings, integers, floats, booleans and names
(which are also strings) and these are also normal Lua objects:

s = getstring (<pdfe array|dictionary>,index|key)

g N
s N

‘:‘,\' 258 The backend libraries

hy -

getinteger
getnumber
getboolean
getname

<pdfe array|dictionary>,index|key
<pdfe array|dictionary>,index|key
<pdfe array|dictionary>,index|key
<pdfe array|dictionary>,index|key

5 T S5 -
I

)
)
)
)

—_~ o~ o~ o~

13.2.7 get[from][dictionary|array|stream]

Normally you will use an index in an array and key in a dictionary but dictionaries also accept
an index. The size of an array or dictionary is available with the usual # operator.

<pdfe dictionary> = getdictionary(<pdfe array|dictionary>,index|key)
<pdfe array> = getarray (<pdfe array|dictionary>,index|key)
<pdfe stream>,

<pdfe dictionary> = getstream (<pdfe array|dictionary>,index|key)

These commands return dictionaries, arrays and streams, which are dictionaries with a blob of
data attached.

Before we come to an alternative access mode, we mention that the objects provide access in a
different way too, for instance this is valid:

print(pdfe.open("foo.pdf").Catalog.Type)
At the topmost level there are Catalog, Info, Trailer and Pages, so this is also okay:

print(pdfe.open("foo.pdf").Pages[1])

13.2.8 [open|close|readfrom] [whole|]stream

Streams are sort of special. When your index or key hits a stream you get back a stream object
and dictionary object. The dictionary you can access in the usual way and for the stream there
are the following methods:

okay = openstream(<pdfe stream>, [decode])
closestream(<pdfe stream>)
readfromstream(<pdfe stream>)
readwholestream(<pdfe stream>, [decode])

str, n
str, n

You either read in chunks, or you ask for the whole. When reading in chunks, you need to open
and close the stream yourself. The n value indicates the length read. The decode parameter
controls if the stream data gets uncompressed.

As with dictionaries, you can access fields in a stream dictionary in the usual Lua way too. You
get the content when you ‘call’ the stream. You can pass a boolean that indicates if the stream
has to be decompressed.

13.2.9 getfrom[dictionary|array]

In addition to the interface described before, there is also a bit lower level interface available.

. ’\ N
The backend libraries 259 {\‘)

key, type, value, detail = getfromdictionary(<pdfe dictionary>,index)
type, value, detail = getfromarray(<pdfe array>,index)

PE MEANING VALUE DETAIL
0 none nil

1 null nil

2 boolean boolean

3 boolean integer

4 number float

5 name string

6 string string hex

7 array arrayobject size

8 dictionary dictionaryobject size

9 stream streamobject dictionary size

10 reference integer

A hex string is (in the pdf file) surrounded by <> while plain strings are bounded by <>.

13.2.10 [dictionary|array]totable

All entries in a dictionary or table can be fetched with the following commands where the return
values are a hashed or indexed table.

hash
list

dictionarytotable(<pdfe dictionary>)
arraytotable(<pdfe array>)

You can get a list of pages with:

{ { <pdfe dictionary>, size, objnum }, ... } = pagestotable(<pdfe document>)

13.2.11 getfromreference
Because you can have unresolved references, a reference object can be resolved with:
<pdfe dictionary|array|stream> = getfromreference(<pdfe reference>)

So, you get back a new pdfe userdata object that you can query.

13.3 Memory streams

The pdfe.new that takes three arguments:

VALUE EXPLANATION

stream this is a (in low level Lua speak) light userdata object, i.e. a pointer to a sequence of
bytes

length this is the length of the stream in bytes (the stream can have embedded zeros)

name optional, this is a unique identifier that is used for hashing the stream, so that multiple
doesn’t use more memory

i X
- N
’
!

\‘) 260 The backend libraries

hy -

The third argument is optional. When it is not given the function will return an pdfe document
object as with a regular file, otherwise it will return a filename that can be used elsewhere (e.g.
in the image library) to reference the stream as pseudo file.

Instead of a light userdata stream (which is actually fragile but handy when you come from a
library) you can also pass a Lua string, in which case the given length is (at most) the string
length.

The function returns an pdfe object and a string. The string can be used in the img library
instead of a filename. You need to prevent garbage collection of the object when you use it as
image (for instance by storing it somewhere).

Both the memory stream and it’s use in the image library is experimental and can change. In
case you wonder where this can be used: when you use the swiglib library for graphicmagick,
it can return such a userdata object. This permits conversion in memory and passing the result
directly to the backend. This might save some runtime in one-pass workflows. This feature is
currently not meant for production and we might come up with a better implementation.

13.4 The pdfscanner library

The pdfscanner library allows interpretation of pdf content streams and /ToUnicode (cmap)
streams. You can get those streams from the pdfe library, as explained in an earlier section.
There is only a single top-level function in this library:

pdfscanner.scan (<pdfe stream>, <table> operatortable, <table> info)
pdfscanner.scan (<pdfe array>, <table> operatortable, <table> info)
pdfscanner.scan (<string>, <table> operatortable, <table> info)

The first argument should be a Lua string or a stream or array onject coming from the pdfe
library. The second argument, operatortable, should be a Lua table where the keys are pdf
operator name strings and the values are Lua functions (defined by you) that are used to process
those operators. The functions are called whenever the scanner finds one of these pdf operators
in the content stream(s). The functions are called with two arguments: the scanner object itself,
and the info table that was passed are the third argument to pdfscanner.scan.

Internally, pdfscanner.scan loops over the pdf operators in the stream(s), collecting operands
on an internal stack until it finds a pdf operator. If that pdf operator’s name exists in opera-
tortable, then the associated function is executed. After the function has run (or when there
is no function to execute) the internal operand stack is cleared in preparation for the next oper-
ator, and processing continues.

The scanner argument to the processing functions is needed because it offers various methods
to get the actual operands from the internal operand stack.

A simple example of processing a pdf’s document stream could look like this:

local operatortable = { }

operatortable.Do = function(scanner,info)
local resources = info.resources
if resources then

The backend libraries 261 {\“

local val scanner:pop()

local name = val[2]
local xobject = resources.X0Object
print(info.space .. "Uses XObject " .. name)

local resources = xobject.Resources
if resources then

local newinfo = {
space = info.space .. " ",
resources = resources,

}

pdfscanner.scan(entry, operatortable, newinfo)

end
end
end

local function Analyze(filename)
local doc = pdfe.open(filename)
if doc then
local pages = doc.Pages
for i=1,#pages do

local page = pages[i]
local info = {
space =" ",
resources = page.Resources,
}
print("Page " .. 1)

-- pdfscanner.scan(page.Contents,operatortable,info)
pdfscanner.scan(page.Contents(),operatortable,info)
end
end
end

Analyze("foo.pdf")

This example iterates over all the actual content in the pdf, and prints out the found XObject
names. While the code demonstrates quite some of the pdfe functions, let’s focus on the type
pdfscanner specific code instead.

From the bottom up, the following line runs the scanner with the pdf page’s top-level content
given in the first argument.

The third argument, info, contains two entries: space is used to indent the printed output, and
resources is needed so that embedded XForms can find their own content.

The second argument, operatortable defines a processing function for a single pdf operator,
Do.

The function Do prints the name of the current XObject, and then starts a new scanner for that
object’s content stream, under the condition that the XObject is in fact a /Form. That nested

- -@.
s N

‘:‘,\' 262 The backend libraries

hy -

scanner is called with new info argument with an updated space value so that the indentation
of the output nicely nests, and with a new resources field to help the next iteration down to
properly process any other, embedded X0bjects.

Of course, this is not a very useful example in practice, but for the purpose of demonstrating
pdfscanner, it is just long enough. It makes use of only one scanner method: scanner:pop().
That function pops the top operand of the internal stack, and returns a Lua table where the
object at index one is a string representing the type of the operand, and object two is its value.

The list of possible operand types and associated Lua value types is:

PES TYPE
integer <number>
real <number>
boolean <boolean>
name <string>
operator <string>
string <string>
array <table>
dict <table>

In case of integer or real, the value is always a Lua (floating point) number. In case of name,
the leading slash is always stripped.

In case of string, please bear in mind that pdf actually supports different types of strings (with
different encodings) in different parts of the pdf document, so you may need to reencode some
of the results; pdfscanner always outputs the byte stream without reencoding anything. pdfs-
canner does not differentiate between literal strings and hexadecimal strings (the hexadecimal
values are decoded), and it treats the stream data for inline images as a string that is the single
operand for EI.

In case of array, the table content is a list of pop return values and in case of dict, the table
keys are pdf name strings and the values are pop return values.

There are a few more methods defined that you can ask scanner:

METHOD EXPLANATION

pop see above

popnumber return only the value of a real or integer
popname return only the value of a name

popstring return only the value of a string

poparray return only the value of a array
popdictionary return only the value of a dict

popboolean return only the value of a boolean

done abort further processing of this scan() call

The pop* are convenience functions, and come in handy when you know the type of the operands
beforehand (which you usually do, in pdf). For example, the Do function could have used local
name = scanner:popname() instead, because the single operand to the Do operator is always a
pdf name object.

The backend libraries 263 {\“,

The done function allows you to abort processing of a stream once you have learned everything
you want to learn. This comes in handy while parsing /ToUnicode, because there usually is
trailing garbage that you are not interested in. Without done, processing only ends at the end
of the stream, possibly wasting cpu cycles.

We keep the older names popNumber, popName, popString, popArray, popDict and popBool
around.

e

’

‘:‘,\' 264 The backend libraries

hy -

Topics

a
Aleph 42,51

adjust 126

attributes 22, 152, 190

b
backend 36,44, 251
banner 19
boundary 130
boxes 17,222,193
reuse 193
split 194
bytecodes 183

C

callbacks 165
building pages 171
closing files 169
contributions 170, 173
data files 167
dump 176
editing 178
errors 177,178
files 178
font files 166, 167
fonts 180, 181
format file 166
hyphenation 175
image content 180
image files 168
input buffer 170
inserts 171
jobrun 177
jobname 170
kerning 176
ligature building 175
linebreaks 172,173
math 176
opening files 168
output 175
output buffer 170
output file 166
pdf file 179

packing 173,174
pages 177
reader 168
readers 169
rules 175
synctex 179
wrapping up 179
catcodes 27
characters 67
codes 191
command line 57
conditions 33
configuration 208
convert commands 189
csnames 55

d

direct nodes 155
directions 51, 130
discretionaries 77,81, 126

e
e-TgX 40
engines 39
errors 28,29, 200
escaping 25
exceptions 75
expansion 32

f

files
binary 56
finding 217
map 251
names 36
writing 37

fontloader
tables 235

fonts 29, 85
current 97
define 97
defining 201
extend 97

Topics 265

id 97
information 233
iterate 98
library 95
loading 233
real 90

tables 85

tfm 95

used 289

vf 96

virtual 90, 92, 94, 96
format 20, 56

g
glue 127

glyphs 67, 128
graphics 221

h

hash 201

helpers 199

history 39

hyphenation 35, 67, 73, 75
discretionaries 77
exceptions 75

how it works 77
patterns 75

i

io 209

images 221
immediate 224
injection 224
library 221
MetaPost 226
mplib 226
object 224
types 225
initialization 57, 201
bitmaps 218
insertions 125

k
kerning 79
kerns 128

suppress 29

0) 266 Topics

1

Lua 17

byte code 57
extensions 60
interpreter 57
libraries 60, 65
modules 65
languages 35,67
library 81
last items 190
leaders 35
libraries

kpse 216

lua 183
status 184
tex 186
texconfig 208
texio 209
token 210
ligatures 79
suppress 29
linebreaks 81, 206
lists 124,195

m

MetaPost 226
mplib 226

macros 214

main loop 73

map files 251

marks 31,125

math 28, 37, 99
accents 115
codes 118
cramped 102
delimiters 116,118
extensibles 116
fences 114
flattening 120
fractions 117
italics 112
kerning 112
last line 119
limits 111
nodes 126, 131
parameters 103, 105, 194

penalties 113
radicals 115
scripts 112,116, 120
spacing 102,109, 110,111
stacks 102
styles 100, 102,119, 120
text 120
tracing 121
Unicode 99

memory 55

n
nesting 196, 207
newline 56
nodes 17,21,123
adjust 126
attributes 152
boundary 130
direct 155
direction 130
discretionaries 126
functions 141
glue 127
glyph 128
insertions 125
kerns 128
lists 124
marks 125
math 126, 131
paragraphs 130, 131
penalty 128
properties 160
rules 124
text 123

o
Omega 51

OpenType 233
output 34, 36

p
pdf 251

analyze 257
annotations 253, 256
backend 44
catalog 251

color stack 256
compression 252
date 65, 252

fonts 256

info 251

margins 253
matrix 253
memory streams 260
objects 253, 254, 255, 256, 257
options 252

page attributes 251
page resources 251
pages 256
positioning 253
positions 253
precision 252
print to 254
resolution 252, 253
scanner 261

trailer 251, 252
pdfe 257

unicode 252
version 251

xform attributes 251
xform resources 251
pdfTEX 40
pages 194, 207
paragraphs 81, 130, 131
reset 206
parameters

internal 186

math 194
patterns 75
penalty 128
primitives 29, 201
printing 197
properties 160
protrusion 131

r
registers 190, 193
bytecodes 183

rules 35, 124

S
shipout 207

// \\
. / \
Topics 267 \‘;

space 56
spaces
suppress 30
splitting 34
synctex 208

t

TEX 39
TrueType 233
Typel 235
testing 65
text

math 120

/ 0) 268 Topics

tokens 210
scanning 30
tracing 36

u
Unicode 20, 21
math 99

v

version 19, 183

web2c 43

Primitives

This register contains the primitives that are mentioned in the manual. There are of course
many more primitives. The LuaTgX primitives are typeset in bold. The primitives from pdfTEX
are not supported that way but mentioned anyway.

\abovedisplayskip 111
\abovewithdelims 117
\accent 33, 73,74
\addafterocplist 43
\addbeforeocplist 43
\adjustspacing 41, 89
\alignmark 31

\aligntab 31

\atop 102, 104
\atopwithdelims 102
\attribute 190
\attributedef 190
\automaticdiscretionary 73
\automatichyphenmode 71
\automatichyphenpenalty 75

\batchmode 209
\begincsname 31
\begingroup 102
\belowdisplayskip 111
\bodydir 43
\bodydirection 54
\boundary 35, 130
\box 21

\boxdir 43
\breakafterdirmode 53

\catcode 19, 20, 55, 191
\catcodetable 27,197
\char 18, 20,74,75,128
\chardef 20, 75,214
\clearmarks 31
\clearocplists 43
\clubpenalties 206
\copy 21

\copyfont 41

\count 21, 22,60, 190
\countdef 21,190
\crampedscriptstyle 103

\csname 28, 31
\csstring 31

\DefaultInputMode 43

\DefaultInputTranslation 43

\DefaultOutputMode 43

\DefaultOutputTranslation 43

\def 46

\delcode 55,99, 191, 193

\delimiter 99

\detokenize 211

\dimen 21, 60, 190

\dimendef 21,190

\directlua 17

\directlua 19, 23,24, 25,183, 197, 202,
254, 256

\discretionary 18,75,76,78,126

\displaystyle 109

\displaywidowpenalties 206

\dp 21

\draftmode 36,41

\edef 26, 32, 46,211

\efcode 20,41, 88
\endcsname 28

\endgroup 102

\endinput 210

\endlinechar 30, 39, 197, 199
\errhelp 200

\errmessage 200

\etoksapp 30

\etokspre 30

\everyeof 30

\everyjob 58
\exceptionpenalty 76
\exhyphenchar 74,75
\exhyphenpenalty 75,78, 126
\expandafter 32

\expanded 32,41

// \\
o P / \
Primitives 269 ‘;

\expandglyphsinfont 41, 86, 87 \input 166

\explicitdiscretionary 73 \insert 21,125
\explicithyphenpenalty 75 \insertht 42
\externalocp 43 \interlinepenalties 206
\firstvalidlanguage 68 \jobname 20, 58, 59, 170
\fontid 29
\formatname 20, 202 \kern 18,128
\knaccode 40
\gleaders 35 \knbccode 40
\glet 32 \knbscode 40
\global 55
\gtoksapp 30 \language 74, 76, 78, 82
\gtokspre 30 \lastnamedcs 31
\lastnodetype 123
\halign 172 \lastsavedboxresourceindex 35, 42
\hangindent 53 \lastsavedimageresourceindex 35, 42
\hbox 18,21,34,112,172,173, 193 \lastsavedimageresourcepages 35, 42
\hjcode 20, 55, 68,76 \lastxpos 41
\hoffset 43 \lastypos 41
\hpack 34 \latelua 25, 136, 183, 254, 256
\hrule 18 \lateluafunction 25
\hsize 72 \lccode 20, 55, 191
\hskip 18,127 \leaders 35
\ht 21 \left 114
\hyphenation 75,78 \leftghost 68, 74
\hyphenationbounds 70 \lefthyphenmin 35, 68
\hyphenationmin 35, 68 \leftmarginkern 41
\hyphenchar 74,78, 85 \letcharcode 31
\hyphenpenalty 75,78, 126 \letterspacefont 41
\linedir 53
\InputMode 43 \localbrokenpenalty 130
\InputTranslation 43 \localinterlinepenalty 130
\if 31 \localleftbox 130,172
\ifabsdim 41 \localrightbox 130,172
\ifabsnum 41 \long 28
\ifcondition 33 \lowercase 76
\ifcsname 28 \lpcode 20,41, 88
\ifincsname 41 \luabytecode 26
\ifprimitive 41 \luabytecodecall 26
\ifx 28 \luacopyinputnodes 198
\ignoreligaturesinfont 41 \luadef 25,214
\immediate 224, 225, 254 \luaescapestring 25
\immediateassigned 32 \luafunction 25
\immediateassignment 32 \luafunctioncall 25, 26
\initcatcodetable 27 \luatexbanner 19

- @

// \\
! \ 0 s e
\0; 270 Primitives

hy -

\luatexrevision 19, 20
\luatexversion 19, 20

\mag 39

\mark 125

\marks 21,144
\mathaccent 99
\mathchar 99, 120
\mathchardef 99, 120
\mathchoice 101
\mathcode 55, 99, 191
\mathdelimitersmode 114
\mathdir 43

\mathdir 54

\mathdir 196
\mathdirection 54
\mathdisplayskipmode 111
\matheqnogapstep 114
\mathflattenmode 120
\mathitalicsmode 112, 114
\mathnolimitsmode 111
\mathoption 121
\mathpenaltiesmode 113
\mathscriptboxmode 112
\mathscriptcharmode 112
\mathscriptsmode 113
\mathstyle 100, 101, 102, 196
\mathsurround 109, 127
\mathsurroundmode 109
\mathsurroundskip 109
\maxdepth 174
\medmuskip 111

\middle 196

\muskip 21,110,111, 190
\muskipdef 21

\newlinechar 39

\noboundary 35, 74, 79, 130
\noDefaultInputMode 43
\noDefaultInputTranslation 43
\noDefaultOutputMode 43
\noDefaultOutputTranslation 43
\noexpand 32

\nohrule 35

\noInputMode 43
\noInputTranslation 43

\nokerns 29

\noligs 29
\noOutputMode 43
\noOutputTranslation 43
\nospaces 30

\novrule 35

\nullfont 28

\number 29, 199

\OutputMode 43
\OutputTranslation 43
\ocp 43

\ocplist 43
\ocptracelevel 43
\omathcode 43
\openin 166
\openout 37,44, 166
\outer 28

\output 175, 185
\outputbox 34
\outputmode 36, 41
\over 102,104, 196
\overline 103
\overwithdelims 102

\pagebottomoffset 43
\pagedir 43

\pagedir 54
\pagedirection 54
\pageheight 41,43
\pagerightoffset 43
\pagewidth 41, 43
\par 22,28,171
\pardir 43

\pardir 54
\pardirection 54
\parfillskip 172,207
\parindent 186
\parshape 53
\patterns 75,77,78
\pdfadjustinterwordglue 40
\pdfappendkern 40
\pdfcopyfont 41
\pdfdraftmode 41
\pdfeachlinedepth 41
\pdfeachlineheight 41

Primitives 271

\pdfelapsedtime 40
\pdfescapehex 40
\pdfescapename 40
\pdfescapestring 40
\pdfextension 40, 44
\pdffeedback 40, 42, 44
\pdffiledump 40
\pdffilemoddate 40
\pdffilesize 40
\pdffirstlineheight 41
\pdffontattr 86
\pdffontexpand 41
\pdfforcepagebox 40
\pdfignoreddimen 41
\pdfimageaddfilename 41
\pdfinsertht 42
\pdflastlinedepth 41
\pdflastmatch 40
\pdflastxform 42
\pdflastximage 42
\pdflastximagepages 42
\pdfliteral 25
\pdfmapfile 251
\pdfmapline 251
\pdfmatch 40
\pdfmdfivesum 40
\pdfmovechars 40
\pdfnoligatures 41
\pdfnormaldeviate 41
\pdfobj 254,255
\pdfoptionalwaysusepdfpagebox 40

\pdfoptionpdfinclusionerrorlevel 40

\pdfoutput 41
\pdfpageheight 41
\pdfpagewidth 41
\pdfprependkern 40
\pdfpxdimen 41
\pdfrandomseed 41
\pdfrefobj 256
\pdfrefxform 42
\pdfrefximage 42,221
\pdfresettimer 40
\pdfsetrandomseed 41
\pdfshellescape 40
\pdfsnaprefpoint 40
\pdfsnapy 40

\\
\ 0 s e
‘ ;272 Primitives

\pdfsnapycomp 40
\pdfstrcmp 40
\pdftexbanner 40
\pdftexrevision 40
\pdftexversion 40
\pdftracingfonts 41
\pdfunescapehex 40
\pdfuniformdeviate 41
\pdfvariable 40, 44, 221
\pdfxform 41,42
\pdfxformattr 41
\pdfxformresources 41
\pdfximage 42,221,224
\penalty 128
\popocplist 43
\postexhyphenchar 73, 78
\posthyphenchar 78
\preexhyphenchar 73, 78
\prehyphenchar 78
\primitive 41
\protrudechars 41, 89
\protrusionboundary 35, 130
\pushocplist 43
\pxdimen 41

\quitvmode 41

\radical 99

\read 166

\relax 75,197,202,213
\removeafterocplist 43
\removebeforeocplist 43
\right 114

\rightghost 68, 74
\righthyphenmin 35, 68
\rightmarginkern 41
\romannumeral 101, 199
\rpcode 20,41, 88
\rule 124

\saveboxresource 35,42
\savecatcodetable 27, 28
\saveimageresource 35, 42,225
\savepos 41

\savinghyphcodes 68, 69, 76, 83
\scantextokens 30

\scantokens 24, 30
\scriptfont 105
\scriptscriptfont 105
\scriptscriptstyle 115
\scriptspace 108
\scriptstyle 103
\setbox 21

\setfontid 29
\setlanguage 68, 74, 78
\sfcode 20, 55, 191
\shapemode 53
\shbscode 40

\shipout 177
\skewchar 85,115
\skip 21,190

\skipdef 21,190
\spaceskip 30
\special 93,136
\stbscode 40

\string 31

\suppressfontnotfounderror 28

\suppressifcsnameerror 28
\suppresslongerror 28
\suppressmathparerror 28
\suppressoutererror 28
\suppressprimitiveerror 29

\tagcode 41
\textdir 43,52
\textdir 54, 130
\textdir 196
\textdir(ection) 18
\textdirection 54
\textfont 105, 120
\textstyle 101

\the 20, 22,29, 186, 189, 190, 197

\thickmuskip 111
\thinmuskip 111

\toks 21,189,190, 197
\toksapp 30

\toksdef 21,190
\tokspre 30

\tpack 34
\tracingassigns 40, 55
\tracingcommands 75, 186
\tracingfonts 36, 41

\tracingnesting 201
\tracingonline 36
\tracingoutput 177
\tracingrestores 40, 55

\Uchar 21

\Udelcode 100, 193
\Udelcodenum 100
\Udelimiter 100
\Udelimiterover 100,116
\Udelimiterunder 100,116
\Uhextensible 117
\Umathaccent 100, 115
\Umathaxis 104
\Umathbinbinspacing 110
\Umathbinclosespacing 110
\Umathbininnerspacing 110
\Umathbinopenspacing 110
\Umathbinopspacing 110
\Umathbinordspacing 110
\Umathbinpunctspacing 110
\Umathbinrelspacing 110
\Umathchar 100, 120
\Umathchardef 99, 120
\Umathcharnum 100
\Umathcharnumdef 99, 100
\Umathclosebinspacing 110
\Umathcloseclosespacing 110
\Umathcloseinnerspacing 110
\Umathcloseopenspacing 110
\Umathcloseopspacing 110
\Umathcloseordspacing 110
\Umathclosepunctspacing 110
\Umathcloserelspacing 110
\Umathcode 100
\Umathcodenum 100
\Umathconnectoroverlapmin 105, 108
\Umathfractiondelsize 104
\Umathfractiondenomdown 104
\Umathfractiondenomvgap 104
\Umathfractionnumup 104
\Umathfractionnumvgap 104
\Umathfractionrule 104
\Umathinnerbinspacing 110
\Umathinnerclosespacing 110
\Umathinnerinnerspacing 110

Primitives 273

\Umathpunctopenspacing 110
\Umathpunctopspacing 110
\Umathpunctordspacing 110
\Umathpunctpunctspacing 110
\Umathpunctrelspacing 110

\Umathquad 104, 108
\Umathradicaldegreeafter 104, 108,115
\Umathlimitabovevgap 104 \Umathradicaldegreebefore 104,108,115
\Umathlimitbelowbgap 104 \Umathradicaldegreeraise 104, 108, 109,
\Umathlimitbelowkern 104, 108 115

\Umathlimitbelowvgap 104 \Umathradicalkern 104
\Umathnolimitsubfactor 111 \Umathradicalrule 104, 108
\Umathnolimitsupfactor 111 \Umathradicalvgap 104, 108

\Umathinneropenspacing 110
\Umathinneropspacing 110
\Umathinnerordspacing 110
\Umathinnerpunctspacing 110
\Umathinnerrelspacing 110
\Umathlimitabovebgap 104
\Umathlimitabovekern 104, 108

\Umathopbinspacing 110

\Umathopclosespacing
\Umathopenbinspacing

110
110

\Umathopenclosespacing 110
\Umathopeninnerspacing 110
\Umathopenopenspacing 110
\Umathopenopspacing 110

\Umathopenordspacing

110

\Umathopenpunctspacing 110

\Umathopenrelspacing

\Umathoperatorsize 100, 104, 109

\Umathopinnerspacing

110

110

\Umathopopenspacing 110
\Umathopopspacing 110
\Umathopordspacing 110

\Umathoppunctspacing

110

\Umathoprelspacing 110
\Umathordbinspacing 110
\Umathordclosespacing 110
\Umathordinnerspacing 110

\Umathordopenspacing

110

\Umathordopspacing 110
\Umathordordspacing 110
\Umathordpunctspacing 110
\Umathordrelspacing 110

\Umathoverbarkern 104
\Umathoverbarrule 104
\Umathoverbarvgap 104

\Umathrelbinspacing 110
\Umathrelclosespacing 110
\Umathrelinnerspacing 110
\Umathrelopenspacing 110
\Umathrelopspacing 110
\Umathrelordspacing 110
\Umathrelpunctspacing 110
\Umathrelrelspacing 110
\Umathskewedfractionhgap 117
\Umathskewedfractionvgap 117
\Umathspaceafterscript 105, 108
\Umathstackdenomdown 104
\Umathstacknumup 104
\Umathstackvgap 104
\Umathsubshiftdown 104, 113
\Umathsubshiftdrop 104
\Umathsubsupshiftdown 104,113
\Umathsubsupvgap 105
\Umathsubtopmax 105
\Umathsupbottommin 105
\Umathsupshiftdrop 104
\Umathsupshiftup 104,113
\Umathsupsubbottommax 105
\Umathunderbarkern 104
\Umathunderbarrule 104
\Umathunderbarvgap 104
\Umathunderdelimiterbgap 104,117
\Umathunderdelimitervgap 104, 117

\Umathoverdelimiterbgap 104,117
\Umathoverdelimitervgap 104,117
\Umathpunctbinspacing 110
\Umathpunctclosespacing 110
\Umathpunctinnerspacing 110

\Umath* 103

\Umiddle 118

\Unosubscript 120
\Unosuperscript 120
\Uoverdelimiter 100,116,117

1 274 Primitives

\Uradical 100, 115
\Uright 118

\Uroot 100,115,134
\Ustack 102
\Ustartdisplaymath 119
\Ustartmath 119
\Ustopdisplaymath 119
\Ustopmath 119
\Usubscript 119
\Usuperscript 119
\Uunderdelimiter 100, 116,117
\uccode 20, 55, 191
\uchyph 68, 129
\unexpanded 211

\unhbox 21

\unhcopy 21

\unvbox 21

\unvcopy 21

\uppercase 31,76
\useboxresource 35,422,193
\useimageresource 35,42,225

\vadjust 126,171, 196
\valign 172

\vbox 18,21,34,172,193, 207

\vcenter 172

\voffset 43

\vpack 34

\vrule 18

\vskip 18,127

\vsplit 21,34,172,194
\vtop 18,34,172,193

\wd 21

\widowpenalties 206
\wordboundary 35, 69, 130
\write 25,58,166,170,196

\xtoksapp 30
\xtokspre 30

\- 73,75,126

Primitives 275

276 Primitives

Callbacks

b
buildpage filter 171
build page insert 171

c
call edit 178
contribute filter 170

d
define font 85, 92, 180

f

find data file 167
find enc file 167

find font file 166, 167
find format file 166
find image file 168
find map file 167

find opentype file 167
find output file 166
find pk _file 167

find read file 166, 168
find truetype file 167
find typel file 167, 168
find vf file 167

find write file 166
finish pdffile 179
finish pdfpage 179
finish synctex 179

g
glyph not found 181

h
hpack filter 172,173,174
hyphenate 175

k
kerning 176, 239

1
ligaturing 175,176
linebreak filter 173,207

m
mlist to hlist 113,146,176

o
open read file 168

p

page objnum provider 179

post linebreak filter 173

pre dump 176

pre_linebreak filter 172,207
process input buffer 170
process jobname 170

process output buffer 170
process pdf image content 180
process rule 175

S
show _error _hook 177
show error_message 178
show lua error hook 178
start file 178
start page number 177
start run 177

stop file 178

stop _page number 177
stop run 177

Vv
vpack filter 172,174

w
wrapup_run 179

Callbacks 277 {‘)

29

{\0) 278 Callbacks

hy -

Nodes

This register contains the nodes that are known to LuaTgX. The primary nodes are in bold,

whatsits that are determined by their subtype are normal. The names prefixed by pdf are

backend specific.

a
accent 133

adjust 70,126

attr 153

attribute list 152,153

b
boundary 35, 70, 130

C
choice 133
close 135

color stack 123

d

delim 132

delta 199

dir 18, 70,123,130
disc 18,21,126

f
fence 134
fraction 115, 134

g9
glue 18,21,70,123,127

glue-spec 191
glue_spec 127,186, 189, 190
glyph 18,21,67,68,73,6 128, 148

h
hlist 18,21, 22,23,70,124, 149

i
ins 70,125

k
kern 18,21,70,128

1
late lua 136
local_par 130, 207

m
marginkern 131
mark 125, 244
math 126, 248
math_char 131
math_text_char 131

n
noad 133

o
open 135

p
pdf action 123,138

pdf annot 137

pdf colorstack 139
pdf dest 138

pdf end link 138
pdf _end thread 139
pdf literal 123,137
pdf refobj 137

pdf restore 140
pdf save 140

pdf setmatrix 140
pdf start link 137
pdf start thread 139
pdf thread 139

pdf window 123
penalty 70, 128

r

radical 134
rule 18, 70,95, 124

Nodes 279

S u

save pos 136 unset 140, 238, 248
special 136 user _defined 135
style 133
sub_box 131,132 \
sub_mlist 131,132 vlist 18,21,70,124, 149
t w
temp 124 whatsit 70, 142
write 135

=@

/ \\
\‘; 280 Nodes

Ny -

Libraries

This register contains the functions available in libraries. Not all functions are documented, for
instance because they can be experimental or obsolete.

callback
find 165
list 165
register 165

fio
getposition 64
readbytes 64
readbytetable 64
readcardinaltable 64
readcardinall 64
readcardinal2 64
readcardinal3 64
readcardinald4 64
readfixed2 64
readfixed4 64
readintegertable 64
readintegerl 64
readinteger2 64
readinteger3 64
readinteger4 64
read2dotl4 64
setposition 64
skipposition 64

fontloader
apply afmfile 235
apply featurefile 235
close 233
fields 235
info 233
open 233
to table 233

img
boxes 225
copy 224
fields 222
immediatewrite 224
immediatewriteobject 224
new 221
node 225
scan 223

types 225
write 224

kpse

default texmfcnf 216
expand braces 219
expand path 218
expand_var 219

find file 217

init prog 218

lookup 218

new 216

readable file 218
set program _name 216
show _path 219

var value 219
version 219

lang

clean 82
clear_hyphenation 82
clear _patterns 82
gethjcode 83
hyphenate 83
hyphenation 82
hyphenationmin 82
id 81

new 81

patterns 82
postexhyphenchar 82
posthyphenchar 82
preexhyphenchar 82
prehyphenchar 82
sethjcode 83

lua

bytecode 183
getbytecode 183
getcalllevel 184
getluaname 183
getstacktop 184
name 183
setbytecode 183

Libraries 281

setluaname 183
version 183

mplib

char_depth 232
char_height 232
char width 232
execute 227
fields 228
finish 227

get boolean 232
get numeric 232
get path 232
get string 232
new 226
pen_info 231
statistics 227
version 226

node

check discretionaries 154, 157
check discretionary 154, 157
copy 143, 157

copy list 143, 157

count 147, 157

current attr 143, 157
dimensions 145, 157
effective glue 157
end of math 149, 157

family font 154, 157

fields 123, 142, 157

find attribute 153, 157
first glyph 150, 157

flatten discretionaries 154, 157
flush list 142, 157

flush node 142, 157

flush properties table 160
free 142, 157

getboth 157

getchar 157

getdisc 157

getfield 157

getfont 157

getglue 152, 157

getid 157

getleader 157

getlist 157

getnext 157

282 Libraries

getprev 158

getproperty 158
getsubtype 158

getwhd 158

get attribute 153, 157
get properties table 160
has attribute 153, 158
has field 142, 158

has glyph 149, 158
hpack 144, 158

id 141, 158

insert after 150, 158
insert before 149, 158
is char 147, 158

is glyph 147, 158

is node 141, 158

is _zero glue 152, 158
kerning 150, 158

last node 151, 158
length 147, 158
ligaturing 150, 158
mlist to hlist 146, 158
new 142, 158

next 143, 158

prepend prevdepth 145
prev 143, 158

protect glyph 151, 158
protect glyphs 151, 158
protrusion skippable 151, 158
rangedimensions 145, 158
remove 149, 158
setfield 159

setglue 151, 159
setproperty 159

set attribute 153, 158
set properties mode 160
slide 154, 159

subtype 141, 159
subtypes 123, 159

tail 146, 159

todirect 155, 159
tonode 155, 159
tostring 155, 159
traverse 147, 159
traverse char 148, 159
traverse glyph 148, 159

traverse id 148, 159

traverse list 149

type 141, 159

types 141, 159

unprotect glyph 151, 159

unprotect glyphs 151, 159

unset attribute 154, 159

usedlist 159

uses font 159

values 123

vpack 144, 159

whatsits 141, 160

write 151, 160
node.direct

check discretionaries 157

check discretionary 157

copy 157

copy list 157

count 157

current attr 157

dimensions 157

effective glue 157

end of math 157

find _attribute 157

first glyph 157

flatten discretionaries 157

flush list 157

flush node 157

free 157

getattributelist 157

getboth 157

getbox 157

getchar 157

getcomponents 157

getdata 158

getdepth 157

getdir 157

getdirection 157

getdisc 157

getfam 157

getfield 157

getfont 157

getglue 157

getheight 157

getid 157

getkern 157

getlang 157
getleader 157
getlist 157

getnext 157
getnucleus 158
getoffsets 158
getpenalty 158
getprev 158
getproperty 158
getshift 158

getsub 158
getsubtype 158
getsup 158

getwhd 158

getwidth 158

get attribute 157
get synctex fields 157
has attribute 158
has field 158

has glyph 158

hpack 158

insert after 158
insert _before 158
is char 158

is direct 158

is glyph 158

is node 158

is zero glue 158
kerning 158

last node 158
length 158
ligaturing 158

new 158

prepend prevdepth 158
protect glyph 158
protect glyphs 158
protrusion skippable 158
rangedimensions 158
remove 158
setattributelist 158
setboth 158

setbox 158

setchar 158
setcomponents 158
setdepth 158

setdir 159

Libraries 283

setdirection 159
setdisc 159
setexpansion 159
setfam 159
setfield 159
setfont 159
setglue 159
setheight 159
setkern 159
setlang 159
setleader 159
setlink 159
setlist 159
setnext 159
setnucleus 159
setoffsets 159
setpenalty 159
setprev 159
setproperty 159
setshift 159
setsplit 159
setsub 159
setsubtype 159
setsup 159
setwhd 159
setwidth 159

set attribute 158

set synctex fields 158

slide 159
tail 159
todirect 159
tonode 159
tostring 159
traverse 159
traverse char 159
traverse glyph 159
traverse id 159
unprotect glyph 159
unprotect glyphs 159
unset attribute 159
usedlist 159
uses font 159
vpack 159
write 160

0s
env 62

/284 Libraries

exec 62
gettimeofday 62
name 62

selfdir 62
setenv 62

spawn 62

times 62

tmpdir 62

type 62

uname 62

pdf

getcatalog 251
getcompresslevel 252
getcreationdate 252
getdecimaldigits 252
getdestmargin 253
getfontname 253
getfontobjnum 253
getfontsize 253
getgentounicode 252
gethpos 253

getignoreunknownimages 252

getimageresolution 253

getinclusionerrorlevel 252

getinfo 251
getlastannot 253
getlastlink 253
getlastobj 253
getlinkmargin 253
getmajorversion 251
getmarginmargin 253
getmatrix 253
getmaxobjnum 253
getminorversion 251
getnames 251
getobjcompresslevel 252
getobjtype 253
getomitcharset 252
getomitcidset 252
getorigin 253
getpageattributes 251
getpageref 256
getpageresources 251
getpagesattributes 251
getpkresolution 252
getpos 253

getrecompress 252
getretval 253
getsuppressoptionalinfo 252
getthreadmargin 253
gettrailer 251
gettrailerid 252
getvpos 253
getxformattributes 251
getxformmargin 253
getxformname 253
getxformresources 251
hasmatrix 253
immediateobj 254
newcolorstack 256

obj 255

print 254

refobj 256
registerannot 256
reserveobj 256
setcatalog 251
setcompresslevel 252
setdecimaldigits 252
setdestmargin 253
setfontattributes 256
setgentounicode 252
setignoreunknownimages 252
setimageresolution 253
setinclusionerrorlevel 252
setinfo 251
setlastannot 253
setlastlink 253
setlastobj 253
setlinkmargin 253
setmajorversion 251
setmarginmargin 253
setminorversion 251
setnames 251
setobjcompresslevel 252
setomitcharset 252
setomitcidset 252
setorigin 253
setpageattributes 251
setpageresources 251
setpagesattributes 251
setpkresolution 252
setrecompress 252

setsuppressoptionalinfo 252
setthreadmargin 253
settrailer 251

settrailerid 252
setxformattributes 251
setxformmargin 253
setxformresources 251

pdfe

arraytotable 260
close 257
closestream 259
dictionarytotable 260
getarray 259
getboolean 258
getbox 258
getcatalog 258
getdictionary 259
getfromarray 259
getfromdictionary 259
getfromreference 260
getfromstream 259
getinfo 258
getinteger 258
getname 258
getnofobjects 258
getnofpages 258
getnumber 258
getpage 258
getstream 259
getstring 258
gettrailer 258

new 257, 260

open 257

openstream 259
readfromstream 259
readfromwholestream 259
size 258

status 257

unencrypt 257
version 258

pdfscanner

done 263

pop 263

poparray 263
popboolean 263
popdictionary 263

Libraries 285

popname 263
popnumber 263
popstring 263
scan 261

sha2
digest256 64
digest384 64
digest512 64

sio
getposition 64
readbytes 64
readbytetable 64
readcardinaltable
readcardinall 64
readcardinal2 64
readcardinal3 64
readcardinald 64
readfixed2 64
readfixed4 64
readintegertable
readintegerl 64
readinteger2 64
readinteger3 64
readinteger4 64
read2dotl4 64
setposition 64
skipposition 64

status
list 184
resetmessages 184
setexitcode 184

string
bytepairs 61
bytes 61
characterpairs 61
characters 61
explode 61
utfcharacter 62
utfcharacters 61
utflength 62
utfvalue 62
utfvalues 61

tex
attribute 190
badness 205
box 190, 193

/// — \‘\
/0) 286 Libraries

64

64

catcode 191

count 190

cprint 198
definefont 201
delcode 191

dimen 190
enableprimitives 201
error 200
extraprimitives 202
finish 200
fontidentifier 199
fontname 199
forcehmode 201

force synctex line 208
force synctex tag 208
get 186

getattribute 190
getbox 190, 193
getboxresourcedimensions
getcatcode 191
getcount 190
getdelcode 191
getdelcodes 191
getdimen 190

getglue 190
getlccode 191
getlinenumber 200
getlist 195
getlocallevel 207
getmath 194
getmathcode 191
getmathcodes 191
getmuglue 190
getmuskip 190
getnest 196
getpagestate 207
getsfcode 191
getskip 190

gettoks 190
getuccode 191

get synctex line 208
get synctex mode 208
get synctex tag 208
glue 190

hashtokens 201

init rand 207

193

isattribute 190
isbox 190

iscount 190
isdimen 190
isglue 190
ismuglue 190
ismuskip 190
isskip 190

istoks 190

lccode 191
linebreak 206
lists 195
lua_math_random 207
lua _math randomseed 207
mathcode 191
muglue 190

muskip 190

nest 196
normal_rand 207
number 199

nwrite 199
primitives 205
print 197

ptr 196
resetparagraph 206
romannumeral 199
round 199

run 200

runtoks 200
saveboxresource 193
scale 199
scantoks 190

set 186
setattribute 190
setbox 190, 193
setcatcode 191
setcount 190
setdelcode 191
setdelcodes 191
setdimen 190
setglue 190
setlccode 191
setlinenumber 200
setlist 195
setmath 194
setmathcode 191

setmathcodes 191
setmuglue 190
setmuskip 190
setsfcode 191
setskip 190

settoks 190
setuccode 191

set _synctex line 208
set synctex mode 208
set synctex no files 208
set synctex tag 208
sfcode 191

shipout 207
show_context 200
skip 190

sp 200

splitbox 194

sprint 197

toks 190

tprint 198
triggerbuildpage 194
twrite 199

uccode 191
uniformdeviate 207
uniform rand 207
useboxresource 193
write 199

texio

closeinput 210
setescape 210
write 209
write nl 210

token

biggest char 213
commands 213
command_id 213
create 213

expand 212

get active 213

get cmdname 213
get command 213
get csname 213

get expandable 213
get functions table 214
get id 213

get index 213

Libraries 287

get macro 214
get meaning 214
get mode 213

get next 212, 213, 215
get protected 213
get tok 213

is defined 213
is token 213

new 213

put next 215
scan_argument 210
scan_code 210
scan_csname 210
scan_dimen 210

288 Libraries

scan_float 210
scan_glue 210
scan _int 210
scan_keyword 210
scan_keywordcs 210
scan list 210
scan_real 210
scan_string 210
scan token 212
scan_toks 210
scan_word 210
set char 214
set lua 214

set macro 214

Statistics

The following fonts are used in this document:

used filesize version filename
22 .622.732 5.960 cambria.ttc
4 827.080 5.960 cambriai.ttf
11 163.452 1.802 LucidaBrightMathOT-Demi.otf
11 348.296 1.802 LucidaBrightMathOT.otf
4 73.284 1.801 LucidaBrightOT.otf
22 733.500 1.958 latinmodern-math.otf
1 64.684 2.004 1mmonol@-regular.otf
1 64.160 2.004 T1mmonoltcondlO-regular.otf
4 111.536 2.004 1lmromanlO-regular.otf
22 525.008 1.106 texgyredejavu-math.otf
22 601.220 1.632 texgyrepagella-math.otf
4 144,472 2.004 texgyrepagella-regular.otf
1 693.876 2.340 DejaVuSans-Bold.ttf
1 741.536 2.340 DejaVuSans.ttf
4 318.392 2.340 DejaVuSansMono-Bold.ttf
1 245.948 2.340 DejaVuSansMono-Oblique.ttf
3 335.068 2.340 DejaVuSansMono.ttf
9 345.364 2.340 DejaVuSerif-Bold.ttf
1 336.884 2.340 DejaVuSerif-BoldItalic.ttf
1 343.388 2.340 DejaVuSerif-Italic.ttf
4 367.260 2.340 DejaVuSerif.ttf

153 9.007.140

21 files loaded

Statistics 289

. ({
/ \
|
/
N

290 Statistics

	Introduction
	1 Preamble
	2 Basic TEX enhancements
	2.1 Introduction
	2.1.1 Primitive behaviour
	2.1.2 Version information

	2.2 UNICODE text support
	2.2.1 Extended ranges
	2.2.2 Uchar
	2.2.3 Extended tables

	2.3 Attributes
	2.3.1 Nodes
	2.3.2 Attribute registers
	2.3.3 Box attributes

	2.4 LUA related primitives
	2.4.1 directlua
	2.4.2 latelua and lateluafunction
	2.4.3 luaescapestring
	2.4.4 luafunction, luafunctioncall and luadef
	2.4.5 luabytecode and luabytecodecall

	2.5 Catcode tables
	2.5.1 Catcodes
	2.5.2 catcodetable
	2.5.3 initcatcodetable
	2.5.4 savecatcodetable

	2.6 Suppressing errors
	2.6.1 suppressfontnotfounderror
	2.6.2 suppresslongerror
	2.6.3 suppressifcsnameerror
	2.6.4 suppressoutererror
	2.6.5 suppressmathparerror
	2.6.6 suppressprimitiveerror

	2.7 Fonts
	2.7.1 Font syntax
	2.7.2 fontid and setfontid
	2.7.3 noligs and nokerns
	2.7.4 nospaces

	2.8 Tokens, commands and strings
	2.8.1 scantextokens
	2.8.2 toksapp, tokspre, etoksapp, etokspre, gtoksapp, gtokspre, xtoksapp, xtokspre
	2.8.3 csstring, begincsname and lastnamedcs
	2.8.4 clearmarks
	2.8.5 alignmark and aligntab
	2.8.6 letcharcode
	2.8.7 glet
	2.8.8 expanded, immediateassignment and immediateassigned
	2.8.9 ifcondition

	2.9 Boxes, rules and leaders
	2.9.1 outputbox
	2.9.2 vpack, hpack and tpack
	2.9.3 vsplit
	2.9.4 Images and reused box objects
	2.9.5 nohrule and novrule
	2.9.6 gleaders

	2.10 Languages
	2.10.1 hyphenationmin
	2.10.2 boundary, noboundary, protrusionboundary and wordboundary

	2.11 Control and debugging
	2.11.1 Tracing
	2.11.2 outputmode
	2.11.3 draftmode

	2.12 Files
	2.12.1 File syntax
	2.12.2 Writing to file

	2.13 Math

	3 Modifications
	3.1 The merged engines
	3.1.1 The need for change
	3.1.2 Changes from TEX 3.1415926
	3.1.3 Changes from ETEX 2.2
	3.1.4 Changes from PDFTEX 1.40
	3.1.5 Changes from ALEPH RC4
	3.1.6 Changes from standard WEBC

	3.2 The backend primitives
	3.2.1 Less primitives
	3.2.2 pdfextension, pdfvariable and pdffeedback
	3.2.3 Defaults
	3.2.4 Backward compatibility

	3.3 Directions
	3.3.1 Four directions
	3.3.2 How it works
	3.3.3 Controlling glue with breakafterdirmode
	3.3.4 Controling parshapes with shapemode
	3.3.5 Symbols or numbers

	3.4 Implementation notes
	3.4.1 Memory allocation
	3.4.2 Sparse arrays
	3.4.3 Simple single-character csnames
	3.4.4 The compressed format file
	3.4.5 Binary file reading
	3.4.6 Tabs and spaces

	4 Using LUATEX
	4.1 Initialization
	4.1.1 LUATEX as a LUA interpreter
	4.1.2 LUATEX as a LUA byte compiler
	4.1.3 Other commandline processing

	4.2 LUA behaviour
	4.2.1 The LUA version
	4.2.2 Integration in the TDS ecosystem
	4.2.3 Loading libraries
	4.2.4 Executing programs
	4.2.5 Multibyte string functions
	4.2.6 Extra os library functions
	4.2.7 Binary input from files with fio
	4.2.8 Binary input from strings with sio
	4.2.9 Hashes conform sha2
	4.2.10 Locales

	4.3 LUA modules
	4.4 Testing

	5 Languages, characters, fonts and glyphs
	5.1 Introduction
	5.2 Characters, glyphs and discretionaries
	5.3 The main control loop
	5.4 Loading patterns and exceptions
	5.5 Applying hyphenation
	5.6 Applying ligatures and kerning
	5.7 Breaking paragraphs into lines
	5.8 The lang library
	5.8.1 new and id
	5.8.2 hyphenation
	5.8.3 clear_hyphenation and clean
	5.8.4 patterns and clear_patterns
	5.8.5 hyphenationmin
	5.8.6 [pre|post][ex|]hyphenchar
	5.8.7 hyphenate
	5.8.8 [set|get]hjcode

	6 Font structure
	6.1 The font tables
	6.2 Real fonts
	6.3 Virtual fonts
	6.3.1 The structure
	6.3.2 Artificial fonts
	6.3.3 Example virtual font

	6.4 The vf library
	6.5 The font library
	6.5.1 Loading a TFM file
	6.5.2 Loading a VF file
	6.5.3 The fonts array
	6.5.4 Checking a font's status
	6.5.5 Defining a font directly
	6.5.6 Extending a font
	6.5.7 Projected next font id
	6.5.8 Font ids
	6.5.9 Iterating over all fonts

	7 Math
	7.1 Traditional alongside OPENTYPE
	7.2 Unicode math characters
	7.3 Math styles
	7.3.1 mathstyle
	7.3.2 Ustack
	7.3.3 Cramped math styles

	7.4 Math parameter settings
	7.4.1 Many new Umath* primitives
	7.4.2 Font-based math parameters

	7.5 Math spacing
	7.5.1 Inline surrounding space
	7.5.2 Pairwise spacing
	7.5.3 Skips around display math
	7.5.4 Nolimit correction
	7.5.5 Math italic mess
	7.5.6 Script and kerning
	7.5.7 Fixed scripts
	7.5.8 Penalties: mathpenaltiesmode
	7.5.9 Equation spacing: matheqnogapstep

	7.6 Math constructs
	7.6.1 Unscaled fences
	7.6.2 Accent handling
	7.6.3 Radical extensions
	7.6.4 Super- and subscripts
	7.6.5 Scripts on extensibles
	7.6.6 Fractions
	7.6.7 Delimiters: Uleft, Umiddle and Uright

	7.7 Extracting values
	7.7.1 Codes
	7.7.2 Last lines

	7.8 Math mode
	7.8.1 Verbose versions of single-character math commands
	7.8.2 Script commands Unosuperscript and Unosubscript
	7.8.3 Allowed math commands in non-math modes

	7.9 Goodies
	7.9.1 Flattening: mathflattenmode
	7.9.2 Less Tracing
	7.9.3 Math options with mathoption

	8 Nodes
	8.1 LUA node representation
	8.2 Main text nodes
	8.2.1 hlist nodes
	8.2.2 vlist nodes
	8.2.3 rule nodes
	8.2.4 ins nodes
	8.2.5 mark nodes
	8.2.6 adjust nodes
	8.2.7 disc nodes
	8.2.8 math nodes
	8.2.9 glue nodes
	8.2.10 kern nodes
	8.2.11 penalty nodes
	8.2.12 glyph nodes
	8.2.13 boundary nodes
	8.2.14 local_par nodes
	8.2.15 dir nodes
	8.2.16 marginkern nodes

	8.3 Math noads
	8.3.1 Math kernel subnodes
	8.3.2 math_char and math_text_char subnodes
	8.3.3 sub_box and sub_mlist subnodes
	8.3.4 delim subnodes
	8.3.5 Math core nodes
	8.3.6 simple noad nodes
	8.3.7 accent nodes
	8.3.8 style nodes
	8.3.9 choice nodes
	8.3.10 radical nodes
	8.3.11 fraction nodes
	8.3.12 fence nodes

	8.4 Front-end whatsits
	8.4.1 open
	8.4.2 write
	8.4.3 close
	8.4.4 user_defined
	8.4.5 save_pos
	8.4.6 late_lua

	8.5 DVI backend whatsits
	8.5.1 special

	8.6 PDF backend whatsits
	8.6.1 pdf_literal
	8.6.2 pdf_refobj
	8.6.3 pdf_annot
	8.6.4 pdf_start_link
	8.6.5 pdf_end_link
	8.6.6 pdf_dest
	8.6.7 pdf_action
	8.6.8 pdf_thread
	8.6.9 pdf_start_thread
	8.6.10 pdf_end_thread
	8.6.11 pdf_colorstack
	8.6.12 pdf_setmatrix
	8.6.13 pdf_save
	8.6.14 pdf_restore

	8.7 The node library
	8.7.1 Introduction
	8.7.2 is_node
	8.7.3 types and whatsits
	8.7.4 id
	8.7.5 type and subtype
	8.7.6 fields
	8.7.7 has_field
	8.7.8 new
	8.7.9 free, flush_node and flush_list
	8.7.10 copy and copy_list
	8.7.11 prev and next
	8.7.12 current_attr
	8.7.13 hpack
	8.7.14 vpack
	8.7.15 prepend_prevdepth
	8.7.16 dimensions and rangedimensions
	8.7.17 mlist_to_hlist
	8.7.18 slide
	8.7.19 tail
	8.7.20 length and type {count}
	8.7.21 is_char and is_glyph
	8.7.22 traverse
	8.7.23 traverse_id
	8.7.24 traverse_char and traverse_glyph
	8.7.25 traverse_list
	8.7.26 has_glyph
	8.7.27 end_of_math
	8.7.28 remove
	8.7.29 insert_before
	8.7.30 insert_after
	8.7.31 first_glyph
	8.7.32 ligaturing
	8.7.33 kerning
	8.7.34 unprotect_glyph[s]
	8.7.35 protect_glyph[s]
	8.7.36 last_node
	8.7.37 write
	8.7.38 protrusion_skippable

	8.8 Glue handling
	8.8.1 setglue
	8.8.2 getglue
	8.8.3 is_zero_glue

	8.9 Attribute handling
	8.9.1 Attributes
	8.9.2 attribute_list nodes
	8.9.3 attr nodes
	8.9.4 has_attribute
	8.9.5 get_attribute
	8.9.6 find_attribute
	8.9.7 set_attribute
	8.9.8 unset_attribute
	8.9.9 slide
	8.9.10 check_discretionary, check_discretionaries
	8.9.11 flatten_discretionaries
	8.9.12 family_font

	8.10 Two access models
	8.11 Properties

	9 LUA callbacks
	9.1 Registering callbacks
	9.2 File discovery callbacks
	9.2.1 find_read_file and find_write_file
	9.2.2 find_font_file
	9.2.3 find_output_file
	9.2.4 find_format_file
	9.2.5 find_vf_file
	9.2.6 find_map_file
	9.2.7 find_enc_file
	9.2.8 find_pk_file
	9.2.9 find_data_file
	9.2.10 find_opentype_file
	9.2.11 find_truetype_file and find_type1_file
	9.2.12 find_image_file
	9.2.13 File reading callbacks
	9.2.14 open_read_file
	9.2.15 General file readers

	9.3 Data processing callbacks
	9.3.1 process_input_buffer
	9.3.2 process_output_buffer
	9.3.3 process_jobname

	9.4 Node list processing callbacks
	9.4.1 contribute_filter
	9.4.2 buildpage_filter
	9.4.3 build_page_insert
	9.4.4 pre_linebreak_filter
	9.4.5 linebreak_filter
	9.4.6 append_to_vlist_filter
	9.4.7 post_linebreak_filter
	9.4.8 hpack_filter
	9.4.9 vpack_filter
	9.4.10 hpack_quality
	9.4.11 vpack_quality
	9.4.12 process_rule
	9.4.13 pre_output_filter
	9.4.14 hyphenate
	9.4.15 ligaturing
	9.4.16 kerning
	9.4.17 insert_local_par
	9.4.18 mlist_to_hlist

	9.5 Information reporting callbacks
	9.5.1 pre_dump
	9.5.2 start_run
	9.5.3 stop_run
	9.5.4 start_page_number
	9.5.5 stop_page_number
	9.5.6 show_error_hook
	9.5.7 show_error_message
	9.5.8 show_lua_error_hook
	9.5.9 start_file
	9.5.10 stop_file
	9.5.11 call_edit
	9.5.12 finish_synctex
	9.5.13 wrapup_run

	9.6 PDF related callbacks
	9.6.1 finish_pdffile
	9.6.2 finish_pdfpage
	9.6.3 page_objnum_provider
	9.6.4 process_pdf_image_content

	9.7 Font-related callbacks
	9.7.1 define_font
	9.7.2 glyph_not_found

	10 The TEX related libraries
	10.1 The lua library
	10.1.1 Version information
	10.1.2 Bytecode registers
	10.1.3 Chunk name registers
	10.1.4 Introspection

	10.2 The status library
	10.3 The tex library
	10.3.1 Introduction
	10.3.2 Internal parameter values, set and get
	10.3.3 Convert commands
	10.3.4 Last item commands
	10.3.5 Accessing registers: set*, get* and is*
	10.3.6 Character code registers: [get|set]*code[s]
	10.3.7 Box registers: [get|set]box
	10.3.8 Reusing boxes: [use|save]boxresource and getboxresourcedimensions
	10.3.9 triggerbuildpage
	10.3.10 splitbox
	10.3.11 Accessing math parameters: [get|set]math
	10.3.12 Special list heads: [get|set]list
	10.3.13 Semantic nest levels: getnest and ptr
	10.3.14 Print functions
	10.3.15 Helper functions
	10.3.16 Functions for dealing with primitives
	10.3.17 Core functionality interfaces
	10.3.18 Randomizers
	10.3.19 Functions related to synctex

	10.4 The texconfig table
	10.5 The texio library
	10.5.1 write
	10.5.2 write_nl
	10.5.3 setescape
	10.5.4 closeinput

	10.6 The token library
	10.6.1 The scanner
	10.6.2 {Picking up one token}
	10.6.3 Creating tokens
	10.6.4 Macros
	10.6.5 Pushing back
	10.6.6 Nota bene

	10.7 The kpse library
	10.7.1 set_program_name and new
	10.7.2 find_file
	10.7.3 lookup
	10.7.4 init_prog
	10.7.5 readable_file
	10.7.6 expand_path
	10.7.7 expand_var
	10.7.8 expand_braces
	10.7.9 show_path
	10.7.10 var_value
	10.7.11 version

	11 The graphic libraries
	11.1 The img library
	11.1.1 new
	11.1.2 fields
	11.1.3 scan
	11.1.4 copy
	11.1.5 write, immediatewrite, immediatewriteobject
	11.1.6 node
	11.1.7 types
	11.1.8 boxes

	11.2 The mplib library
	11.2.1 new
	11.2.2 statistics
	11.2.3 execute
	11.2.4 finish
	11.2.5 Result table
	11.2.6 Subsidiary table formats
	11.2.7 Pens and pen_info
	11.2.8 Character size information

	12 The fontloader
	12.1 Getting quick information on a font
	12.2 Loading an OPENTYPE or TRUETYPE file
	12.3 Applying a 'feature file'
	12.4 Applying an 'AFM file'
	12.5 Fontloader font tables
	12.6 Table types
	12.6.1 The main table
	12.6.2 glyphs
	12.6.3 map
	12.6.4 private
	12.6.5 cidinfo
	12.6.6 pfminfo
	12.6.7 names
	12.6.8 anchor_classes
	12.6.9 gpos
	12.6.10 gsub
	12.6.11 ttf_tables and ttf_tab_saved
	12.6.12 mm
	12.6.13 mark_classes
	12.6.14 math
	12.6.15 validation_state
	12.6.16 horiz_base and vert_base
	12.6.17 altuni
	12.6.18 vert_variants and horiz_variants
	12.6.19 mathkern
	12.6.20 kerns
	12.6.21 vkerns
	12.6.22 texdata
	12.6.23 lookups

	13 The backend libraries
	13.1 The pdf library
	13.1.1 mapfile, mapline
	13.1.2 [set|get][catalog|info|names|trailer]
	13.1.3 [set|get][pageattributes|pageresources|pagesattributes]
	13.1.4 [set|get][xformattributes|xformresources]
	13.1.5 [set|get][major|minor]version
	13.1.6 getcreationdate
	13.1.7 [set|get]inclusionerrorlevel and [set|get]ignoreunknownimages
	13.1.8 [set|get]suppressoptionalinfo, [set|get]trailerid and [set|get]omitcidset
	13.1.9 [set|get][obj|]compresslevel and [set|get]recompress
	13.1.10 [set|get]gentounicode
	13.1.11 [set|get]decimaldigits
	13.1.12 [set|get]pkresolution
	13.1.13 getlast[obj|link|annot] and getretval
	13.1.14 getmaxobjnum and getobjtype, getfontname, getfontobjnum, getfontsize, getxformname
	13.1.15 [set|get]origin
	13.1.16 [set|get]imageresolution
	13.1.17 [set|get][link|dest|thread|xform]margin
	13.1.18 get[pos|hpos|vpos]
	13.1.19 [has|get]matrix
	13.1.20 print
	13.1.21 immediateobj
	13.1.22 obj
	13.1.23 refobj
	13.1.24 reserveobj
	13.1.25 getpageref
	13.1.26 registerannot
	13.1.27 newcolorstack
	13.1.28 setfontattributes

	13.2 The pdfe library
	13.2.1 Introduction
	13.2.2 open, new, status, close, unencrypt
	13.2.3 size, version, getnofobjects, getnofpages
	13.2.4 get[catalog|trailer|info]
	13.2.5 getpage, getbox
	13.2.6 get[string|integer|number|boolean|name]
	13.2.7 get[from][dictionary|array|stream]
	13.2.8 [open|close|readfrom][whole|]stream
	13.2.9 getfrom[dictionary|array]
	13.2.10 [dictionary|array]totable
	13.2.11 getfromreference

	13.3 Memory streams
	13.4 The pdfscanner library

	Topics
	Primitives
	Callbacks
	Nodes
	Libraries
	Statistics

