
LuaTEX

Reference

Manual

stable

April 2023

Version 1.16

LuaTEX

Reference

Manual

copyright : LuaTEX development team

more info : www.luatex.org

version : April 8, 2023

1

Contents

Introduction 13

1 Preamble 17

2 Basic TEX enhancements 19

2.1 Introduction 19

2.1.1 Primitive behaviour 19

2.1.2 Version information 19

2.2 UNICODE text support 20

2.2.1 Extended ranges 20

2.2.2 \Uchar 21

2.2.3 Extended tables 21

2.3 Attributes 21

2.3.1 Nodes 21

2.3.2 Attribute registers 22

2.3.3 Box attributes 22

2.4 LUA related primitives 23

2.4.1 \directlua 23

2.4.2 \latelua and \lateluafunction 25

2.4.3 \luaescapestring 25

2.4.4 \luafunction, \luafunctioncall and \luadef 25

2.4.5 \luabytecode and \luabytecodecall 26

2.5 Catcode tables 27

2.5.1 Catcodes 27

2.5.2 \catcodetable 27

2.5.3 \initcatcodetable 27

2.5.4 \savecatcodetable 27

2.6 Suppressing errors 28

2.6.1 \suppressfontnotfounderror 28

2.6.2 \suppresslongerror 28

2.6.3 \suppressifcsnameerror 28

2.6.4 \suppressoutererror 28

2.6.5 \suppressmathparerror 28

2.6.6 \suppressprimitiveerror 29

2.7 Fonts 29

2.7.1 Font syntax 29

2.7.2 \fontid and \setfontid 29

2.7.3 \noligs and \nokerns 29

2.7.4 \nospaces 30

2.8 Tokens, commands and strings 30

2.8.1 \scantextokens 30

2.8.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,

\xtoksapp, \xtokspre 30

2.8.3 \csstring, \begincsname and \lastnamedcs 31

2

2.8.4 \clearmarks 31

2.8.5 \alignmark and \aligntab 31

2.8.6 \letcharcode 31

2.8.7 \glet 32

2.8.8 \expanded, \immediateassignment and \immediateassigned 32

2.8.9 \ifcondition 33

2.9 Boxes, rules and leaders 34

2.9.1 \outputbox 34

2.9.2 \vpack, \hpack and \tpack 34

2.9.3 \vsplit 34

2.9.4 Images and reused box objects 34

2.9.5 \nohrule and \novrule 35

2.9.6 \gleaders 35

2.10 Languages 35

2.10.1 \hyphenationmin 35

2.10.2 \boundary, \noboundary, \protrusionboundary and \wordboundary 35

2.10.3 \glyphdimensionsmode 36

2.11 Control and debugging 36

2.11.1 Tracing 36

2.11.2 \outputmode 36

2.11.3 \draftmode 36

2.12 Files 37

2.12.1 File syntax 37

2.12.2 Writing to file 37

2.13 Math 37

3 Modifications 39

3.1 The merged engines 39

3.1.1 The need for change 39

3.1.2 Changes from TEX 3.1415926 39

3.1.3 Changes from 𝜀-TEX 2.2 40

3.1.4 Changes from PDFTEX 1.40 40

3.1.5 Changes from ALEPH RC4 43

3.1.6 Changes from anywhere 44

3.1.7 Changes from standard WEB2C 44

3.2 The backend primitives 44

3.2.1 Less primitives 44

3.2.2 \pdfextension, \pdfvariable and \pdffeedback 45

3.2.3 Defaults 49

3.2.4 Backward compatibility 50

3.3 Directions 51

3.3.1 Four directions 51

3.3.2 How it works 51

3.3.3 Controlling glue with \breakafterdirmode 53

3.3.4 Controling parshapes with \shapemode 54

3.3.5 Symbols or numbers 54

3

3.4 Implementation notes 55

3.4.1 Memory allocation 55

3.4.2 Sparse arrays 56

3.4.3 Simple single-character csnames 56

3.4.4 The compressed format file 56

3.4.5 Binary file reading 56

3.4.6 Tabs and spaces 57

3.4.7 Hyperlinks 57

4 Using LUATEX 59

4.1 Initialization 59

4.1.1 LUATEX as a LUA interpreter 59

4.1.2 LUATEX as a LUA byte compiler 59

4.1.3 Other commandline processing 59

4.2 LUA behaviour 62

4.2.1 The LUA version 62

4.2.2 Integration in the TDS ecosystem 62

4.2.3 Loading libraries 62

4.2.4 Executing programs 63

4.2.5 Multibyte string functions 63

4.2.6 Extra os library functions 64

4.2.7 Binary input from files with fio 66

4.2.8 Binary input from strings with sio 66

4.2.9 Hashes conform sha2 66

4.2.10 Locales 67

4.3 LUA modules 67

4.4 Testing 67

5 Languages, characters, fonts and glyphs 69

5.1 Introduction 69

5.2 Characters, glyphs and discretionaries 69

5.3 The main control loop 75

5.4 Loading patterns and exceptions 77

5.5 Applying hyphenation 79

5.6 Applying ligatures and kerning 81

5.7 Breaking paragraphs into lines 83

5.8 The lang library 83

5.8.1 new and id 83

5.8.2 hyphenation 84

5.8.3 clear_hyphenation and clean 84

5.8.4 patterns and clear_patterns 84

5.8.5 hyphenationmin 84

5.8.6 [pre|post][ex|]hyphenchar 84

5.8.7 hyphenate 85

5.8.8 [set|get]hjcode 85

4

6 Font structure 87

6.1 The font tables 87

6.2 Real fonts 92

6.3 Virtual fonts 94

6.3.1 The structure 94

6.3.2 Artificial fonts 96

6.3.3 Example virtual font 96

6.4 The vf library 97

6.5 The font library 97

6.5.1 Loading a TFM file 97

6.5.2 Loading a VF file 98

6.5.3 The fonts array 98

6.5.4 Checking a font’s status 99

6.5.5 Defining a font directly 99

6.5.6 Extending a font 99

6.5.7 Projected next font id 99

6.5.8 Font ids 100

6.5.9 Iterating over all fonts 100

6.5.10 \glyphdimensionsmode 100

6.5.11 \discretionaryligaturemode 101

7 Math 103

7.1 Traditional alongside OPENTYPE 103

7.2 Unicode math characters 103

7.3 Math styles 105

7.3.1 \mathstyle 105

7.3.2 \Ustack 106

7.3.3 Cramped math styles 106

7.4 Math parameter settings 108

7.4.1 Many new \Umath* primitives 108

7.4.2 Font-based math parameters 109

7.5 Math spacing 113

7.5.1 Inline surrounding space 113

7.5.2 Pairwise spacing 114

7.5.3 Skips around display math 115

7.5.4 Nolimit correction 115

7.5.5 Math italic mess 116

7.5.6 Script and kerning 116

7.5.7 Fixed scripts 117

7.5.8 Penalties: \mathpenaltiesmode 117

7.5.9 Equation spacing: \matheqnogapstep 118

7.6 Math constructs 118

7.6.1 Unscaled fences 118

7.6.2 Accent handling 119

7.6.3 Radical extensions 119

7.6.4 Super- and subscripts 120

7.6.5 Scripts on extensibles 120

5

7.6.6 Fractions 122

7.6.7 Delimiters: \Uleft, \Umiddle and \Uright 122

7.7 Extracting values 123

7.7.1 Codes 123

7.7.2 Last lines 123

7.8 Math mode 124

7.8.1 Verbose versions of single-character math commands 124

7.8.2 Script commands \Unosuperscript and \Unosubscript 124

7.8.3 Allowed math commands in non-math modes 124

7.9 Goodies 125

7.9.1 Flattening: \mathflattenmode 125

7.9.2 Less Tracing 125

7.9.3 Math options with \mathdefaultsmode 125

7.9.4 Math options with \mathoption 126

8 Nodes 127

8.1 LUA node representation 127

8.2 Main text nodes 127

8.2.1 hlist nodes 128

8.2.2 vlist nodes 128

8.2.3 rule nodes 128

8.2.4 ins nodes 129

8.2.5 mark nodes 129

8.2.6 adjust nodes 130

8.2.7 disc nodes 130

8.2.8 math nodes 130

8.2.9 glue nodes 131

8.2.10 kern nodes 132

8.2.11 penalty nodes 132

8.2.12 glyph nodes 132

8.2.13 boundary nodes 134

8.2.14 local_par nodes 134

8.2.15 dir nodes 134

8.2.16 marginkern nodes 135

8.3 Math noads 135

8.3.1 Math kernel subnodes 135

8.3.2 math_char and math_text_char subnodes 135

8.3.3 sub_box and sub_mlist subnodes 135

8.3.4 delim subnodes 136

8.3.5 Math core nodes 136

8.3.6 simple noad nodes 137

8.3.7 accent nodes 137

8.3.8 style nodes 137

8.3.9 choice nodes 137

8.3.10 radical nodes 138

8.3.11 fraction nodes 138

8.3.12 fence nodes 138

6

8.4 Front-end whatsits 139

8.4.1 open 139

8.4.2 write 139

8.4.3 close 139

8.4.4 user_defined 139

8.4.5 save_pos 140

8.4.6 late_lua 140

8.5 DVI backend whatsits 140

8.5.1 special 140

8.6 PDF backend whatsits 141

8.6.1 pdf_literal and pdf_late_literal 141

8.6.2 pdf_refobj 141

8.6.3 pdf_annot 141

8.6.4 pdf_start_link 141

8.6.5 pdf_end_link 142

8.6.6 pdf_dest 142

8.6.7 pdf_action 142

8.6.8 pdf_thread 143

8.6.9 pdf_start_thread 143

8.6.10 pdf_end_thread 143

8.6.11 pdf_colorstack 143

8.6.12 pdf_setmatrix 144

8.6.13 pdf_save 144

8.6.14 pdf_restore 144

8.7 The node library 144

8.7.1 Introduction 144

8.7.2 is_node 145

8.7.3 types and whatsits 145

8.7.4 id 145

8.7.5 type and subtype 145

8.7.6 fields 146

8.7.7 has_field 146

8.7.8 new 146

8.7.9 free, flush_node and flush_list 146

8.7.10 copy and copy_list 147

8.7.11 prev and next 147

8.7.12 current_attr 147

8.7.13 hpack 148

8.7.14 vpack 148

8.7.15 prepend_prevdepth 149

8.7.16 dimensions and rangedimensions 149

8.7.17 mlist_to_hlist 150

8.7.18 slide 150

8.7.19 tail 150

8.7.20 length and type count 151

8.7.21 is_char and is_glyph 151

7

8.7.22 traverse 151

8.7.23 traverse_id 152

8.7.24 traverse_char and traverse_glyph 152

8.7.25 traverse_list 153

8.7.26 has_glyph 153

8.7.27 end_of_math 153

8.7.28 remove 153

8.7.29 insert_before 153

8.7.30 insert_after 154

8.7.31 first_glyph 154

8.7.32 ligaturing 154

8.7.33 kerning 154

8.7.34 unprotect_glyph[s] 155

8.7.35 protect_glyph[s] 155

8.7.36 last_node 155

8.7.37 write 155

8.7.38 protrusion_skippable 155

8.8 Glue handling 155

8.8.1 setglue 155

8.8.2 getglue 156

8.8.3 is_zero_glue 156

8.9 Attribute handling 156

8.9.1 Attributes 156

8.9.2 attribute_list nodes 156

8.9.3 attr nodes 157

8.9.4 has_attribute 157

8.9.5 get_attribute 157

8.9.6 find_attribute 157

8.9.7 set_attribute 157

8.9.8 unset_attribute 158

8.9.9 slide 158

8.9.10 check_discretionary, check_discretionaries 158

8.9.11 flatten_discretionaries 158

8.9.12 family_font 158

8.10 Two access models 159

8.11 Properties 164

9 LUA callbacks 169

9.1 Registering callbacks 169

9.2 File discovery callbacks 169

9.2.1 find_read_file and find_write_file 170

9.2.2 find_font_file 170

9.2.3 find_output_file 170

9.2.4 find_format_file 170

9.2.5 find_vf_file 171

9.2.6 find_map_file 171

9.2.7 find_enc_file 171

8

9.2.8 find_pk_file 171

9.2.9 find_data_file 171

9.2.10 find_opentype_file 171

9.2.11 find_truetype_file and find_type1_file 171

9.2.12 find_image_file 172

9.3 File reading callbacks 172

9.3.1 open_read_file 172

9.3.2 General file readers 173

9.4 Data processing callbacks 174

9.4.1 process_input_buffer 174

9.4.2 process_output_buffer 174

9.4.3 process_jobname 174

9.5 Node list processing callbacks 174

9.5.1 contribute_filter 174

9.5.2 buildpage_filter 175

9.5.3 build_page_insert 175

9.5.4 pre_linebreak_filter 176

9.5.5 linebreak_filter 177

9.5.6 append_to_vlist_filter 177

9.5.7 post_linebreak_filter 177

9.5.8 hpack_filter 177

9.5.9 vpack_filter 178

9.5.10 hpack_quality 178

9.5.11 vpack_quality 178

9.5.12 process_rule 179

9.5.13 pre_output_filter 179

9.5.14 hyphenate 179

9.5.15 ligaturing 179

9.5.16 kerning 180

9.5.17 insert_local_par 180

9.5.18 mlist_to_hlist 180

9.6 Information reporting callbacks 180

9.6.1 pre_dump 180

9.6.2 start_run 181

9.6.3 stop_run 181

9.6.4 start_page_number 181

9.6.5 stop_page_number 181

9.6.6 show_error_hook 181

9.6.7 show_error_message 182

9.6.8 show_lua_error_hook 182

9.6.9 start_file 182

9.6.10 stop_file 182

9.6.11 call_edit 182

9.6.12 finish_synctex 183

9.6.13 wrapup_run 183

9

9.7 PDF related callbacks 183

9.7.1 finish_pdffile 183

9.7.2 finish_pdfpage 183

9.7.3 page_order_index 183

9.7.4 process_pdf_image_content 184

9.8 Font-related callbacks 184

9.8.1 define_font 184

9.8.2 glyph_not_found and glyph_info 185

10 The TEX related libraries 187

10.1 The lua library 187

10.1.1 Version information 187

10.1.2 Bytecode registers 187

10.1.3 Chunk name registers 187

10.1.4 Introspection 188

10.2 The status library 188

10.3 The tex library 190

10.3.1 Introduction 190

10.3.2 Internal parameter values, set and get 190

10.3.3 Convert commands 193

10.3.4 Last item commands 194

10.3.5 Accessing registers: set*, get* and is* 194

10.3.6 Character code registers: [get|set]*code[s] 196

10.3.7 Box registers: [get|set]box 197

10.3.8 Reusing boxes: [use|save]boxresource and getboxresourcedimensions 198

10.3.9 triggerbuildpage 198

10.3.10 splitbox 198

10.3.11 Accessing math parameters: [get|set]math 198

10.3.12 Special list heads: [get|set]list 200

10.3.13 Semantic nest levels: getnest and ptr 200

10.3.14 Print functions 201

10.3.15 Helper functions 203

10.3.16 Functions for dealing with primitives 206

10.3.17 Core functionality interfaces 210

10.3.18 Randomizers 212

10.3.19 Functions related to synctex 212

10.4 The texconfig table 212

10.5 The texio library 214

10.5.1 write 214

10.5.2 write_nl 214

10.5.3 setescape 215

10.5.4 closeinput 215

10.6 The token library 215

10.6.1 The scanner 215

10.6.2 Picking up one token 217

10.6.3 Creating tokens 218

10.6.4 Macros 219

10

10.6.5 Pushing back 219

10.6.6 Nota bene 220

10.7 The kpse library 221

10.7.1 set_program_name and new 221

10.7.2 record_input_file and record_output_file 222

10.7.3 find_file 222

10.7.4 lookup 223

10.7.5 init_prog 223

10.7.6 readable_file 223

10.7.7 expand_path 224

10.7.8 expand_var 224

10.7.9 expand_braces 224

10.7.10 show_path 224

10.7.11 var_value 224

10.7.12 version 224

11 The graphic libraries 225

11.1 The img library 225

11.1.1 new 225

11.1.2 fields 226

11.1.3 scan 227

11.1.4 copy 228

11.1.5 write, immediatewrite, immediatewriteobject 228

11.1.6 node 229

11.1.7 types 229

11.1.8 boxes 229

11.2 The mplib library 230

11.2.1 new 230

11.2.2 statistics 231

11.2.3 execute 231

11.2.4 finish 231

11.2.5 Result table 232

11.2.6 Subsidiary table formats 234

11.2.7 Pens and pen_info 235

11.2.8 Character size information 236

12 The fontloader 237

12.1 Getting quick information on a font 237

12.2 Loading an OPENTYPE or TRUETYPE file 237

12.3 Applying a ‘feature file’ 239

12.4 Applying an ‘AFM file’ 239

12.5 Fontloader font tables 239

12.6 Table types 240

12.6.1 The main table 240

12.6.2 glyphs 242

12.6.3 map 245

12.6.4 private 246

11

12.6.5 cidinfo 246

12.6.6 pfminfo 246

12.6.7 names 247

12.6.8 anchor_classes 248

12.6.9 gpos 248

12.6.10 gsub 249

12.6.11 ttf_tables and ttf_tab_saved 249

12.6.12 mm 249

12.6.13 mark_classes 250

12.6.14 math 250

12.6.15 validation_state 251

12.6.16 horiz_base and vert_base 251

12.6.17 altuni 251

12.6.18 vert_variants and horiz_variants 251

12.6.19 mathkern 252

12.6.20 kerns 252

12.6.21 vkerns 252

12.6.22 texdata 252

12.6.23 lookups 252

13 The HarfBuzz libraries 255

13.1 The luaharfbuzz library 255

13.1.1 Example 273

14 The backend libraries 279

14.1 The pdf library 279

14.1.1 mapfile, mapline 279

14.1.2 [set|get][catalog|info|names|trailer] 279

14.1.3 [set|get][pageattributes|pageresources|pagesattributes] 279

14.1.4 [set|get][xformattributes|xformresources] 279

14.1.5 [set|get][major|minor]version 279

14.1.6 getcreationdate 280

14.1.7 [set|get]inclusionerrorlevel and [set|get]ignoreunknownimages 280

14.1.8 [set|get]suppressoptionalinfo, [set|get]trailerid,

[set|get]omitcidset, [set|get]omitinfo and [set|get]omitmediabox 280

14.1.9 [set|get][obj|]compresslevel and [set|get]recompress 280

14.1.10 [set|get]gentounicode 280

14.1.11 [set|get]decimaldigits 280

14.1.12 [set|get]pkresolution 281

14.1.13 getlast[obj|link|annot] and getretval 281

14.1.14 getmaxobjnum and getobjtype, getfontname, getfontobjnum,

getfontsize, getxformname 281

14.1.15 [set|get]origin 281

14.1.16 [set|get]imageresolution 281

14.1.17 [set|get][link|dest|thread|xform]margin 281

14.1.18 get[pos|hpos|vpos] 281

14.1.19 [has|get]matrix 281

12

14.1.20 print 282

14.1.21 immediateobj 282

14.1.22 obj 283

14.1.23 refobj 284

14.1.24 reserveobj 284

14.1.25 getpageref 284

14.1.26 registerannot 284

14.1.27 newcolorstack 284

14.1.28 setfontattributes 285

14.2 The pdfe library 285

14.2.1 Introduction 285

14.2.2 open, new, getstatus, close, unencrypt 285

14.2.3 getsize, getversion, getnofobjects, getnofpages, getmemoryusage 286

14.2.4 get[catalog|trailer|info] 286

14.2.5 getpage, getbox 286

14.2.6 get[string|integer|number|boolean|name], type 287

14.2.7 get[dictionary|array|stream] 287

14.2.8 [open|close|readfrom|readfromwhole]stream 287

14.2.9 getfrom[dictionary|array] 288

14.2.10 [dictionary|array]totable 288

14.2.11 getfromreference 288

14.3 Memory streams 289

14.4 The pdfscanner library 289

Topics 293

Primitives 297

Callbacks 305

Nodes 307

Libraries 309

Statistics 317

13Introduction

Introduction

This is the reference manual of LuaTEX. We don’t claim it is complete and we assume that the

reader knows about TEX as described in “The TEX Book”, the “𝜀-TEX manual”, the “pdfTEX man-
ual”, etc. Additional reference material is published in journals of user groups and ConTEXt

related documentation.

It took about a decade to reach stable version 1.0, but for good reason. Successive versions

brought new functionality, more control, some cleanup of internals. Experimental features

evolved into stable ones or were dropped. Already quite early LuaTEX could be used for produc-

tion and it was used on a daily basis by the authors. Successive versions sometimes demanded

an adaption to the Lua interfacing, but the concepts were unchanged. The current version can

be considered stable in functionality and there will be no fundamental changes. Of course we

then can decide to move towards version 2.00 with different properties.

Don’t expect LuaTEX to behave the same as pdfTEX! Although the core functionality of that 8 bit

engine was starting point, it has been combined with the directional support of Omega (Aleph).

But, LuaTEX can behave different due to its wide (32 bit) characters, many registers and large

memory support. The pdf code produced differs from pdfTEX but users will normally not notice

that. There is native utf input, support for large (more than 8 bit) fonts, and the math machinery

is tuned for OpenType math. There is support for directional typesetting too. The log output

can differ from other engines and will likely differ more as we move forward. When you run

plain TEX for sure LuaTEX runs slower than pdfTEX but when you run for instance ConTEXt MkIV

in many cases it runs faster, especially when you have a bit more complex documents or input.

Anyway, 32 bit all--over combined with more features has a price, but on a modern machine this

is no real problem.

Testing is done with ConTEXt, but LuaTEX should work fine with other macro packages too. For

that purpose we provide generic font handlers that are mostly the same as used in ConTEXt.

Discussing specific implementations is beyond this manual. Even when we keep LuaTEX lean

and mean, we already have enough to discuss here.

LuaTEX consists of a number of interrelated but (still) distinguishable parts. The organization

of the source code is adapted so that it can glue all these components together. We continue

cleaning up side effects of the accumulated code in TEX engines (especially code that is not

needed any longer).

‣ We started out with most of pdfTEX version 1.40.9. The code base was converted to C and split

inmodules. Experimental features were removed and utility macros are not inherited because

their functionality can be programmed in Lua. The number of backend interface commands

has been reduced to a few. The so called extensions are separated from the core (which we

try to keep close to the original TEX core). Some mechanisms like expansion and protrusion

can behave different from the original due to some cleanup and optimization. Some whatsit

based functionality (image support and reusable content) is now core functionality. We don’t

stay in sync with pdfTEX development.

‣ The direction model from Aleph RC4 (which is derived from Omega) is included. The related

primitives are part of core LuaTEX but at the node level directional support is no longer based

Introduction14

on so called whatsits but on real nodes with relevant properties. The number of directions is

limited to the useful set and the backend has been made direction aware.

‣ Neither Aleph’s I/O translation processes, nor tcx files, nor encTEX are available. These en-

coding-related functions are superseded by a Lua-based solution (reader callbacks). In a

similar fashion all file io can be intercepted.

‣ We currently use Lua 5.3.*. There are few Lua libraries that we consider part of the core

Lua machinery, for instance lpeg. There are additional Lua libraries that interface to the

internals of TEX. We also keep the Lua 5.2 bit32 library around.

‣ There are various TEX extensions but only those that cannot be done using the Lua interfaces.

The math machinery often has two code paths: one traditional and the other more suitable

for wide OpenType fonts. Here we follow the Microsoft specifications as much as possible.

Some math functionality has been opened up a bit so that users have more control.

‣ The fontloader uses parts of FontForge 2008.11.17 combined with additional code specific for

usage in a TEX engine. We try to minimize specific font support to what TEX needs: character

references and dimensions and delegate everything else to Lua. That way we keep TEX open

for extensions without touching the core. In order to minimize dependencies at some point

we may decide to make this an optional library.

‣ The MetaPost library is integral part of LuaTEX. This gives TEX some graphical capabilities

using a relative high speed graphical subsystem. Again Lua is used as glue between the

frontend and backend. Further development of MetaPost is closely related to LuaTEX.

‣ The virtual font technology that comes with TEX has been integrated into the font machinery

in a way that permits creating virtual fonts at runtime. Because LuaTEX can also act as a

Lua interpreter this means that a complete TEX workflow can be built without the need for

additional programs.

‣ The versions starting from 1.09 no longer use the poppler library for inclusion but a light-

weight dedicated one. This removes a dependency but also makes the inclusion code of

LuaTEX different from pdfTEX. In fact it was already much different due to the Lua image

interfacing.

We try to keep upcoming versions compatible but intermediate releases can contain experimen-

tal features. A general rule is that versions that end up on TEXLive and/or are released around

ConTEXt meetings are stable. Any version between the yearly TEXLive releases are to be con-

sidered beta and in the repository end up as trunk releases. We have an experimental branch

that we use for development but there is no support for any of its experimental features. Inter-

mediate releases (from trunk) are normally available via the ConTEXt distribution channels (the

garden and so called minimals).

Version 1.10 is more or less an endpoint in development: this is what you get. Because not only

ConTEXt, that we can adapt rather easily, uses LuaTEX, we cannot change fundamentals without

unforeseen consequences. By now it has been proven that Lua can be used to extend the core

functionality so there is no need to add more, and definitely no hard coded solutions for (not so)

common problems. Of course there will be bug fixes, maybe some optimization, and there might

15Introduction

even be some additions or non-intrusive improvements, but only after testing outside the stable

release. After all, the binary is already more than large enough and there is not that much to

gain.

You might find Lua helpers that are not yet documented. These are considered experimental,

although when you encounter them in a ConTEXt version that has been around for a while you

can assume that they will stay. Of course it can just be that we forgot to document them yet.

A manual like this is not really meant as tutorial, for that we refer to documents that ship with

ConTEXt, articles, etc. It is also never complete enough for all readers. We try to keep up but the

reader needs to realize that it’s all volunteer work done in spare time. And for sure, complaining

about a bad manual or crappy documentation will not really motivate us to spend more time on

it. That being said, we hope that this document is useful.

Hans Hagen

Harmut Henkel

Taco Hoekwater

Luigi Scarso

Version : April 8, 2023

LuaTEX : luatex 1.16 / 7569

ConTEXt : MkIV 2019.07.04 12:29

Introduction16

17Preamble

1 Preamble

This is a reference manual, not a tutorial. This means that we discuss changes relative to tradi-

tional TEX and also present new functionality. As a consequence we will refer to concepts that

we assume to be known or that might be explained later.

The average user doesn’t need to know much about what is in this manual. For instance fonts

and languages are normally dealt with in the macro package that you use. Messing around with

node lists is also often not really needed at the user level. If you do mess around, you’d better

know what you’re dealing with. Reading “The TEX Book” by Donald Knuth is a good investment

of time then also because it’s good to know where it all started. A more summarizing overview

is given by “TEX by Topic” by Victor Eijkhout. You might want to peek in “The 𝜀-TEX manual” and
documentation about pdfTEX.

But . . . if you’re here because of Lua, then all you need to know is that you can call it from within

a run. The macro package that you use probably will provide a few wrapper mechanisms but

the basic \directlua command that does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it’s a lot you can also put it in a file and load that

file with the usual Lua commands.

If you still decide to read on, then it’s good to knowwhat nodes are, so we do a quick introduction

here. If you input this text:

Hi There

eventually we will get a linked lists of nodes, which in ascii art looks like:

H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e

When we have a paragraph, we actually get something:

[localpar] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e <=> [glue]

Each character becomes a so called glyph node, a record with properties like the current font,

the character code and the current language. Spaces become glue nodes. There are many node

types that we will discuss later. Each node points back to a previous node or next node, given

that these exist.

It’s also good to know beforehand that TEX is basically centered around creating paragraphs

and pages. The par builder takes a list and breaks it into lines. We turn horizontal material

into vertical. Lines are so called boxes and can be separated by glue, penalties and more. The

page builder accumulates lines and when feasible triggers an output routine that will take the

list so far. Constructing the actual page is not part of TEX but done using primitives that permit

manipulation of boxes. The result is handled back to TEX and flushed to a (often pdf) file.

The LuaTEX engine provides hooks for Lua code at nearly every reasonable point in the process:

collecting content, hyphenating, applying font features, breaking into lines, etc. This means

Preamble18

that you can overload TEX’s natural behaviour, which still is the benchmark. When we refer to

‘callbacks’ we means these hooks.

Where plain TEX is basically a basic framework for writing a specific style, macro packages

like ConTEXt and L
ATEX provide the user a whole lot of additional tools to make documents look

good. They hide the dirty details of font management, language demands, turning structure

into typeset results, wrapping pages, including images, and so on. You should be aware of the

fact that when you hook in your own code to manipulate lists, this can interfere with the macro

package that you use.

When you read about nodes in the following chapters it’s good to keep in mind their commands

that relate to then. Here are a few:

COMMAND NODE EXPLANATION

\hbox hlist horizontal box

\vbox vlist vertical box with the baseline at the bottom

\vtop vlist vertical box with the baseline at the top

\hskip glue horizontal skip with optional stretch and shrink

\vskip glue vertical skip with optional stretch and shrink

\kern kern horizontal or vertical fixed skip

\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdir(ection) dir a change in text direction

For now this should be enough to enable you to understand the next chapters.

19Basic TEX enhancements

2 Basic TEX enhancements

2.1 Introduction

2.1.1 Primitive behaviour

From day one, LuaTEX has offered extra features compared to the superset of pdfTEX, which

includes 𝜀-TEX, and Aleph. This has not been limited to the possibility to execute Lua code via
\directlua, but LuaTEX also adds functionality via new TEX-side primitives or extensions to

existing ones.

When LuaTEX starts up in ‘iniluatex’ mode (luatex -ini), it defines only the primitive commands

known by TEX82 and the one extra command \directlua. As is fitting, a Lua function has to be

called to add the extra primitives to the user environment. The simplest method to get access

to all of the new primitive commands is by adding this line to the format generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this

early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before

the above line:

\catcode `\{=1

\catcode `\}=2

More fine-grained primitives control is possible and you can look up the details in section 10.3.16.

For simplicity’s sake, this manual assumes that you have executed the \directlua command as

given above.

The startup behaviour documented above is considered stable in the sense that there will not

be backward-incompatible changes any more. We have promoted some rather generic pdfTEX

primitives to core LuaTEX ones, and the few that we inherited from Aleph (Omega) are also

promoted. Effectively this means that we now only have the tex, etex and luatex sets left.

In Chapter 3 we discuss several primitives that are derived from pdfTEX and Aleph (Omega).

Here we stick to real new ones. In the chapters on fonts and math we discuss a few more new

ones.

2.1.2 Version information

2.1.2.1 \luatexbanner, \luatexversion and \luatexrevision

There are three new primitives to test the version of LuaTEX:

PRIMITIVE VALUE EXPLANATION

\luatexbanner This is LuaTeX, Version 1.16.1 the banner reported on the command line

Basic TEX enhancements20

\luatexversion 116 a combination of major and minor number

\luatexrevision 1 the revision number, the current value is

The official LuaTEX version is defined as follows:

‣ The major version is the integer result of \luatexversion divided by 100. The primitive is

an ‘internal variable’, so you may need to prefix its use with \the depending on the context.

‣ The minor version is the two-digit result of \luatexversion modulo 100.

‣ The revision is reported by \luatexrevision. This primitive expands to a positive integer.

‣ The full version number consists of the major version, minor version and revision, separated

by dots.

2.1.2.2 \formatname

The \formatname syntax is identical to \jobname. In iniTEX, the expansion is empty. Otherwise,

the expansion is the value that \jobname had during the iniTEX run that dumped the currently

loaded format. You can use this token list to provide your own version info.

2.2 UNICODE text support

2.2.1 Extended ranges

Text input and output is now considered to be Unicode text, so input characters can use the

full range of Unicode (220 + 216 − 1 = 0x10FFFF). Later chapters will talk of characters and

glyphs. Although these are not interchangeable, they are closely related. During typesetting, a

character is always converted to a suitable graphic representation of that character in a specific

font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as a

character. Inside LuaTEX there is no clear separation between the two concepts. Because the

subtype of a glyph node can be changed in Lua it is up to the user. Subtypes larger than 255

indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate

for a larger range of acceptable numbers. For instance, \char now accepts values between 0

and 1,114,111. This should not be a problem for well-behaved input files, but it could create in-
compatibilities for input that would have generated an error when processed by older TEX-based

engines. The affected commands with an altered initial (left of the equal sign) or secondary (right

of the equal sign) value are: \char, \lccode, \uccode, \hjcode, \catcode, \sfcode, \efcode,

\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input

files can be pre-processed using the reader callback. This will be explained in section 9.3.

Normalization of the Unicode input is on purpose not built-in and can be handled by a macro

package during callback processing. We have made some practical choices and the user has to

live with those.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode

range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
𝑐 >= 1,114,112, LuaTEX will actually print the single byte corresponding to 𝑐 minus 1,114,112.

21Basic TEX enhancements

Output to the terminal uses ^^ notation for the lower control range (𝑐 < 32), with the exception
of ^^I, ^^J and ^^M. These are considered ‘safe’ and therefore printed as-is. You can disable

escaping with texio.setescape(false) in which case you get the normal characters on the

console.

2.2.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

2.2.3 Extended tables

All traditional TEX and 𝜀-TEX registers can be 16-bit numbers. The affected commands are:

\count

\dimen

\skip

\muskip

\marks

\toks

\countdef

\dimendef

\skipdef

\muskipdef

\toksdef

\insert

\box

\unhbox

\unvbox

\copy

\unhcopy

\unvcopy

\wd

\ht

\dp

\setbox

\vsplit

Because font memory management has been rewritten, character properties in fonts are no

longer shared among font instances that originate from the same metric file. Of course we

share fonts in the backend when possible so that the resulting pdf file is as efficient as possible,

but for instance also expansion and protrusion no longer use copies as in pdfTEX.

2.3 Attributes

2.3.1 Nodes

When TEX reads input it will interpret the stream according to the properties of the characters.

Some signal a macro name and trigger expansion, others open and close groups, trigger math

mode, etc. What’s left over becomes the typeset text. Internally we get linked list of nodes.

Characters become glyph nodes that have for instance a font and char property and \kern

10pt becomes a kern node with a width property. Spaces are alien to TEX as they are turned

into glue nodes. So, a simple paragraph is mostly a mix of sequences of glyph nodes (words)

and glue nodes (spaces).

The sequences of characters at some point are extended with disc nodes that relate to hy-

phenation. After that font logic can be applied and we get a list where some characters can

be replaced, for instance multiple characters can become one ligature, and font kerns can be

injected. This is driven by the font properties.

Boxes (like \hbox and \vbox) become hlist or vlist nodes with width, height, depth and shift

properties and a pointer list to its actual content. Boxes can be constructed explicitly or can

Basic TEX enhancements22

be the result of subprocesses. For instance, when lines are broken into paragraphs, the lines

are a linked list of hlist nodes.

So, to summarize: all that you enter as content eventually becomes a node, often as part of a

(nested) list structure. They have a relative small memory footprint and carry only the minimal

amount of information needed. In traditional TEX a character node only held the font and slot

number, in LuaTEX we also store some language related information, the expansion factor, etc.

Now that we have access to these nodes from Lua it makes sense to be able to carry more

information with an node and this is where attributes kick in.

2.3.2 Attribute registers

Attributes are a completely new concept in LuaTEX. Syntactically, they behave a lot like counters:

attributes obey TEX’s nesting stack and can be used after \the etc. just like the normal \count

registers.

\attribute ⟨16-bit number⟩ ⟨optional equals⟩ ⟨32-bit number⟩
\attributedef ⟨csname⟩ ⟨optional equals⟩ ⟨16-bit number⟩

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value

to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,

a.k.a. −2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign -"7FFFFFFF to ‘unset’ an attribute. All attributes start out in

this ‘unset’ state in iniTEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact

that the numbers and values of all ‘set’ attributes are attached to all nodes created in their

scope. These can then be queried from any Lua code that deals with node processing. Further

information about how to use attributes for node list processing from Lua is given in chapter 8.

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits

efficient testing and updating. You can define many thousands of attributes but normally such a

large number makes no sense and is also not that efficient because each node carries a (possibly

shared) link to a list of currently set attributes. But they are a convenient extension and one of

the first extensions we implemented in LuaTEX.

2.3.3 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment

can be quite asynchronous. For example: in paragraph building, the individual line boxes are

created after the \par command has been processed, so they will receive the list of attributes

that is in effect then, not the attributes that were in effect in, say, the first or third line of the

paragraph.

Similar situations happen in LuaTEX regularly. A few of the more obvious problematic cases are

dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur-

ing borrow their attributes from their surrounding glyphs, and it is possible to influence box

attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are

unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the

23Basic TEX enhancements

same as characters that have been converted to references to glyphs in fonts. For instance,

when you use attributes to implement color support, each node carries information about its

eventual color. In that case, unless you implement mechanisms that deal with it, applying a color

to already boxed material will have no effect. Keep in mind that this incompatibility is mostly

due to the fact that separate specials and literals are a more unnatural approach to colors than

attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the

use of the keyword attr. The attr keyword(s) should come before a to or spread, if that is also

specified. An example is:

\attribute997=123

\attribute998=456

\setbox0=\hbox {Hello}

\setbox2=\hbox attr 999 = 789 attr 998 = -"7FFFFFFF{Hello}

Box 0 now has attributes 997 and 998 set while box 2 has attributes 997 and 999 set while the

nodes inside that box will all have attributes 997 and 998 set. Assigning the maximum negative

value causes an attribute to be ignored.

To give you an idea of what this means at the Lua end, take the following code:

for b=0,2,2 do

for a=997, 999 do

tex.sprint("box ", b, " : attr ",a," : ",tostring(tex.box[b] [a]))

tex.sprint("\\quad\\quad")

tex.sprint("list ",b, " : attr ",a," : ",tostring(tex.box[b].list[a]))

tex.sprint("\\par")

end

end

Later we will see that you can access properties of a node. The boxes here are so called hlist

nodes that have a field list that points to the content. Because the attributes are a list them-

selves you can access them by indexing the node (here we do that with [a]. Running this snippet

gives:

box 0 : attr 997 : 123 list 0 : attr 997 : 123

box 0 : attr 998 : 456 list 0 : attr 998 : 456

box 0 : attr 999 : nil list 0 : attr 999 : nil

box 2 : attr 997 : 123 list 2 : attr 997 : 123

box 2 : attr 998 : nil list 2 : attr 998 : 456

box 2 : attr 999 : 789 list 2 : attr 999 : nil

Because some values are not set we need to apply the tostring function here so that we get the

word nil.

2.4 LUA related primitives

2.4.1 \directlua

In order to merge Lua code with TEX input, a few new primitives are needed. The primitive

Basic TEX enhancements24

\directlua is used to execute Lua code immediately. The syntax is

\directlua ⟨general text⟩
\directlua ⟨16-bit number⟩ ⟨general text⟩

The ⟨general text⟩ is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the ⟨general text⟩, the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a

separate chunk. In such a chunk you can use the local directive to keep your variables from

interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments

(starting with --) within the argument. As there typically will be only one ‘line’ the first line com-

ment will run on until the end of the input. You will either need to use TEX-style line comments

(starting with %), or change the TEX category codes locally. Another possibility is to say:

\begingroup

\endlinechar=10

\directlua ...

\endgroup

Then Lua line comments can be used, since TEX does not replace line endings with spaces. Of

course such an approach depends on the macro package that you use.

The ⟨16-bit number⟩ designates a name of a Lua chunk and is taken from the lua.name array

(see the documentation of the lua table further in this manual). When a chunk name starts with

a @ it will be displayed as a file name. This is a side effect of the way Lua implements error

handling.

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its

expansion from the TEX viewpoint is usually empty. However, there are some Lua functions that

produce material to be read by TEX, the so called print functions. The most simple use of these

is tex.print(<string> s). The characters of the string s will be placed on the TEX input buffer,

that is, ‘before TEX’s eyes’ to be read by TEX immediately. For example:

\count10=20

a\directlua{tex.print(tex.count[10]+5)}b

expands to

a25b

Here is another example:

$\pi = \directlua{tex.print(math.pi)}$

will result in

𝜋 = 3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all

TEX commands. So formally speaking its expansion is null, but it places material on a pseudo-file

to be immediately read by TEX, as 𝜀-TEX’s \scantokens. For a description of print functions look
at section 10.3.14.

25Basic TEX enhancements

Because the ⟨general text⟩ is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the contex-

tual information is still pretty bad. Often, you will only see the line number of the right brace at

the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up

LuaTEX pretty bad. If you are not careful while working with the node list interface, you may

even end up with assertion errors from within the TEX portion of the executable.

2.4.2 \latelua and \lateluafunction

Contrary to \directlua, \latelua stores Lua code in a whatsit that will be processed at the time

of shipping out. Its intended use is a cross between pdf literals (often available as \pdfliteral)

and the traditional TEX extension \write. Within the Lua code you can print pdf statements

directly to the pdf file via pdf.print, or you can write to other output streams via texio.write

or simply using Lua io routines.

\latelua ⟨general text⟩
\latelua ⟨16-bit number⟩ ⟨general text⟩

Expansion of macros in the final <general text> is delayed until just before the whatsit is exe-

cuted (like in \write). With regard to pdf output stream \latelua behaves as pdf page literals.

The name ⟨general text⟩ and ⟨16-bit number⟩ behave in the same way as they do for \directlua.

The \lateluafunction primitive takes a number and is similar to \luafunction but gets delated

to shipout time. It’s just there for completeness.

2.4.3 \luaescapestring

This primitive converts a TEX token sequence so that it can be safely used as the contents of a

Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns

are escaped. This is done by prepending an extra token consisting of a backslash with category

code 12, and for the line endings, converting them to n and r respectively. The token sequence

is fully expanded.

\luaescapestring ⟨general text⟩

Most often, this command is not actually the best way to deal with the differences between TEX

and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of Lua

code it is easier to keep the code in a separate file and load it using Lua’s dofile:

\directlua { dofile('mysetups.lua') }

2.4.4 \luafunction, \luafunctioncall and \luadef

The \directlua commands involves tokenization of its argument (after picking up an optional

name or number specification). The tokenlist is then converted into a string and given to Lua to

turn into a function that is called. The overhead is rather small but when you have millions of

calls it can have some impact. For this reason there is a variant call available: \luafunction.

This command is used as follows:

Basic TEX enhancements26

\directlua {

local t = lua.get_functions_table()

t[1] = function() tex.print("!") end

t[2] = function() tex.print("?") end

}

\luafunction1

\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of

functions apart from normal Lua limitations. Of course there is the limitation of no arguments

but that would involve parsing and thereby give no gain. The function, when called in fact gets

one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

local t = lua.get_functions_table()

t[8] = function(slot) tex.print(slot) end

}

The \luafunctioncall primitive does the same but is unexpandable, for instance in an \edef.

In addition LuaTEX provides a definer:

\luadef\MyFunctionA 1

\global\luadef\MyFunctionB 2

\protected\global\luadef\MyFunctionC 3

You should really use these commands with care. Some references get stored in tokens and

assume that the function is available when that token expands. On the other hand, as we have

tested this functionality in relative complex situations normal usage should not give problems.

2.4.5 \luabytecode and \luabytecodecall

Analogue to the function callers discussed in the previous section we have byte code callers.

Again the call variant is unexpandable.

\directlua {

lua.bytecode[9998] = function(s)

tex.sprint(s*token.scan_int())

end

lua.bytecode[5555] = function(s)

tex.sprint(s*token.scan_dimen())

end

}

This works with:

\luabytecode 9998 5 \luabytecode 5555 5sp

\luabytecodecall9998 5 \luabytecodecall5555 5sp

27Basic TEX enhancements

The variable s in the code is the number of the byte code register that can be used for diagnostic

purposes. The advantage of bytecode registers over function calls is that they are stored in the

format (but without upvalues).

2.5 Catcode tables

2.5.1 Catcodes

Catcode tables are a new feature that allows you to switch to a predefined catcode regime

in a single statement. You can have a practically unlimited number of different tables. This

subsystem is backward compatible: if you never use the following commands, your document will

not notice any difference in behaviour compared to traditional TEX. The contents of each catcode

table is independent from any other catcode table, and its contents is stored and retrieved from

the format file.

2.5.2 \catcodetable

\catcodetable ⟨15-bit number⟩

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ-

ously created using one of the two primitives below, or it has to be zero. Table zero is initialized

by iniTEX.

2.5.3 \initcatcodetable

\initcatcodetable ⟨15-bit number⟩

The primitive \initcatcodetable creates a new table with catcodes identical to those defined

by iniTEX. The new catcode table is allocated globally: it will not go away after the current group

has ended. If the supplied number is identical to the currently active table, an error is raised.

The initial values are:

CATCODE CHARACTER EQUIVALENT CATEGORY

0 \ escape

5 ^^M return car_ret

9 ^^@ null ignore

10 <space> space spacer

11 a – z letter

11 A – Z letter

12 everything else other

14 % comment

15 ^^? delete invalid_char

2.5.4 \savecatcodetable

\savecatcodetable ⟨15-bit number⟩

Basic TEX enhancements28

\savecatcodetable copies the current set of catcodes to a new table with the requested number.

The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the

supplied number is the currently active table, an error is raised.

2.6 Suppressing errors

2.6.1 \suppressfontnotfounderror

If this integer parameter is non-zero, then LuaTEX will not complain about font metrics that are

not found. Instead it will silently skip the font assignment, making the requested csname for the

font \ifx equal to \nullfont, so that it can be tested against that without bothering the user.

\suppressfontnotfounderror = 1

2.6.2 \suppresslongerror

If this integer parameter is non-zero, then LuaTEX will not complain about \par commands en-

countered in contexts where that is normally prohibited (most prominently in the arguments of

macros not defined as \long).

\suppresslongerror = 1

2.6.3 \suppressifcsnameerror

If this integer parameter is non-zero, then LuaTEX will not complain about non-expandable com-

mands appearing in the middle of a \ifcsname expansion. Instead, it will keep getting expanded

tokens from the input until it encounters an \endcsname command. If the input expansion is un-

balanced with respect to \csname …\endcsname pairs, the LuaTEX process may hang indefinitely.

\suppressifcsnameerror = 1

2.6.4 \suppressoutererror

If this new integer parameter is non-zero, then LuaTEXwill not complain about \outer commands

encountered in contexts where that is normally prohibited.

\suppressoutererror = 1

2.6.5 \suppressmathparerror

The following setting will permit \par tokens in a math formula:

\suppressmathparerror = 1

So, the next code is valid then:

$ x + 1 =

29Basic TEX enhancements

a $

2.6.6 \suppressprimitiveerror

When set to a non-zero value the following command will not issue an error:

\suppressprimitiveerror = 1

\primitive\notaprimitive

2.7 Fonts

2.7.1 Font syntax

LuaTEX will accept a braced argument as a font name:

\font\myfont = {cmr10}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument.

2.7.2 \fontid and \setfontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix with

\number (and using \the gives an error). The currently used font id is 29. Here are some more:

STYLE COMMAND FONT ID

normal \tf 38

bold \bf 38

italic \it 50

bold italic \bi 51

These numbers depend on the macro package used because each one has its own way of dealing

with fonts. They can also differ per run, as they can depend on the order of loading fonts. For

instance, when in ConTEXt virtual math Unicode fonts are used, we can easily get over a hundred

ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

The primitive \setfontid can be used to enable a font with the given id, which of course needs

to be a valid one.

2.7.3 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is

built by LuaTEX’s main control loop. You can enable these primitives when you want to do node

list processing of ‘characters’, where TEX’s normal processing would get in the way.

Basic TEX enhancements30

\noligs ⟨integer⟩
\nokerns ⟨integer⟩

These primitives can also be implemented by overloading the ligature building and kerning func-

tions, i.e. by assigning dummy functions to their associated callbacks. Keep in mind that when

you define a font (using Lua) you can also omit the kern and ligature tables, which has the same

effect as the above.

2.7.4 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space

character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a

zero skip. In figure 2.1 we see the results for four characters separated by a space.

x x x x xxxx xxxx

0 / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm

x

x

x

x

xxxx x

x

x

x

0 / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 2.1 The \nospaces options.

2.8 Tokens, commands and strings

2.8.1 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted

version of 𝜀-TEX’s \scantokens. The differences are:

‣ The last (and usually only) line does not have a \endlinechar appended.

‣ \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

‣ There are no ‘. . . while end of file . . .’ error tests executed. This allows the expansion to end

on a different grouping level or while a conditional is still incomplete.

2.8.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,

\xtoksapp, \xtokspre

Instead of:

\toks0\expandafter{\the\toks0 foo}

you can use:

\etoksapp0{foo}

31Basic TEX enhancements

The pre variants prepend instead of append, and the e variants expand the passed general text.

The g and x variants are global.

2.8.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading

escape character. This can be somewhat more efficient than stripping it afterwards.

The \begincsname primitive is like \csname but doesn’t create a relaxed equivalent when there

is no such name. It is equivalent to

\ifcsname foo\endcsname

\csname foo\endcsname

\fi

The advantage is that it saves a lookup (don’t expect much speedup) but more important is that

it avoids using the \if test. The \lastnamedcs is one that should be used with care. The above

example could be written as:

\ifcsname foo\endcsname

\lastnamedcs

\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTEX this also

involves some utf8 juggling), but probably more relevant is that it saves a few tokens and can

make code a bit more readable.

2.8.4 \clearmarks

This primitive complements the 𝜀-TEX mark primitives and clears a mark class completely, re-
setting all three connected mark texts to empty. It is an immediate command.

\clearmarks ⟨16-bit number⟩

2.8.5 \alignmark and \aligntab

The primitive \alignmark duplicates the functionality of # inside alignment preambles, while

\aligntab duplicates the functionality of &.

2.8.6 \letcharcode

This primitive can be used to assign a meaning to an active character, as in:

\def\foo{bar} \letcharcode123=\foo

This can be a bit nicer than using the uppercase tricks (using the property of \uppercase that

it treats active characters special).

Basic TEX enhancements32

2.8.7 \glet

This primitive is similar to:

\protected\def\glet{\global\let}

but faster (only measurable with millions of calls) and probably more convenient (after all we

also have \gdef).

2.8.8 \expanded, \immediateassignment and \immediateassigned

The \expanded primitive takes a token list and expands it content which can come in handy:

it avoids a tricky mix of \expandafter and \noexpand. You can compare it with what happens

inside the body of an \edef. But this kind of expansion it still doesn’t expand some primitive

operations.

\newcount\NumberOfCalls

\def\TestMe{\advance\NumberOfCalls1 }

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

The result is a macro that has the not expanded code in its body:

macro:->\advance \NumberOfCalls 1 foo:0

Instead we can define \TestMe in a way that expands the assignment immediately. You need of

course to be aware of preventing look ahead interference by using a space or \relax (often an

expression works better as it doesn’t leave an \relax).

\def\TestMe{\immediateassignment\advance\NumberOfCalls1 }

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

This time the counter gets updates and we don’t see interference in the resulting \Testedmacro:

macro:->foo:3

Here is a somewhat silly example of expanded comparison:

\def\expandeddoifelse#1#2#3#4%

{\immediateassignment\edef\tempa{#1}%

\immediateassignment\edef\tempb{#2}%

33Basic TEX enhancements

\ifx\tempa\tempb

\immediateassignment\def\next{#3}%

\else

\immediateassignment\def\next{#4}%

\fi

\next}

\edef\Tested

{(\expandeddoifelse{abc}{def}{yes}{nop}/%

\expandeddoifelse{abc}{abc}{yes}{nop})}

\meaning\Tested

It gives:

macro:->(nop/yes)

A variant is:

\def\expandeddoifelse#1#2#3#4%

{\immediateassigned{

\edef\tempa{#1}%

\edef\tempb{#2}%

}%

\ifx\tempa\tempb

\immediateassignment\def\next{#3}%

\else

\immediateassignment\def\next{#4}%

\fi

\next}

The possible error messages are the same as using assignments in preambles of alignments and

after the \accent command. The supported assignments are the so called prefixed commands

(except box assignments).

2.8.9 \ifcondition

This is a somewhat special one. When you write macros conditions need to be properly balanced

in order to let TEX’s fast branch skipping work well. This new primitive is basically a no--op

flagged as a condition so that the scanner can recognize it as an if-test. However, when a real

test takes place the work is done by what follows, in the next example \something.

\unexpanded\def\something#1#2%

{\edef\tempa{#1}%

\edef\tempb{#2}

\ifx\tempa\tempb}

\ifcondition\something{a}{b}%

\ifcondition\something{a}{a}%

Basic TEX enhancements34

true 1

\else

false 1

\fi

\else

\ifcondition\something{a}{a}%

true 2

\else

false 2

\fi

\fi

If you are familiar with MetaPost, this is a bit like vardef where the macro has a return value.

Here the return value is a test.

2.9 Boxes, rules and leaders

2.9.1 \outputbox

This integer parameter allows you to alter the number of the box that will be used to store the

page sent to the output routine. Its default value is 255, and the acceptable range is from 0 to

65535.

\outputbox = 12345

2.9.2 \vpack, \hpack and \tpack

These three primitives are like \vbox, \hbox and \vtop but don’t apply the related callbacks.

2.9.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternative

for the to keyword you can use upto to get a split of the given size but result has the natural

dimensions then.

2.9.4 Images and reused box objects

These two concepts are now core concepts and no longer whatsits. They are in fact now im-

plemented as rules with special properties. Normal rules have subtype 0, saved boxes have

subtype 1 and images have subtype 2. This has the positive side effect that whenever we need

to take content with dimensions into account, when we look at rule nodes, we automatically also

deal with these two types.

The syntax of the \save...resource is the same as in pdfTEX but you should consider them to

be backend specific. This means that a macro package should treat them as such and check for

the current output mode if applicable.

35Basic TEX enhancements

COMMAND EXPLANATION

\saveboxresource save the box as an object to be included later

\saveimageresource save the image as an object to be included later

\useboxresource include the saved box object here (by index)

\useimageresource include the saved image object here (by index)

\lastsavedboxresourceindex the index of the last saved box object

\lastsavedimageresourceindex the index of the last saved image object

\lastsavedimageresourcepages the number of pages in the last saved image object

LuaTEX accepts optional dimension parameters for \use...resource in the same format as for

rules. With images, these dimensions are then used instead of the ones given to \useimagere-

source but the original dimensions are not overwritten, so that a \useimageresource without

dimensions still provides the image with dimensions defined by \saveimageresource. These

optional parameters are not implemented for \saveboxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceindex

\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

The box resources are of course implemented in the backend and therefore we do support the

attr and resources keys that accept a token list. New is the type key. When set to non-zero the

/Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or 3 will write a /Matrix.

2.9.5 \nohrule and \novrule

Because introducing a new keyword can cause incompatibilities, two new primitives were intro-

duced: \nohrule and \novrule. These can be used to reserve space. This is often more efficient

than creating an empty box with fake dimensions.

2.9.6 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal

\leaders in that they align nicely, except that the alignment is based on the largest enclosing

box instead of the smallest. The g stresses this global nature.

2.10 Languages

2.10.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of

the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive

accepts a number and stores the value with the language.

2.10.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

The \noboundary command is used to inject a whatsit node but now injects a normal node with

type boundary and subtype 0. In addition you can say:

Basic TEX enhancements36

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig-

ature builder still sees this as a cancel boundary directive but at the Lua end you can implement

different behaviour. The added benefit of passing this value is a side effect of the generalization.

The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation and

have related primitives.

2.10.3 \glyphdimensionsmode

Already in the early days of LuaTEX the decision was made to calculate the effective height and

depth of glyphs in a way that reflected the applied vertical offset. The height got that offset

added, the depth only when the offset was larger than zero. We can now control this in more

detail with this mode parameter. An offset is added to the height and/or subtracted from the

depth. The effective values are never negative. The zero mode is the default.

VALUE EFFECT

0 the old behaviour: add the offset to the height and only subtract the offset only from

the depth when it is positive

1 add the offset to the height and subtract it from the depth

2 add the offset to the height and subtract it from the depth but keep the maxima of the

current and previous results

3 use the height and depth of the glyph, so no offset is applied

2.11 Control and debugging

2.11.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of the

nodes.

2.11.2 \outputmode

The \outputmode variable tells LuaTEX what it has to produce:

VALUE OUTPUT

0 dvi code

1 pdf code

2.11.3 \draftmode

The value of the \draftmode counter signals the backend if it should output less. The pdf back-

end accepts a value of 1, while the dvi backend ignores the value. This is no critical feature so

we can remove it in future versions when it can make the backend cleaner.

37Basic TEX enhancements

2.12 Files

2.12.1 File syntax

LuaTEX will accept a braced argument as a file name:

\input {plain}

\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes

place inside the argument.

The \tracingfonts primitive that has been inherited from pdfTEX has been adapted to support

variants in reporting the font. The reason for this extension is that a csname not always makes

sense. The zero case is the default.

VALUE REPORTED

0 \foo xyz

1 \foo (bar)

2 <bar> xyz

3 <bar @ ..pt> xyz

4 <id>

5 <id: bar>

6 <id: bar @ ..pt> xyz

2.12.2 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the console

and log. As a consequence a system command is no longer possible but one can use os.execute

to do the same.

2.13 Math

We will cover math extensions in its own chapter because not only the font subsystem and spac-

ing model have been enhanced (thereby introducing many new primitives) but also because

some more control has been added to existing functionality. Much of this relates to the different

approaches of traditional TEX fonts and OpenType math.

Basic TEX enhancements38

39Modifications

3 Modifications

3.1 The merged engines

3.1.1 The need for change

The first version of LuaTEX only had a few extra primitives and it was largely the same as pdfTEX.

Then we merged substantial parts of Aleph into the code and got more primitives. When we got

more stable the decision was made to clean up the rather hybrid nature of the program. This

means that some primitives have been promoted to core primitives, often with a different name,

and that others were removed. This made it possible to start cleaning up the code base. In

chapter 2 we discussed some new primitives, here we will cover most of the adapted ones.

Besides the expected changes caused by new functionality, there are a number of not-so-ex-

pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often

than not, a change necessary to clean up the internal interfaces. These will also be mentioned.

3.1.2 Changes from TEX 3.1415926

Of course it all starts with traditional TEX. Even if we started with pdfTEX, most still comes from

the original. But we divert a bit.

‣ The current code base is written in C, not Pascal. We use cweb when possible. As a conse-

quence instead of one large file plus change files, we now have multiple files organized in

categories like tex, pdf, lang, font, lua, etc. There are some artifacts of the conversion to

C, but in due time we will clean up the source code and make sure that the documentation is

done right. Many files are in the cweb format, but others, like those interfacing to Lua, are C

files. Of course we want to stay as close as possible to the original so that the documentation

of the fundamentals behind TEX by Don Knuth still applies.

‣ See chapter 5 for many small changes related to paragraph building, language handling and

hyphenation. The most important change is that adding a brace group in the middle of a word

(like in of{}fice) does not prevent ligature creation.

‣ There is no pool file, all strings are embedded during compilation.

‣ The specifier plus 1 fillll does not generate an error. The extra ‘l’ is simply typeset.

‣ The upper limit to \endlinechar and \newlinechar is 127.

‣ Magnification (\mag) is only supported in dvi output mode. You can set this parameter and it

even works with true units till you switch to pdf output mode. When you use pdf output you

can best not touch the \mag variable. This fuzzy behaviour is not much different from using

pdf backend related functionality while eventually dvi output is required.

After the output mode has been frozen (normally that happens when the first page is shipped

out) or when pdf output is enabled, the true specification is ignored. When you preload a

plain format adapted to LuaTEX it can be that the \mag parameter already has been set.

Modifications40

3.1.3 Changes from 𝜀-TEX 2.2

Being the de factor standard extension of course we provide the 𝜀-TEX functionality, but with a
few small adaptations.

‣ The 𝜀-TEX functionality is always present and enabled so the prepended asterisk or -etex
switch for iniTEX is not needed.

‣ The TEXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,

\endR and \endL are missing. Instead we used the Omega/Aleph approach to directionality

as starting point.

‣ Some of the tracing information that is output by 𝜀-TEX’s \tracingassigns and \tracingre-
stores is not there.

‣ Register management in LuaTEX uses the Omega/Aleph model, so the maximum value is

65535 and the implementation uses a flat array instead of the mixed flat & sparse model

from 𝜀-TEX.
‣ When kpathsea is used to find files, LuaTEX uses the ofm file format to search for font metrics.

In turn, this means that LuaTEX looks at the OFMFONTS configuration variable (like Omega and

Aleph) instead of TFMFONTS (like TEX and pdfTEX). Likewise for virtual fonts (LuaTEX uses the

variable OVFFONTS instead of VFFONTS).

‣ The primitives that report a stretch or shrink order report a value in a convenient

range zero upto four. Because some macro packages can break on that we also provide

\eTeXgluestretchorder and \eTeXglueshrinkorder which report values compatible with

𝜀-TEX. The (new) fi value is reported as -1 (so when used in an \ifcase test that value

makes one end up in the \else).

3.1.4 Changes from PDFTEX 1.40

Because we want to produce pdf the most natural starting point was the popular pdfTEX pro-

gram. We inherit the stable features, dropped most of the experimental code and promoted

some functionality to core LuaTEX functionality which in turn triggered renaming primitives.

For compatibility reasons we still refer to \pdf... commands but LuaTEX has a different backend

interface. Instead of these primitives there are three interfacing primitives: \pdfextension,

\pdfvariable and \pdffeedback that take keywords and optional further arguments (below we

will still use the \pdf prefix names as reference). This way we can extend the features when

needed but don’t need to adapt the core engine. The front- and backend are decoupled as much

as possible.

‣ The (experimental) support for snap nodes has been removed, because it is muchmore natural

to build this functionality on top of node processing and attributes. The associated primitives

that are gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

‣ The (experimental) support for specialized spacing around nodes has also been removed. The

associated primitives that are gone are: \pdfadjustinterwordglue, \pdfprependkern, and

\pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode, \shbscode,

\knbccode, and \knaccode.

‣ A number of ‘pdfTEX primitives’ have been removed as they can be implemented using

Lua: \pdfelapsedtime, \pdfescapehex, \pdfescapename, \pdfescapestring, \pdffile-

dump, \pdffilemoddate, \pdffilesize, \pdfforcepagebox, \pdflastmatch, \pdfmatch,

41Modifications

\pdfmdfivesum, \pdfmovechars, \pdfoptionalwaysusepdfpagebox, \pdfoptionpdfinclu-

sionerrorlevel, \pdfresettimer, \pdfshellescape, \pdfstrcmp and \pdfunescapehex.

‣ The version related primitives \pdftexbanner, \pdftexversion and \pdftexrevision are

no longer present as there is no longer a relationship with pdfTEX development.

‣ The experimental snapper mechanism has been removed and therefore also the primitives

\pdfignoreddimen, \pdffirstlineheight, \pdfeachlineheight, \pdfeachlinedepth and

\pdflastlinedepth.

‣ The experimental primitives \primitive, \ifprimitive, \ifabsnum and \ifabsdim are pro-

moted to core primitives. The \pdf* prefixed originals are not available.

‣ Because LuaTEX has a different subsystem for managing images, more diversion from its

ancestor happened in the meantime. We don’t adapt to changes in pdfTEX.

‣ Two extra token lists are provided, \pdfxformresources and \pdfxformattr, as an alterna-

tive to \pdfxform keywords.

‣ Image specifications also support visiblefilename, userpassword and ownerpassword. The

password options are only relevant for encrypted pdf files.

‣ The current version of LuaTEX no longer replaces and/or merges fonts in embedded pdf files

with fonts of the enveloping pdf document. This regression may be temporary, depending on

how the rewritten font backend will look like.

‣ The primitives \pdfpagewidth and \pdfpageheight have been removed because \pagewidth

and \pageheight have that purpose.

‣ The primitives \pdfnormaldeviate, \pdfuniformdeviate, \pdfsetrandomseed and

\pdfrandomseed have been promoted to core primitives without pdf prefix so the original

commands are no longer recognized.

‣ The primitives \ifincsname, \expanded and \quitvmode are now core primitives.

‣ As the hz and protrusion mechanism are part of the core the related primitives \lpcode,

\rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to core primitives.

The two commands \protrudechars and \adjustspacing replace their prefixed with \pdf

originals.

‣ The hz optimization code has been partially redone so that we no longer need to create extra

font instances. The front- and backend have been decoupled and more efficient (pdf) code is

generated.

‣ When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When

the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.

With value of 1, font expansion is applied after TEX’s normal paragraph breaking routines

have broken the paragraph into lines. In this case, line breaks are identical to standard TEX

behavior (as with pdfTEX).

‣ The \tagcode primitive is promoted to core primitive.

‣ The \letterspacefont feature is now part of the core but will not be changed (improved).

We just provide it for legacy use.

‣ The \pdfnoligatures primitive is now \ignoreligaturesinfont.

‣ The \pdfcopyfont primitive is now \copyfont.

‣ The \pdffontexpand primitive is now \expandglyphsinfont.

‣ Because position tracking is also available in dvi mode the \savepos, \lastxpos and \lasty-

pos commands now replace their pdf prefixed originals.

‣ The introspective primitives \pdflastximagecolordepth and \pdfximagebbox have been re-

moved. One can use external applications to determine these properties or use the built-in

Modifications42

img library.

‣ The initializers \pdfoutput has been replaced by \outputmode and \pdfdraftmode is now

\draftmode.

‣ The pixel multiplier dimension \pdfpxdimen lost its prefix and is now called \pxdimen.

‣ An extra \pdfimageaddfilename option has been added that can be used to block writing the

filename to the pdf file.

‣ The primitive \pdftracingfonts is now \tracingfonts as it doesn’t relate to the backend.

‣ The experimental primitive \pdfinsertht is kept as \insertht.

‣ There is some more control over what metadata goes into the pdf file.

‣ The promotion of primitives to core primitives as well as the separation of font- and backend

means that the initialization namespace pdftex is gone.

One change involves the so called xforms and ximages. In pdfTEX these are implemented as so

called whatsits. But contrary to other whatsits they have dimensions that need to be taken into

account when for instance calculating optimal line breaks. In LuaTEX these are now promoted

to a special type of rule nodes, which simplifies code that needs those dimensions.

Another reason for promotion is that these are useful concepts. Backends can provide the ability

to use content that has been rendered in several places, and images are also common. As already

mentioned in section 2.9.4, we now have:

LUATEX PDFTEX

\saveboxresource \pdfxform

\saveimageresource \pdfximage

\useboxresource \pdfrefxform

\useimageresource \pdfrefximage

\lastsavedboxresourceindex \pdflastxform

\lastsavedimageresourceindex \pdflastximage

\lastsavedimageresourcepages \pdflastximagepages

There are a few \pdffeedback features that relate to this but these are typical backend specific

ones. The index that gets returned is to be considered as ‘just a number’ and although it still

has the same meaning (object related) as before, you should not depend on that.

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.

When protrusion characters are identified some nodes are skipped:

‣ zero glue

‣ penalties

‣ empty discretionaries

‣ normal zero kerns

‣ rules with zero dimensions

‣ math nodes with a surround of zero

‣ dir nodes

‣ empty horizontal lists

‣ local par nodes

‣ inserts, marks and adjusts

‣ boundaries

‣ whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next

node being ignored. When the value is 1 or 3, the next node will be ignored in the test when

locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored

when locating a right boundary condition (the search goes from right to left). This permits

43Modifications

protrusion combined with for instance content moved into the margin:

\protrusionboundary1\llap{!\quad}«Who needs protrusion?»

3.1.5 Changes from ALEPH RC4

Because wewanted proper directional typesetting the Alephmechanisms lookedmost attractive.

These are rather close to the ones provided by Omega, so what we say next applies to both these

programs.

‣ The extended 16-bit math primitives (\omathcode etc.) have been removed.

‣ The OCP processing has been removed completely and as a consequence, the following

primitives have been removed: \ocp, \externalocp, \ocplist, \pushocplist, \popoc-

plist, \clearocplists, \addbeforeocplist, \addafterocplist, \removebeforeocplist,

\removeafterocplist and \ocptracelevel.

‣ LuaTEX only understands 4 of the 16 direction specifiers of Aleph: TLT (latin), TRT (arabic),

RTT (cjk), LTL (mongolian). All other direction specifiers generate an error. In addition to a

keyword driven model we also provide an integer driven one.

‣ The input translations from Aleph are not implemented, the related primitives are not

available: \DefaultInputMode, \noDefaultInputMode, \noInputMode, \InputMode, \De-

faultOutputMode, \noDefaultOutputMode, \noOutputMode, \OutputMode, \DefaultInput-

Translation, \noDefaultInputTranslation, \noInputTranslation, \InputTranslation,

\DefaultOutputTranslation, \noDefaultOutputTranslation, \noOutputTranslation and

\OutputTranslation.

‣ Several bugs have been fixed and confusing implementation details have been sorted out.

‣ The scanner for direction specifications now allows an optional space after the direction is

completely parsed.

‣ The ^^ notation has been extended: after ^^^^ four hexadecimal characters are expected and

after ^^^^^^ six hexadecimal characters have to be given. The original TEX interpretation is

still valid for the ^^ case but the four and six variants do no backtracking, i.e. when they are

not followed by the right number of hexadecimal digits they issue an error message. Because

^^^ is a normal TEX case, we don’t support the odd number of ^^^^^ either.

‣ Glues immediately after direction change commands are not legal breakpoints.

‣ Several mechanisms that need to be right-to-left aware have been improved. For instance

placement of formula numbers.

‣ The page dimension related primitives \pagewidth and \pageheight have been promoted to

core primitives. The \hoffset and \voffset primitives have been fixed.

‣ The primitives \charwd, \charht, \chardp and \charit have been removed as we have the

𝜀-TEX variants \fontchar*.
‣ The two dimension registers \pagerightoffset and \pagebottomoffset are now core prim-

itives.

‣ The direction related primitives \pagedir, \bodydir, \pardir, \textdir, \mathdir and

\boxdir are now core primitives.

‣ The promotion of primitives to core primitives as well as removing of all others means that

the initialization namespace aleph that early versions of LuaTEX provided is gone.

Modifications44

The above let’s itself summarize as: we took the 32 bit aspects and much of the directional

mechanisms and merged it into the pdfTEX code base as starting point for further development.

Then we simplified directionality, fixed it and opened it up.

3.1.6 Changes from anywhere

The \partokenname and \partokencontext primitives are taken from the pdfTEX change file

posted on the implementers list. They are explained in the pdfTEX manual and are classified as

𝜀-TEX extensions.

3.1.7 Changes from standard WEB2C

The compilation framework is web2c and we keep using that but without the Pascal to C step.

This framework also provides some common features that deal with reading bytes from files and

locating files in tds. This is what we do different:

‣ There is no mltex support.

‣ There is no enctex support.

‣ The following encoding related command line switches are silently ignored, even in non-Lua

mode: -8bit, -translate-file, -mltex, -enc and -etex.

‣ The \openout whatsits are not written to the log file.

‣ Some of the so-called web2c extensions are hard to set up in non-kpse mode because

texmf.cnf is not read: shell-escape is off (but that is not a problem because of Lua’s os.ex-

ecute), and the paranoia checks on openin and openout do not happen. However, it is easy

for a Lua script to do this itself by overloading io.open and alike.

‣ The ‘E’ option does not do anything useful.

3.2 The backend primitives

3.2.1 Less primitives

In a previous section we mentioned that some pdfTEX primitives were removed and others pro-

moted to core LuaTEX primitives. That is only part of the story. In order to separate the backend

specific primitives in de code these commands are now replaced by only a few. In traditional

TEX we only had the dvi backend but now we have two: dvi and pdf. Additional functionality is

implemented as ‘extensions’ in TEX speak. By separating more strickly we are able to keep the

core (frontend) clean and stable and isolate these extensions. If for some reason an extra back-

end option is needed, it can be implemented without touching the core. The three pdf backend

related primitives are:

\pdfextension command [specification]

\pdfvariable name

\pdffeedback name

An extension triggers further parsing, depending on the command given. A variable is a (kind

of) register and can be read and written, while a feedback is reporting something (as it comes

from the backend it’s normally a sequence of tokens).

45Modifications

3.2.2 \pdfextension, \pdfvariable and \pdffeedback

In order for LuaTEX to be more than just TEX you need to enable primitives. That has already

been the case right from the start. If you want the traditional pdfTEX primitives (for as far their

functionality is still around) you now can do this:

\protected\def\pdfliteral {\pdfextension literal}

\protected\def\pdflateliteral {\pdfextension lateliteral}

\protected\def\pdfcolorstack {\pdfextension colorstack}

\protected\def\pdfsetmatrix {\pdfextension setmatrix}

\protected\def\pdfsave {\pdfextension save\relax}

\protected\def\pdfrestore {\pdfextension restore\relax}

\protected\def\pdfobj {\pdfextension obj }

\protected\def\pdfrefobj {\pdfextension refobj }

\protected\def\pdfannot {\pdfextension annot }

\protected\def\pdfstartlink {\pdfextension startlink }

\protected\def\pdfendlink {\pdfextension endlink\relax}

\protected\def\pdfoutline {\pdfextension outline }

\protected\def\pdfdest {\pdfextension dest }

\protected\def\pdfthread {\pdfextension thread }

\protected\def\pdfstartthread {\pdfextension startthread }

\protected\def\pdfendthread {\pdfextension endthread\relax}

\protected\def\pdfinfo {\pdfextension info }

\protected\def\pdfcatalog {\pdfextension catalog }

\protected\def\pdfnames {\pdfextension names }

\protected\def\pdfincludechars {\pdfextension includechars }

\protected\def\pdffontattr {\pdfextension fontattr }

\protected\def\pdfmapfile {\pdfextension mapfile }

\protected\def\pdfmapline {\pdfextension mapline }

\protected\def\pdftrailer {\pdfextension trailer }

\protected\def\pdfglyphtounicode {\pdfextension glyphtounicode }

\protected\def\pdfrunninglinkoff {\pdfextension linkstate 1 }

\protected\def\pdfrunninglinkon {\pdfextension linkstate 0 }

The introspective primitives can be defined as:

\def\pdftexversion {\numexpr\pdffeedback version\relax}

\def\pdftexrevision {\pdffeedback revision}

\def\pdflastlink {\numexpr\pdffeedback lastlink\relax}

\def\pdfretval {\numexpr\pdffeedback retval\relax}

\def\pdflastobj {\numexpr\pdffeedback lastobj\relax}

\def\pdflastannot {\numexpr\pdffeedback lastannot\relax}

\def\pdfxformname {\numexpr\pdffeedback xformname\relax}

\def\pdfcreationdate {\pdffeedback creationdate}

\def\pdffontname {\numexpr\pdffeedback fontname\relax}

\def\pdffontobjnum {\numexpr\pdffeedback fontobjnum\relax}

\def\pdffontsize {\dimexpr\pdffeedback fontsize\relax}

\def\pdfpageref {\numexpr\pdffeedback pageref\relax}

Modifications46

\def\pdfcolorstackinit {\pdffeedback colorstackinit}

The configuration related registers have become:

\edef\pdfcompresslevel {\pdfvariable compresslevel}

\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}

\edef\pdfrecompress {\pdfvariable recompress}

\edef\pdfdecimaldigits {\pdfvariable decimaldigits}

\edef\pdfgamma {\pdfvariable gamma}

\edef\pdfimageresolution {\pdfvariable imageresolution}

\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}

\edef\pdfimagegamma {\pdfvariable imagegamma}

\edef\pdfimagehicolor {\pdfvariable imagehicolor}

\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}

\edef\pdfpkresolution {\pdfvariable pkresolution}

\edef\pdfpkfixeddpi {\pdfvariable pkfixeddpi}

\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}

\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}

\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}

\edef\pdfgentounicode {\pdfvariable gentounicode}

\edef\pdfomitcidset {\pdfvariable omitcidset}

\edef\pdfomitcharset {\pdfvariable omitcharset}

\edef\pdfomitinfodict {\pdfvariable omitinfodict}

\edef\pdfomitmediabox {\pdfvariable omitmediabox}

\edef\pdfpagebox {\pdfvariable pagebox}

\edef\pdfminorversion {\pdfvariable minorversion}

\edef\pdfuniqueresname {\pdfvariable uniqueresname}

\edef\pdfhorigin {\pdfvariable horigin}

\edef\pdfvorigin {\pdfvariable vorigin}

\edef\pdflinkmargin {\pdfvariable linkmargin}

\edef\pdfdestmargin {\pdfvariable destmargin}

\edef\pdfthreadmargin {\pdfvariable threadmargin}

\edef\pdfxformmargin {\pdfvariable xformmargin}

\edef\pdfpagesattr {\pdfvariable pagesattr}

\edef\pdfpageattr {\pdfvariable pageattr}

\edef\pdfpageresources {\pdfvariable pageresources}

\edef\pdfxformattr {\pdfvariable xformattr}

\edef\pdfxformresources {\pdfvariable xformresources}

\edef\pdfpkmode {\pdfvariable pkmode}

\edef\pdfsuppressoptionalinfo {\pdfvariable suppressoptionalinfo }

\edef\pdftrailerid {\pdfvariable trailerid }

The variables are internal ones, so they are anonymous. When you ask for the meaning of a few

previously defined ones:

47Modifications

\meaning\pdfhorigin

\meaning\pdfcompresslevel

\meaning\pdfpageattr

you will get:

macro:->[internal backend dimension]

macro:->[internal backend integer]

macro:->[internal backend tokenlist]

The \edef can also be a \def but it’s a bit more efficient to expand the lookup related register

beforehand.

The backend is derived from pdfTEX so the same syntax applies. However, the outline command

accepts a objnum followed by a number. No checking takes place so when this is used it had

better be a valid (flushed) object.

In order to be (more or less) compatible with pdfTEX we also support the option to suppress

some info but we do so via a bitset:

\pdfvariable suppressoptionalinfo \numexpr

0

+ 1 % PTEX.FullBanner

+ 2 % PTEX.FileName

+ 4 % PTEX.PageNumber

+ 8 % PTEX.InfoDict

+ 16 % Creator

+ 32 % CreationDate

+ 64 % ModDate

+ 128 % Producer

+ 256 % Trapped

+ 512 % ID

\relax

In addition you can overload the trailer id, but we don’t do any checking on validity, so you have

to pass a valid array. The following is like the ones normally generated by the engine. You even

need to include the brackets here!

\pdfvariable trailerid {[

<FA052949448907805BA83C1E78896398>

<FA052949448907805BA83C1E78896398>

]}

Although we started from a merge of pdfTEX and Aleph, by now the code base as well as func-

tionality has diverted from those parents. Here we show the options that can be passed to the

extensions. The shipout option is a compatibility feature. Instead one can use the deferred

prefix.

\pdfextension literal

[shipout] [direct | page | raw] { tokens }

Modifications48

\pdfextension dest

num integer | name { tokens }!crlf

[fitbh | fitbv | fitb | fith| fitv | fit |

fitr <rule spec> | xyz [zoom <integer>]

\pdfextension annot

reserveobjnum | useobjnum <integer>

{ tokens }

\pdfextension save

\pdfextension restore

\pdfextension setmatrix

{ tokens }

[\immediate] \pdfextension obj

reserveobjnum

[\immediate] \pdfextension obj

[useobjnum <integer>]

[uncompressed]

[stream [attr { tokens }]]

[file]

{ tokens }

\pdfextension refobj

<integer>

\pdfextension colorstack

<integer>

set { tokens } | push { tokens } | pop | current

\pdfextension startlink

[attr { tokens }]

user { tokens } | goto | thread

[file { tokens }]

[page <integer> { tokens } | name { tokens } | num integer]

[newwindow | nonewwindow]

\pdfextension endlink

\pdfextension startthread

num <integer> | name { tokens }

\pdfextension endthread

\pdfextension thread

num <integer> | name { tokens }

\pdfextension outline

49Modifications

[attr { tokens }]

[useobjnum <integer>]

[count <integer>]

{ tokens }

\pdfextension glyphtounicode

{ tokens }

{ tokens }

\pdfextension catalog

{ tokens }

[openaction

user { tokens } | goto | thread

[file { tokens }]

[page <integer> { tokens } | name { tokens } | num <integer>]

[newwindow | nonewwindow]]

\pdfextension fontattr

<integer>

{tokens}

\pdfextension mapfile

{tokens}

\pdfextension mapline

{tokens}

\pdfextension includechars

{tokens}

\pdfextension info

{tokens}

\pdfextension names

{tokens}

\pdfextension trailer

{tokens}

3.2.3 Defaults

The engine sets the following defaults.

\pdfcompresslevel 9

\pdfobjcompresslevel 1 % used: (0,9)

\pdfrecompress 0 % mostly for debugging

\pdfdecimaldigits 4 % used: (3,6)

\pdfgamma 1000

\pdfimageresolution 71

Modifications50

\pdfimageapplygamma 0

\pdfimagegamma 2200

\pdfimagehicolor 1

\pdfimageaddfilename 1

\pdfpkresolution 72

\pdfpkfixeddpi 0

\pdfinclusioncopyfonts 0

\pdfinclusionerrorlevel 0

\pdfignoreunknownimages 0

\pdfgentounicode 0

\pdfomitcidset 0

\pdfomitcharset 0

\pdfomitinfodict 0

\pdfomitmediabox 0

\pdfpagebox 0

\pdfminorversion 4

\pdfuniqueresname 0

\pdfhorigin 1in

\pdfvorigin 1in

\pdflinkmargin 0pt

\pdfdestmargin 0pt

\pdfthreadmargin 0pt

\pdfxformmargin 0pt

3.2.4 Backward compatibility

If you also want some backward compatibility, you can add:

\let\pdfpagewidth \pagewidth

\let\pdfpageheight \pageheight

\let\pdfadjustspacing \adjustspacing

\let\pdfprotrudechars \protrudechars

\let\pdfnoligatures \ignoreligaturesinfont

\let\pdffontexpand \expandglyphsinfont

\let\pdfcopyfont \copyfont

\let\pdfxform \saveboxresource

\let\pdflastxform \lastsavedboxresourceindex

\let\pdfrefxform \useboxresource

\let\pdfximage \saveimageresource

\let\pdflastximage \lastsavedimageresourceindex

\let\pdflastximagepages\lastsavedimageresourcepages

\let\pdfrefximage \useimageresource

51Modifications

\let\pdfsavepos \savepos

\let\pdflastxpos \lastxpos

\let\pdflastypos \lastypos

\let\pdfoutput \outputmode

\let\pdfdraftmode \draftmode

\let\pdfpxdimen \pxdimen

\let\pdfinsertht \insertht

\let\pdfnormaldeviate \normaldeviate

\let\pdfuniformdeviate \uniformdeviate

\let\pdfsetrandomseed \setrandomseed

\let\pdfrandomseed \randomseed

\let\pdfprimitive \primitive

\let\ifpdfprimitive \ifprimitive

\let\ifpdfabsnum \ifabsnum

\let\ifpdfabsdim \ifabsdim

And even:

\newdimen\pdfeachlineheight

\newdimen\pdfeachlinedepth

\newdimen\pdflastlinedepth

\newdimen\pdffirstlineheight

\newdimen\pdfignoreddimen

3.3 Directions

3.3.1 Four directions

The directional model in LuaTEX is inherited from Omega/Aleph but we tried to improve it a bit.

At some point we played with recovery of modes but that was disabled later on when we found

that it interfered with nested directions. That itself had as side effect that the node list was no

longer balanced with respect to directional nodes which in turn can give side effects when a

series of dir changes happens without grouping.

When extending the pdf backend to support directions some inconsistencies were found and as

a result we decided to support only the four models that make sense TLT (latin), TRT (arabic),

RTT (cjk) and LTL (mongolian).

3.3.2 How it works

The approach is that we again make the list balanced but try to avoid some side effects. What

happens is quite intuitive if we forget about spaces (turned into glue) but even there what hap-

pens makes sense if you look at it in detail. However that logic makes in-group switching kind

Modifications52

of useless when no proper nested grouping is used: switching from right to left several times

nested, results in spacing ending up after each other due to nested mirroring. Of course a

sane macro package will manage this for the user but here we are discussing the low level dir

injection.

This is what happens:

\textdir TRT nur {\textdir TLT run \textdir TRT NUR} nur

This becomes stepwise:

injected: [+TRT]nur {[+TLT]run [+TRT]NUR} nur

balanced: [+TRT]nur {[+TLT]run [-TLT][+TRT]NUR[-TRT]} nur[-TRT]

result : run {RUNrun } run

And this:

\textdir TRT nur {nur \textdir TLT run \textdir TRT NUR} nur

becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]NUR} nur

balanced: [+TRT]nur {nur [+TLT]run [-TLT][+TRT]NUR[-TRT]} nur[-TRT]

result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:

\textdir TRT nur {{\textdir TLT run} {\textdir TRT NUR}} nur

This becomes:

nurrunNURnur

Compare this to:

\textdir TRT nur {{\textdir TLT run }{\textdir TRT NUR}} nur

Which renders as:

nurrunNURnur

So how do we deal with the next?

\def\ltr{\textdir TLT\relax}

\def\rtl{\textdir TRT\relax}

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

run nurrunNURrunNURnur

run run nur RUN nur RUN run

53Modifications

We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir

node. But that way we loose the subtype information that for some applications can be handy to

be kept as-is. This is why we now have a variant of \textdir which injects the balanced node

before the skip. Instead of the previous definition we can use:

\def\ltr{\linedir TLT\relax}

\def\rtl{\linedir TRT\relax}

and this time:

run {\rtl nur {\ltr run \rtl NUR \ltr run \rtl NUR} nur}

run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run nurrunNURrunNURnur

run run nur RUN nur RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be

handled in the input or macro package because there is no way we can predict the expected

behaviour. In fact, the \linedir is just a convenience extra which could also have been imple-

mented using node list parsing.

Directions are complicated by the fact that they often need to work over groups so a separate

grouping related stack is used. A side effect is that there can be paragraphs with only a local

par node followed by direction synchronization nodes. Paragraphs like that are seen as empty

paragraphs and therefore ignored. Because \noindent doesn’t inject anything but a \indent

injects an box, paragraphs with only an indent and directions are handled as paragraphs with

content.

3.3.3 Controlling glue with \breakafterdirmode

Glue after a dir node is ignored in the linebreak decision but you can bypass that by setting

\breakafterdirmode to 1. The following table shows the difference. Watch your spaces.

0 1

pre {\textdir TLT xxx} post pre pre

xxx post xxx

post

pre {\textdir TLT xxx }post pre pre

xxx xxx

post post

pre{ \textdir TLT xxx} post pre pre

xxx post xxx

post

pre{ \textdir TLT xxx }post pre pre

xxx xxx

post post

Modifications54

pre { \textdir TLT xxx } post pre pre

xxx xxx

post

post

pre {\textdir TLT\relax \space xxx} post pre pre

xxx post

xxx

post

3.3.4 Controling parshapes with \shapemode

Another adaptation to the Aleph directional model is control over shapes driven by \hangindent

and \parshape. This is controlled by a new parameter \shapemode:

VALUE \HANGINDENT \PARSHAPE

0 normal normal

1 mirrored normal

2 normal mirrored

3 mirrored mirrored

The value is reset to zero (like \hangindent and \parshape) after the paragraph is done with.

You can use negative values to prevent this. In figure 3.1 a few examples are given.

3.3.5 Symbols or numbers

Internally the implementation is different from Aleph. First of all we use no whatsits but dedi-

cated nodes, but also we have only 4 directions that are mapped onto 4 numbers. A text direction

node can mark the start or end of a sequence of nodes, and therefore has two states. At the TEX

end we don’t see these states because TEX itself will add proper end state nodes if needed.

The symbolic names TLT, TRT, etc. originate in Omega. In LuaTEX we also have a number based

model which sometimes makes more sense.

VALUE EQUIVALENT

0 TLT

1 TRT

2 LTL

3 RTT

We support the Omega primitives \textdir, \pardir, \pagedir, \pardir and \mathdir. These

accept three character keywords. The primitives that set the direction by number are: \textdi-

rection, \pardirection, \pagedirection and \bodydirection and \mathdirection. When

specifying a direction for a box you can use bdir instead of dir.

55Modifications

We thrive in information--thick worlds because of our

marvelous and everyday capacity to select, edit, sin-

gle out, structure, highlight, group, pair, merge, har-

monize, synthesize, focus, organize, condense, reduce, boil down,

choose, categorize, catalog, classify, list, abstract, scan, look into,

idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick

over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,

average, approximate, cluster, aggregate, outline, summarize, item-

ize, review, dip into, flip through, browse, glance into, leaf through,

skim, refine, enumerate, glean, synopsize, winnow the wheat from

the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of our mar-

velous and everyday capacity to select, edit, single out,

structure, highlight, group, pair, merge, harmonize, syn-

thesize, focus, organize, condense, reduce, boil down, choose, catego-

rize, catalog, classify, list, abstract, scan, look into, idealize, isolate,

discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,

blend, inspect, filter, lump, skip, smooth, chunk, average, approximate,

cluster, aggregate, outline, summarize, itemize, review, dip into, flip

through, browse, glance into, leaf through, skim, refine, enumerate,

glean, synopsize, winnow the wheat from the chaff and separate the

sheep from the goats.

TLT: hangindent TLT: parshape

Wethriveininformation--thickworldsbecauseofour

marvelousandeverydaycapacitytoselect,edit,sin-

gleout,structure,highlight,group,pair,merge,har-

monize,synthesize,focus,organize,condense,reduce,boildown,

choose,categorize,catalog,classify,list,abstract,scan,lookinto,

idealize,isolate,discriminate,distinguish,screen,pigeonhole,pick

over,sort,integrate,blend,inspect,filter,lump,skip,smooth,chunk,

average,approximate,cluster,aggregate,outline,summarize,item-

ize,review,dipinto,flipthrough,browse,glanceinto,leafthrough,

skim,refine,enumerate,glean,synopsize,winnowthewheatfrom

thechaffandseparatethesheepfromthegoats.

Wethriveininformation--thickworldsbecauseofourmar-

velousandeverydaycapacitytoselect,edit,singleout,

structure,highlight,group,pair,merge,harmonize,syn-

thesize,focus,organize,condense,reduce,boildown,choose,catego-

rize,catalog,classify,list,abstract,scan,lookinto,idealize,isolate,

discriminate,distinguish,screen,pigeonhole,pickover,sort,integrate,

blend,inspect,filter,lump,skip,smooth,chunk,average,approximate,

cluster,aggregate,outline,summarize,itemize,review,dipinto,flip

through,browse,glanceinto,leafthrough,skim,refine,enumerate,

glean,synopsize,winnowthewheatfromthechaffandseparatethe

sheepfromthegoats.

TRT: hangindent mode 0 TRT: parshape mode 0

Wethriveininformation--thickworldsbecauseofour

marvelousandeverydaycapacitytoselect,edit,sin-

gleout,structure,highlight,group,pair,merge,har-

monize,synthesize,focus,organize,condense,reduce,boildown,

choose,categorize,catalog,classify,list,abstract,scan,lookinto,

idealize,isolate,discriminate,distinguish,screen,pigeonhole,pick

over,sort,integrate,blend,inspect,filter,lump,skip,smooth,chunk,

average,approximate,cluster,aggregate,outline,summarize,item-

ize,review,dipinto,flipthrough,browse,glanceinto,leafthrough,

skim,refine,enumerate,glean,synopsize,winnowthewheatfrom

thechaffandseparatethesheepfromthegoats.

Wethriveininformation--thickworldsbecauseofourmar-

velousandeverydaycapacitytoselect,edit,singleout,

structure,highlight,group,pair,merge,harmonize,syn-

thesize,focus,organize,condense,reduce,boildown,choose,catego-

rize,catalog,classify,list,abstract,scan,lookinto,idealize,isolate,

discriminate,distinguish,screen,pigeonhole,pickover,sort,integrate,

blend,inspect,filter,lump,skip,smooth,chunk,average,approximate,

cluster,aggregate,outline,summarize,itemize,review,dipinto,flip

through,browse,glanceinto,leafthrough,skim,refine,enumerate,

glean,synopsize,winnowthewheatfromthechaffandseparatethe

sheepfromthegoats.

TRT: hangindent mode 1 & 3 TRT: parshape mode 2 & 3

Figure 3.1 The effect of shapemode.

3.4 Implementation notes

3.4.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two

separate arrays. Each of these will grow dynamically when needed.

The texmf.cnf settings related to main memory are no longer used (these are: main_memory,

mem_bot, extra_mem_top and extra_mem_bot). ‘Out of main memory’ errors can still occur, but

the limiting factor is now the amount of RAM in your system, not a predefined limit.

Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant code

now lives in the C file texnode.c, and basically uses a dozen or so ‘avail’ lists instead of a doubly-

linked model. An extra function layer is added so that the code can ask for nodes by type instead

of directly requisitioning a certain amount of memory words.

Because of the split into two arrays and the resulting differences in the data structures, some

of the macros have been duplicated. For instance, there are now vlink and vinfo as well as

token_link and token_info. All access to the variable memory array is now hidden behind a

macro called vmem. We mention this because using the TEXbook as reference is still quite valid

Modifications56

but not for memory related details. Another significant detail is that we have double linked node

lists and that most nodes carry more data.

The input line buffer and pool size are now also reallocated when needed, and the texmf.cnf

settings buf_size and pool_size are silently ignored.

3.4.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjcode)

tables are now sparse arrays that are implemented in C. They are no longer part of the TEX

‘equivalence table’ and because each had 1.1 million entries with a few memory words each,

this makes a major difference in memory usage. Performance is not really hurt by this.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments don’t show up when using

the 𝜀-TEX tracing routines \tracingassigns and \tracingrestores but we don’t see that as a

real limitation.

A side-effect of the current implementation is that \global is now more expensive in terms of

processing than non-global assignments but not many users will notice that.

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go up

to index 221 − 1 but these are never accessed directly so again users will not notice this.

3.4.3 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in

the hash just like the multiletter csnames.

The code that displays control sequences explicitly checks if the length is one when it has to

decide whether or not to add a trailing space.

Active characters are internally implemented as a special type of multi-letter control sequences

that uses a prefix that is otherwise impossible to obtain.

3.4.4 The compressed format file

The format is passed through zlib, allowing it to shrink to roughly half of the size it would have

had in uncompressed form. This takes a bit more cpu cycles but much less disk io, so it should

still be faster. We use a level 3 compression which we found to be the optimal trade-off between

filesize and decompression speed.

3.4.5 Binary file reading

All of the internal code is changed in such a way that if one of the read_xxx_file callbacks is not

set, then the file is read by a C function using basically the same convention as the callback: a

single read into a buffer big enough to hold the entire file contents. While this uses more memory

than the previous code (that mostly used getc calls), it can be quite a bit faster (depending on

your io subsystem).

57Modifications

3.4.6 Tabs and spaces

We conform to the way other TEX engines handle trailing tabs and spaces. For decades trailing

tabs and spaces (before a newline) were removed from the input but this behaviour was changed

in September 2017 to only handle spaces. We are aware that this can introduce compatibility

issues in existing workflows but because we don’t want too many differences with upstream

TEXLive we just follow up on that patch (which is a functional one and not really a fix). It is up to

macro packages maintainers to deal with possible compatibility issues and in LuaTEX they can

do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes from

generated sources) it was normally dealt with by adding a comment token to the line in case the

spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradicts

some of our other choices but consistency with other engines and the fact that in kpse mode a

common file io layer is used can have a side effect of breaking compatibility. We still stick to our

view that at the log level we can (and might be) more incompatible. We already expose some

more details.

3.4.7 Hyperlinks

There is an experimental feature that makes multi-line hyper links behave a little better, fixing

some side effects that showed up in r2l typesetting but also can surface in l2r. Because this got

unnoticed till 2023, and because it depends bit on how macro packages deal with hyper links,

the fix is currently under parameter control:

\pdfvariable linking = 1

That way (we hope) legacy documents come out as expected, whatever those expectations are.

One of the aspects dealt with concerns (unusual) left and right skips.

Modifications58

59Using LuaTEX

4 Using LUATEX

4.1 Initialization

4.1.1 LUATEX as a LUA interpreter

There are some situations that make LuaTEX behave like a standalone Lua interpreter:

‣ if a --luaonly option is given on the commandline, or

‣ if the executable is named texlua or luatexlua, or

‣ if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options in

negative values and the rest of the command line in the positive values, just like the Lua inter-

preter.

LuaTEXwill exit immediately after executing the specified Lua script and is, in effect, a somewhat

bulky stand alone Lua interpreter with a bunch of extra preloaded libraries.

4.1.2 LUATEX as a LUA byte compiler

There are two situations that make LuaTEX behave like the Lua byte compiler:

‣ if a --luaconly option is given on the command line, or

‣ if the executable is named texluac

In this mode, LuaTEX is exactly like luac from the stand alone Lua distribution, except that

it does not have the -l switch, and that it accepts (but ignores) the --luaconly switch. The

current version of Lua can dump bytecode using string.dump so we might decide to drop this

version of LuaTEX.

4.1.3 Other commandline processing

When the LuaTEX executable starts, it looks for the --lua command line option. If there is no

--lua option, the command line is interpreted in a similar fashion as the other TEX engines.

Some options are accepted but have no consequence. The following command-line options are

understood:

COMMANDLINE ARGUMENT EXPLANATION

--credits display credits and exit

--debug-format enable format debugging

--draftmode switch on draft mode i.e. generate no output in pdf mode

--[no-]file-line-error disable/enable file:line:error style messages

--[no-]file-line-error-style aliases of --[no-]file-line-error

--fmt=FORMAT load the format file FORMAT

Using LuaTEX60

--halt-on-error stop processing at the first error

--help display help and exit

--ini be iniluatex, for dumping formats

--interaction=STRING set interaction mode: batchmode, nonstopmode, scrollmode

or errorstopmode

--jobname=STRING set the job name to STRING

--kpathsea-debug=NUMBER set path searching debugging flags according to the bits of

NUMBER

--lua=FILE load and execute a Lua initialization script

--[no-]mktex=FMT disable/enable mktexFMT generation with FMT is tex or tfm

--nosocket disable the Lua socket library

--output-comment=STRING use STRING for dvi file comment instead of date (no effect for

pdf)

--output-directory=DIR use DIR as the directory to write files to

--output-format=FORMAT use FORMAT for job output; FORMAT is dvi or pdf

--progname=STRING set the program name to STRING

--recorder enable filename recorder

--safer disable easily exploitable Lua commands

--[no-]shell-escape disable/enable system calls

--shell-restricted restrict system calls to a list of commands given in texmf.cnf

--synctex=NUMBER enable synctex

--utc use utc times when applicable

--version display version and exit

We don’t support \write 18 because os.execute can do the same. It simplifies the code and

makes more write targets possible.

The value to use for \jobname is decided as follows:

‣ If --jobname is given on the command line, its argument will be the value for \jobname,

without any changes. The argument will not be used for actual input so it need not exist. The

--jobname switch only controls the \jobname setting.

‣ Otherwise, \jobname will be the name of the first file that is read from the file system, with

any path components and the last extension (the part following the last .) stripped off.

‣ There is an exception to the previous point: if the command line goes into interactive mode

(by starting with a command) and there are no files input via \everyjob either, then the

\jobname is set to texput as a last resort.

The file names for output files that are generated automatically are created by attaching the

proper extension (log, pdf, etc.) to the found \jobname. These files are created in the directory

pointed to by --output-directory, or in the current directory, if that switch is not present.

Without the --lua option, command line processing works like it does in any other web2c-based

typesetting engine, except that LuaTEX has a few extra switches and lacks some others. Also, if

the --lua option is present, LuaTEX will enter an alternative mode of command line processing

in comparison to the standard web2c programs. In this mode, a small series of actions is taken

in the following order:

61Using LuaTEX

1. First, it will parse the command line as usual, but it will only interpret a small subset of

the options immediately: --safer, --nosocket, --[no-]shell-escape, --enable-write18,

--disable-write18, --shell-restricted, --help, --version, and --credits.

2. Next LuaTEX searches for the requested Lua initialization script. If it cannot be found using

the actual name given on the command line, a second attempt is made by prepending the

value of the environment variable LUATEXDIR, if that variable is defined in the environment.

3. Then it checks the various safety switches. You can use those to disable some Lua commands

that can easily be abused by a malicious document. At the moment, --safer nils the follow-

ing functions:

LIBRARY FUNCTIONS

os execute exec spawn setenv rename remove tmpdir

io popen output tmpfile

lfs rmdir mkdir chdir lock touch

Furthermore, it disables loading of compiled Lua libraries and it makes io.open() fail on

files that are opened for anything besides reading.

4. When LuaTEX starts it sets the locale to a neutral value. If for some reason you use os.lo-

cale, you need to make sure you nil it afterwards because otherwise it can interfere with

code that for instance generates dates. You can ignore the locale with:

os.setlocale(nil,nil)

The --nosocket option makes the socket library unavailable, so that Lua cannot use network-

ing.

The switches --[no-]shell-escape, --[enable|disable]-write18, and --shell-restricted

have the same effects as in pdfTEX, and additionally make io.popen(), os.execute, os.exec

and os.spawn adhere to the requested option.

5. Next the initialization script is loaded and executed. From within the script, the entire com-

mand line is available in the Lua table arg, beginning with arg[0], containing the name of

the executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TEX’s initializa-

tions have taken place yet. For that reason, the tables that deal with typesetting, like tex, token,

node and pdf, are off-limits during the execution of the startup file (they are nil’d). Special care

is taken that texio.write and texio.write_nl function properly, so that you can at least report

your actions to the log file when (and if) it eventually becomes opened (note that TEX does not

even know its \jobname yet at this point).

Everything you do in the Lua initialization script will remain visible during the rest of the run,

with the exception of the TEX specific libraries like tex, token, node and pdf tables. These will

be initialized to their documented state after the execution of the script. You should not store

anything in variables or within tables with these four global names, as they will be overwritten

completely.

We recommend you use the startup file only for your own TEX-independent initializations (if

you need any), to parse the command line, set values in the texconfig table, and register the

callbacks you need.

Using LuaTEX62

LuaTEX allows some of the command line options to be overridden by reading values from the

texconfig table at the end of script execution (see the description of the texconfig table later

on in this document for more details on which ones exactly).

Unless the texconfig table tells LuaTEX not to initialize kpathsea at all (set texcon-

fig.kpse_init to false for that), LuaTEX acts on some more command line options after the

initialization script is finished: in order to initialize the built-in kpathsea library properly, LuaTEX

needs to know the correct program name to use, and for that it needs to check --progname, or

--ini and --fmt, if --progname is missing.

4.2 LUA behaviour

4.2.1 The LUA version

We currently use Lua 5.3 and will follow developments of the language but normally with some

delay. Therefore the user needs to keep an eye on (subtle) differences in successive versions of

the language. Also, LuajitTEX lags behind in the sense that LuaJIT is not in sync with regular

Lua development. Here is an example of one aspect.

Luas tostring function (and string.format may return values in scientific notation, thereby

confusing the TEX end of things when it is used as the right-hand side of an assignment to a

\dimen or \count. The output of these serializers also depend on the Lua version, so in Lua 5.3

you can get different output than from 5.2.

4.2.2 Integration in the TDS ecosystem

The main TEX distributions follow the TEX directory structure (tds). LuaTEX is able to use the

kpathsea library to find require()d modules. For this purpose, package.searchers[2] is re-

placed by a different loader function, that decides at runtime whether to use kpathsea or the

built-in core Lua function. It uses kpathsea when that is already initialized at that point in time,

otherwise it reverts to using the normal package.path loader.

Initialization of kpathsea can happen either implicitly (when LuaTEX starts up and the startup

script has not set texconfig.kpse_init to false), or explicitly by calling the Lua function

kpse.set_program_name().

4.2.3 Loading libraries

LuaTEX is able to use dynamically loadable Lua libraries, unless --safer was given as an option

on the command line. For this purpose, package.searchers[3] is replaced by a different loader

function, that decides at runtime whether to use kpathsea or the built-in core Lua function. It

uses kpathsea when that is already initialized at that point in time, otherwise it reverts to using

the normal package.cpath loader.

This functionality required an extension to kpathsea. There is a new kpathsea file format:

kpse_clua_format that searches for files with extension .dll and .so. The texmf.cnf setting

for this variable is CLUAINPUTS, and by default it has this value:

63Using LuaTEX

CLUAINPUTS=.:$SELFAUTOLOC/lib/{$progname,$engine,}/lua//

This path is imperfect (it requires a tds subtree below the binaries directory), but the architec-

ture has to be in the path somewhere, and the currently simplest way to do that is to search

below the binaries directory only. Of course it no big deal to write an alternative loader and use

that in a macro package. One level up (a lib directory parallel to bin) would have been nicer,

but that is not doable because TEXLive uses a bin/<arch> structure.

Loading dynamic Lua libraries will fail if there are two Lua libraries loaded at the same time

(which will typically happen on win32, because there is one Lua 5.3 inside LuaTEX, and another

will likely be linked to the dll file of the module itself).

4.2.4 Executing programs

In keeping with the other TEX-like programs in TEXLive, the two Lua functions os.execute and

io.popen, as well as the two new functions os.exec and os.spawn that are explained below,

take the value of shell_escape and/or shell_escape_commands in account. Whenever LuaTEX

is run with the assumed intention to typeset a document (and by that we mean that it is called as

luatex, as opposed to texlua, and that the command line option --luaonly was not given), it

will only run the four functions above if the matching texmf.cnf variable(s) or their texconfig

(see section 10.4) counterparts allow execution of the requested system command. In ‘script in-

terpreter’ runs of LuaTEX, these settings have no effect, and all four functions have their original

meaning.

Some libraries have a few more functions, either coded in C or in Lua. For instance, when we

started with LuaTEX we added some helpers to the luafilesystem namespace lfs. The two

boolean functions lfs.isdir and lfs.isfile were speedy and better variants of what could

be done with lfs.attributes. The additional function lfs.shortname takes a file name and

returns its short name on win32 platforms. Finally, for non-win32 platforms only, we provided

lfs.readlink that takes an existing symbolic link as argument and returns its name. However,

the lfs library evolved so we have dropped these in favour of pure Lua variants. The shortname

helper is obsolete and now just returns the name.

4.2.5 Multibyte string functions

The string library has a few extra functions, for example string.explode. This function takes

upto two arguments: string.explode(s[,m]) and returns an array containing the string argu-

ment s split into sub-strings based on the value of the string argument m. The second argument is

a string that is either empty (this splits the string into characters), a single character (this splits

on each occurrence of that character, possibly introducing empty strings), or a single character

followed by the plus sign + (this special version does not create empty sub-strings). The default

value for m is ‘ +’ (multiple spaces). Note: m is not hidden by surrounding braces as it would be

if this function was written in TEX macros.

The string library also has six extra iterators that return strings piecemeal: string.utfval-

ues, string.utfcharacters, string.characters, string.characterpairs, string.bytes and

string.bytepairs.

Using LuaTEX64

‣ string.utfvalues(s): an integer value in the Unicode range

‣ string.utfcharacters(s): a string with a single utf-8 token in it

‣ string.characters(s): a string containing one byte

‣ string.characterpairs(s): two strings each containing one byte or an empty second string

if the string length was odd

‣ string.bytes(s): a single byte value

‣ string.bytepairs(s): two byte values or nil instead of a number as its second return value

if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the

conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,

if true, strips the symbols from the dumped data. This matches an extension made in luajit.

This is typically a function that gets adapted as Lua itself progresses.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the

utf8 encoding, i.e., strings containing characters above code point 127, the corresponding func-

tions from the slnunicode library can be used, e.g., unicode.utf8.len, unicode.utf8.lower

etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and

unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are

Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capture

() but other captures work as expected. For the interpretation of character classes in uni-

code.utf8 functions refer to the library sources at http://luaforge.net/projects/sln.

Version 5.3 of Lua provides some native utf8 support but we have added a few similar helpers

too: string.utfvalue, string.utfcharacter and string.utflength.

‣ string.utfvalue(s): returns the codepoints of the characters in the given string

‣ string.utfcharacter(c,...): returns a string with the characters of the given code points

‣ string.utflength(s): returns the length of the given string

These three functions are relative fast and don’t do much checking. They can be used as building

blocks for other helpers.

4.2.6 Extra os library functions

The os library has a few extra functions and variables: os.selfdir, os.exec, os.spawn,

os.setenv, os.env, os.gettimeofday, os.times, os.tmpdir, os.type, os.name and os.uname,

that we will discuss here.

‣ os.selfdir is a variable that holds the directory path of the actual executable. For example:

\directlua{tex.sprint(os.selfdir)}.

‣ os.exec(commandline) is a variation on os.execute. Here commandline can be either a

single string or a single table.

– If the argument is a table LuaTEX first checks if there is a value at integer index zero. If

there is, this is the command to be executed. Otherwise, it will use the value at integer

index one. If neither are present, nothing at all happens.

– The set of consecutive values starting at integer 1 in the table are the arguments that

are passed on to the command (the value at index 1 becomes arg[0]). The command is

65Using LuaTEX

searched for in the execution path, so there is normally no need to pass on a fully qualified

path name.

– If the argument is a string, then it is automatically converted into a table by splitting on

whitespace. In this case, it is impossible for the command and first argument to differ

from each other.

– In the string argument format, whitespace can be protected by putting (part of) an argu-

ment inside single or double quotes. One layer of quotes is interpreted by LuaTEX, and

all occurrences of \", \' or \\ within the quoted text are unescaped. In the table format,

there is no string handling taking place.

This function normally does not return control back to the Lua script: the command will

replace the current process. However, it will return the two values nil and error if there

was a problem while attempting to execute the command.

On MS Windows, the current process is actually kept in memory until after the execution of

the command has finished. This prevents crashes in situations where TEXLua scripts are run

inside integrated TEX environments.

The original reason for this command is that it cleans out the current process before starting

the new one, making it especially useful for use in TEXLua.

‣ os.spawn(commandline) is a returning version of os.exec, with otherwise identical calling

conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwise,

it will return the two values nil and error.

‣ os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value

string will remove the variable.

‣ os.env is a hash table containing a dump of the variables and values in the process envi-

ronment at the start of the run. It is writeable, but the actual environment is not updated

automatically.

‣ os.gettimeofday() returns the current ‘Unix time’, but as a float. This function is not avail-

able on the SunOS platforms, so do not use this function for portable documents.

‣ os.times()returns the current process times according to the Unix C library function ‘times’.

This function is not available on the MS Windows and SunOS platforms, so do not use this

function for portable documents.

‣ os.tmpdir() creates a directory in the ‘current directory’ with the name luatex.XXXXXX

where the X-es are replaced by a unique string. The function also returns this string, so you

can lfs.chdir() into it, or nil if it failed to create the directory. The user is responsible for

cleaning up at the end of the run, it does not happen automatically.

‣ os.type is a string that gives a global indication of the class of operating system. The possible

values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).

‣ os.name is a string that gives a more precise indication of the operating system. These pos-

sible values are not yet fixed, and for os.type values windows and msdos, the os.name values

are simply windows and msdos

The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so-

laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv

(unknown, but sysv-like), generic (unknown).

‣ os.uname returns a table with specific operating system information acquired at runtime.

The keys in the returned table are all string values, and their names are: sysname, machine,

release, version, and nodename.

Using LuaTEX66

4.2.7 Binary input from files with fio

There is a whole set of helpers for reading numbers and strings from a file: fio.readcardi-

nal1, fio.readcardinal2, fio.readcardinal3, fio.readcardinal4, fio.readcardinaltable,

fio.readinteger1, fio.readinteger2, fio.readinteger3, fio.readinteger4, fio.readin-

tegertable, fio.readfixed2, fio.readfixed4, fio.read2dot14, fio.setposition, fio.get-

position, fio.skipposition, fio.readbytes, fio.readbytetable. They work on normal Lua

file handles.

This library provides a set of functions for reading numbers from a file and in addition to the

regular io library functions.

readcardinal1(f) a 1 byte unsigned integer

readcardinal2(f) a 2 byte unsigned integer

readcardinal3(f) a 3 byte unsigned integer

readcardinal4(f) a 4 byte unsigned integer

readcardinaltable(f,n,b) n cardinals of b bytes

readinteger1(f) a 1 byte signed integer

readinteger2(f) a 2 byte signed integer

readinteger3(f) a 3 byte signed integer

readinteger4(f) a 4 byte signed integer

readintegertable(f,n,b) n integers of b bytes

readfixed2(f) a 2 byte float (used in font files)

readfixed4(f) a 4 byte float (used in font files)

read2dot14(f) a 2 byte float (used in font files)

setposition(f,p) goto position p

getposition(f) get the current position

skipposition(f,n) skip n positions

readbytes(f,n) n bytes

readbytetable(f,n) n bytes

There are eight additional little endian variants for the cardinal[1-4] and integer[1-4] read-

ers: cardinal[1-4]le and integer[1-4]le.

4.2.8 Binary input from strings with sio

A similar set of function as in the fio library is available in the sio library: sio.readcardi-

nal1, sio.readcardinal2, sio.readcardinal3, sio.readcardinal4, sio.readcardinaltable,

sio.readinteger1, sio.readinteger2, sio.readinteger3, sio.readinteger4, sio.readin-

tegertable, sio.readfixed2, sio.readfixed4, sio.read2dot14, sio.setposition, sio.get-

position, sio.skipposition, sio.readbytes and sio.readbytetable. Here the first argu-

ment is a string instead of a file handle. More details can be found in the previous section.

4.2.9 Hashes conform sha2

This library is a side effect of the pdfe library that needs such helpers. The sha2.digest256,

sha2.digest384 and sha2.digest512 functions accept a string and return a string with the

hash.

67Using LuaTEX

4.2.10 Locales

In stock Lua, many things depend on the current locale. In LuaTEX, we can’t do that, because it

makes documents unportable. While LuaTEX is running if forces the following locale settings:

LC_CTYPE=C

LC_COLLATE=C

LC_NUMERIC=C

4.3 LUA modules

Some modules that are normally external to Lua are statically linked in with LuaTEX, because

they offer useful functionality:

‣ lpeg, by Roberto Ierusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html. This

library is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mainly

means that lpeg.S cannot be used with utf8 characters encoded in more than two bytes, and

thus lpeg.S will look for one of those two bytes when matching, not the combination of the

two. The same is true for lpeg.R, although the latter will display an error message if used

with multibyte characters. Therefore lpeg.R('aä') results in the message bad argument #1

to 'R' (range must have two characters), since to lpeg, ä is two ’characters’ (bytes), so

aä totals three. In practice this is no real issue and with some care you can deal with Unicode

just fine.

‣ slnunicode, from the selene libraries, http://luaforge.net/projects/sln. This library has been

slightly extended so that the unicode.utf8.* functions also accept the first 256 values of

plane 18. This is the range LuaTEX uses for raw binary output, as explained above. We have

no plans to provide more like this because you can basically do all that you want in Lua.

‣ luazip, from the kepler project, http://www.keplerproject.org/luazip/.

‣ luafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/.

‣ lzlib, by Tiago Dionizio, http://luaforge.net/projects/lzlib/.

‣ md5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.

‣ luasocket, by Diego Nehab http://w3.impa.br/~diego/software/luasocket/. The .lua support

modules from luasocket are also preloaded inside the executable, there are no external file

dependencies.

4.4 Testing

For development reasons you can influence the used startup date and time. This can be done in

two ways.

1. By setting the environmment variable SOURCE_DATE_EPOCH. This will influence the TEX para-

meters time and date, the random seed, the pdf timestamp and the pdf id that is derived

from the time as well. This variable is consulted when the kpse library is enabled. Resolving

is delegated to this library.

2. By setting the start_time variable in the texconfig table; as with other variables we use the

internal name there. For compatibility reasons we also honour a SOURCE_DATE_EPOCH entry.

Using LuaTEX68

It should be noted that there are no such variables in other engines and this method is only

relevant in case the while setup happens in Lua.

WhenUniversal Time is needed, you can pass the flag utc to the engine. This property also works

when the date and time are set by LuaTEX itself. It has a complementary entry use_utc_time in

the texconfig table.

There is some control possible, for instance prevent filename to be written to the pdf file. This is

discussed elsewhere. In ConTEXt we provide the command line argument --nodates that does

a bit more disabling of dates.

69Languages, characters, fonts and glyphs

5 Languages, characters, fonts and

glyphs

5.1 Introduction

LuaTEX’s internal handling of the characters and glyphs that eventually become typeset is quite

different from the way TEX82 handles those same objects. The easiest way to explain the differ-

ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later

on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TEX82, the characters you type are converted into char node records when they are encoun-

tered by the main control loop. TEX attaches and processes the font information while creating

those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im-

plicit kerning. This packaging is needed because we may want to get the effective width of for

instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TEX converts (one word at time)

the char node records into a string by replacing ligatures with their components and ignoring

the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated

result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.

Keep in mind that the paragraph may contain unboxed horizontal material, which then already

contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts,

and therefore not really ‘characters’ in the linguistic sense. There is no language information in-

side the char node records at all. Instead, language information is passed along using language

whatsit nodes inside the horizontal list.

In LuaTEX, the situation is quite different. The characters you type are always converted into

glyph node records with a special subtype to identify them as being intended as linguistic char-

acters. LuaTEX stores the needed language information in those records, but does not do any

font-related processing at the time of node creation. It only stores the index of the current font

and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTEX first inserts all hyphenation points

right into thewhole node list. Next, it processes all the font information in thewhole list (creating

ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the

records are ‘glyph nodes’ from now on.

5.2 Characters, glyphs and discretionaries

TEX82 (including pdfTEX) differentiates between char nodes and lig nodes. The former are

simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the

same memory as tokens did. The latter also contained a list of components, and a subtype

indicating whether this ligature was the result of a word boundary, and it was stored in the

same place as other nodes like boxes and kerns and glues.

Languages, characters, fonts and glyphs70

In LuaTEX, these two types are merged into one, somewhat larger structure called a glyph node.

Besides having the old character, font, and component fields there are a few more, like ‘attr’ that

we will see in section 8.2.12, these nodes also contain a subtype, that codes four main types and

two additional ghost types. For ligatures, multiple bits can be set at the same time (in case of a

single-glyph word).

‣ character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

‣ glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

‣ ligature, for constructed ligatures bit 1 is set.

‣ ghost, for so called ‘ghost objects’ bit 2 is set.

‣ left, for ligatures created from a left word boundary and for ghosts created from \leftghost

bit 3 gets set.

‣ right, for ligatures created from a right word boundary and for ghosts created from \right-

ghost bit 4 is set.

The glyph nodes also contain language data, split into four items that were current when the

node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthyphenmin

(8 bits), and \uchyph (1 bit).

Incidentally, LuaTEX allows 16383 separate languages, and words can be 256 characters long.

The language is stored with each character. You can set \firstvalidlanguage to for instance 1

and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This

value is stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from

TEX82: changes to \uchyph become effective immediately, not at the end of the current partial

paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,

so there is no longer a possible dependency on the surrounding language settings. In TEX82, a

mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan-

guage unless there was a \setlanguage issued inside the box. In LuaTEX, all language variables

are already frozen.

In traditional TEX the process of hyphenation is driven by lccodes. In LuaTEX we made this de-

pendency less strong. There are several strategies possible. When you do nothing, the currently

used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of lccodes will be

saved with the language. In that case changing a lccode afterwards has no effect. However,

you can adapt the set with:

\hjcode`a=`a

This change is global which makes sense if you keep in mind that the moment that hyphenation

happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy-

phcodes was zero when the language got initialized you start out with nothing, otherwise you

already have a set.

When a \hjcode is greater than 0 but less than 32 is indicates the to be used length. In the fol-

lowing example wemap a character (x) onto another one in the patterns and tell the engine that œ

71Languages, characters, fonts and glyphs

counts as one character. Because traditionally zero itself is reserved for inhibiting hyphenation,

a value of 32 counts as zero.

Here are some examples (we assume that French patterns are used):

foobar foo-bar

\hjcode `x=`o fxxbar fxx-bar

\lefthyphenmin 3 œdipus œdi-pus

\lefthyphenmin 4 œdipus œdipus

\hjcode `œ=2 œdipus œdi-pus

\hjcode `i=32 \hjcode `d=32 œdipus œdipus

Carrying all this information with each glyph would give too much overhead and also make the

process of setting up these codes more complex. A solution with hjcode sets was considered but

rejected because in practice the current approach is sufficient and it would not be compatible

anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph-

codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instance

discretionary injection. For this you can use the \wordboundary as a trigger. Here are a few

examples of usage:

discrete---discrete

discrete—discrete

discrete\discretionary{}{}{---}discrete

discrete

discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis-

crete

discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis-

crete

dis-

crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis-

crete—

dis-

crete

Languages, characters, fonts and glyphs72

We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of

explicit hyphens since that normally indicates a -- or --- ligature in which case we can in a

worse case usage get bad node lists later on due to messed up ligature building as these dashes

are ligatures in base fonts. This is a side effect of separating the hyphenation, ligaturing and

kerning steps.

The start and end of a sequence of characters is signalled by a glue, penalty, kern or boundary

node. But by default also a hlist, vlist, rule, dir, whatsit, ins, and adjust node indicate a

start or end. You can omit the last set from the test by setting \hyphenationbounds to a non-zero

value:

VALUE BEHAVIOUR

0 not strict

1 strict start

2 strict end

3 strict start and strict end

The word start is determined as follows:

NODE BEHAVIOUR

boundary yes when wordboundary

hlist when hyphenationbounds 1 or 3

vlist when hyphenationbounds 1 or 3

rule when hyphenationbounds 1 or 3

dir when hyphenationbounds 1 or 3

whatsit when hyphenationbounds 1 or 3

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no – —)

otherwise yes

The word end is determined as follows:

NODE BEHAVIOUR

boundary yes

glyph yes when different language

glue yes

penalty yes

kern yes when not italic (for some historic reason)

hlist when hyphenationbounds 2 or 3

vlist when hyphenationbounds 2 or 3

rule when hyphenationbounds 2 or 3

dir when hyphenationbounds 2 or 3

whatsit when hyphenationbounds 2 or 3

ins when hyphenationbounds 2 or 3

adjust when hyphenationbounds 2 or 3

Figures 5.1 upto 5.5 show some examples. In all cases we set the min values to 1 and make sure

that the words hyphenate at each character.

73Languages, characters, fonts and glyphs

o-

n-

e

o-

n-

e

o-

n-

e

o-

n-

e

0 1 2 3

Figure 5.1 one

o-

n-

et-

w-

o

o-

n-

etwo

onet-

w-

o

onetwo

0 1 2 3

Figure 5.2 one\null two

o-

n-

et-

w-

o

o-

n-

etwo

onet-

w-

o

onetwo

0 1 2 3

Figure 5.3 \null one\null two

o-

n-

et-

w-

o

o-

n-

etwo

onetwo onetwo

0 1 2 3

Figure 5.4 one\null two\null

In traditional TEX ligature building and hyphenation are interwoven with the line break mech-

anism. In LuaTEX these phases are isolated. As a consequence we deal differently with (a se-

quence of) explicit hyphens. We already have added some control over aspects of the hyphen-

ation and yet another one concerns automatic hyphens (e.g. - characters in the input).

When \automatichyphenmode has a value of 0, a hyphen will be turned into an automatic discre-

tionary. The snippets before and after it will not be hyphenated. A side effect is that a leading

hyphen can lead to a split but one will seldom run into that situation. Setting a pre and post

character makes this more prominent. A value of 1 will prevent this side effect and a value of

2 will not turn the hyphen into a discretionary. Experiments with other options, like permitting

hyphenation of the words on both sides were discarded.

In figure 5.6 and 5.7 we show what happens with three samples:

Input A:

before-after \par

before--after \par

Languages, characters, fonts and glyphs74

o-

n-

et-

w-

o

o-

n-

etwo

onetwo onetwo

0 1 2 3

Figure 5.5 \null one\null two\null

before-after

before--after

before---after

before-

after

before--

after

before---

after

before-

after

before--after

before---after

before-after

before--after

before---after

A 0 6em A 0 2pt A 1 2pt A 2 2pt

-before

after-

--before

after--

---before

after---

-

before

after-

--before

after--

---before

after---

-before

after-

--before

after--

---before

after---

-before

after-

--before

after--

---before

after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt

before-after

before--after

before---after

before-

after

before--

after

before---

after

before-

after

before--after

before---after

before-after

before--after

before---after

C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 5.6 The automatic modes 0 (default), 1 and 2, with a \hsize of

6em and 2pt (which triggers a linebreak).

before---after \par

Input B:

-before \par

after- \par

--before \par

after-- \par

---before \par

after--- \par

75Languages, characters, fonts and glyphs

before-after

before--after

before---after

beforeB

Aafter

before-B

Aafter

before--B

Aafter

beforeB

Aafter

before--after

before---after

before-after

before--after

before---after

A 0 6em A 0 2pt A 1 2pt A 2 2pt

-before

after-

--before

after--

---before

after---

B

Abefore

after-

--before

after--

---before

after---

-before

after-

--before

after--

---before

after---

-before

after-

--before

after--

---before

after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt

before-after

before--after

before---after

beforeB

Aafter

before-B

Aafter

before--B

Aafter

beforeB

Aafter

before--after

before---after

before-after

before--after

before---after

C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 5.7 The automatic modes 0 (default), 1 and 2, with \preexhy-

phenchar and \postexhyphenchar set to characters A and B.

Input C:

before-after \par

before--after \par

before---after \par

As with primitive companions of other single character commands, the \- command has a more

verbose primitive version in \explicitdiscretionary and the normally intercepted in the hy-

phenator character - (or whatever is configured) is available as \automaticdiscretionary.

5.3 The main control loop

In LuaTEX’s main loop, almost all input characters that are to be typeset are converted into glyph

node records with subtype ‘character’, but there are a few exceptions.

1. The \accent primitive creates nodes with subtype ‘glyph’ instead of ‘character’: one for the

actual accent and one for the accentee. The primary reason for this is that \accent in TEX82

is explicitly dependent on the current font encoding, so it would not make much sense to

Languages, characters, fonts and glyphs76

attach a new meaning to the primitive’s name, as that would invalidate many old documents

and macro packages. A secondary reason is that in TEX82, \accent prohibits hyphenation of

the current word. Since in LuaTEX hyphenation only takes place on ‘character’ nodes, it is

possible to achieve the same effect. Of course, modern Unicode aware macro packages will

not use the \accent primitive at all but try to map directly on composed characters.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a

character subtype. In traditional TEX there was a strong relationship between the 8-bit input

encoding, hyphenation and glyphs taken from a font. In LuaTEX we have utf input, and in

most cases this maps directly to a character in a font, apart from glyph replacement in the

font engine. If you want to access arbitrary glyphs in a font directly you can always use Lua

to do so, because fonts are available as Lua table.

2. All the results of processing in math mode eventually become nodes with ‘glyph’ subtypes.

In fact, the result of processing math is just a regular list of glyphs, kerns, glue, penalties,

boxes etc.

3. The Aleph-derived commands \leftghost and \rightghost create nodes of a third subtype:

‘ghost’. These nodes are ignored completely by all further processing until the stage where

inter-glyph kerning is added.

4. Automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after

sensing an input character that matches the \hyphenchar in the current font. This test is

wrong in our opinion: whether or not hyphenation takes place should not depend on the

current font, it is a language property.1

In LuaTEX, it works like this: if LuaTEX senses a string of input characters that matches the

value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary

after that series of nodes. Initially TEX sets the \exhyphenchar=`\-. Incidentally, this is a

global parameter instead of a language-specific one because it may be useful to change the

value depending on the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same

time as the other hyphenation processing, not inside the main control loop.

The only use LuaTEX has for \hyphenchar is at the check whether a word should be consid-

ered for hyphenation at all. If the \hyphenchar of the font attached to the first character node

in a word is negative, then hyphenation of that word is abandoned immediately. This behav-

iour is added for backward compatibility only, and the use of \hyphenchar=-1 as a means of

preventing hyphenation should not be used in new LuaTEX documents.

5. The \setlanguage command no longer creates whatsits. The meaning of \setlanguage is

changed so that it is now an integer parameter like all others. That integer parameter is used

in \glyph_node creation to add language information to the glyph nodes. In conjunction, the

\language primitive is extended so that it always also updates the value of \setlanguage.

6. The \noboundary command (that prohibits word boundary processing where that would nor-

mally take place) now does create nodes. These nodes are needed because the exact place

of the \noboundary command in the input stream has to be retained until after the ligature

and font processing stages.

7. There is no longer a main_loop label in the code. Remember that TEX82 did quite a lot of

processing while adding char_nodes to the horizontal list? For speed reasons, it handled

1 When TEX showed up we didn’t have Unicode yet and being limited to eight bits meant that one sometimes had to

compromise between supporting character input, glyph rendering, hyphenation.

77Languages, characters, fonts and glyphs

that processing code outside of the ‘main control’ loop, and only the first character of any

‘word’ was handled by that ‘main control’ loop. In LuaTEX, there is no longer a need for that

(all hard work is done later), and the (now very small) bits of character-handling code have

been moved back inline. When \tracingcommands is on, this is visible because the full word

is reported, instead of just the initial character.

Because we tend to make hard coded behaviour configurable a few new primitives have been

added:

\hyphenpenaltymode

\automatichyphenpenalty

\explicithyphenpenalty

The first parameter has the following consequences for automatic discs (the ones resulting from

an \exhyphenchar:

MODE AUTOMATIC DISC - EXPLICIT DISC \-

0 \exhyphenpenalty \exhyphenpenalty

1 \hyphenpenalty \hyphenpenalty

2 \exhyphenpenalty \hyphenpenalty

3 \hyphenpenalty \exhyphenpenalty

4 \automatichyphenpenalty \explicithyphenpenalty

5 \exhyphenpenalty \explicithyphenpenalty

6 \hyphenpenalty \explicithyphenpenalty

7 \automatichyphenpenalty \exhyphenpenalty

8 \automatichyphenpenalty \hyphenpenalty

other values do what we always did in LuaTEX: insert \exhyphenpenalty.

5.4 Loading patterns and exceptions

Although we keep the traditional approach towards hyphenation (which is still superior) the

implementation of the hyphenation algorithm in LuaTEX is quite different from the one in TEX82.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns sep-

arated by spaces, no \char or \chardefd commands are allowed. The current implementation

is quite strict and will reject all non-Unicode characters. Likewise, the expanded argument for

\hyphenation also has to be proper utf8, but here a bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicate a desired complex discretionary,

with arguments as in \discretionary’s command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal

document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,

but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the

internal command names. This string is then converted into a dictionary by a routine that creates

Languages, characters, fonts and glyphs78

key-value pairs by converting the other listed items. It is important to note that the keys in an

exception dictionary can always be generated from the values. Here are a few examples:

VALUE IMPLIED KEY (INPUT) EFFECT

ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)

ba{k-}{}{c}ken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is

the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the

command is optional in the TEX-based input syntax. The underlying reason for that is that it is

conceivable that a whole dictionary of words is stored as a plain text file and loaded into LuaTEX

using one of the functions in the Lua lang library. This loading method is quite a bit faster than

going through the TEX language primitives, but some (most?) of that speed gain would be lost if

it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the

explicit hyphen character (replace - by the actual explicit hyphen character if needed). For

example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetween

‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the 𝜀-TEX extension \savinghyphcodes was that hyphenation heavily de-
pended on font encodings. This is no longer true in LuaTEX, and the corresponding primitive is

basically ignored. Because we now have \hjcode, the case relate codes can be used exclusively

for \uppercase and \lowercase.

The three curly brace pair pattern in an exception can be somewhat unexpected so we will try

to explain it by example. The pattern foo{}{}{x}bar pattern creates a lookup fooxbar and the

pattern foo{}{}{}bar creates foobar. Then, when a hit happens there is a replacement text

(x) or none. Because we introduced penalties in discretionary nodes, the exception syntax now

also can take a penalty specification. The value between square brackets is a multiplier for

\exceptionpenalty. Here we have set it to 10000 so effectively we get 30000 in the example.

x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xxa-

-bxa-

-bxa-

-bxx

123

123

xa-

-bxa-

-bxa-

-bxa-

-bxx

123

123 xxxxxx

xxxxxx xxa-

-bxxxx xxa-

-bxxxx 123

79Languages, characters, fonts and glyphs

x{a-}{-b}{}x{a-}{-b}{}[3]x{a-}{-b}{}[1]x{a-}{-b}{}xx

10em 3em 0em 6em

123 xxxxxx 123 123

xa-

-bxxxa-

-bxx

123

123

xa-

-bxxxa-

-bxx

123

123 xxxxa-

-bxx xxxxxx

xxxxxx xa-

-bxxxxx 123

z{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

zza-

-ba-

-bzz

123

123

za-

-ba-

-ba-

-ba-

-bz

123

123 zzzzzz

zzzzzz zzza-

-bzz zzzzzz

123

z{a-}{-b}{z}{a-}{-b}{z}[3]{a-}{-b}{z}[1]{a-}{-b}{z}z

10em 3em 0em 6em

123 zzzzzz 123 123

za-

-bzza-

-bz

123

123

za-

-bzza-

-bz

123

123 zzzza-

-bz zzzzzz

zzzzzz za-

-bzzzz 123

5.5 Applying hyphenation

The internal structures LuaTEX uses for the insertion of discretionaries in words is very different

from the ones in TEX82, and that means there are some noticeable differences in handling as

well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still

reads pattern files generated by patgen, but LuaTEX uses a finite state hash to match the pat-

terns against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by

OpenOffice, which in turn is inspired by TEX.

There are a few differences between LuaTEX and TEX82 that are a direct result of the implemen-

tation:

‣ LuaTEX happily hyphenates the full Unicode character range.

‣ Pattern and exception dictionary size is limited by the available memory only, all allocations

are done dynamically. The trie-related settings in texmf.cnf are ignored.

‣ Because there is no ‘trie preparation’ stage, language patterns never become frozen. This

means that the primitive \patterns (and its Lua counterpart lang.patterns) can be used at

any time, not only in iniTEX.

Languages, characters, fonts and glyphs80

‣ Only the string representation of \patterns and \hyphenation is stored in the format file.

At format load time, they are simply re-evaluated. It follows that there is no real reason to

preload languages in the format file. In fact, it is usually not a good idea to do so. It is much

smarter to load patterns no sooner than the first time they are actually needed.

‣ LuaTEX uses the language-specific variables \prehyphenchar and \posthyphenchar in the

creation of implicit discretionaries, instead of TEX82’s \hyphenchar, and the values of the

language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre-

tionaries (instead of TEX82’s empty discretionary).

‣ The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphen-

penalty, are now stored in the discretionary nodes. This permits a local overload for explicit

\discretionary commands. The value current when the hyphenation pass is applied is used.

When no callbacks are used this is compatible with traditional TEX. When you apply the Lua

lang.hyphenate function the current values are used.

‣ The hyphenation exception dictionary is maintained as key-value hash, and that is also dy-

namic, so the hyph_size setting is not used either.

Because we store penalties in the disc node the \discretionary command has been extended

to accept an optional penalty specification, so you can do the following:

\hsize1mm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par

2:foo\discretionary penalty 10000 {}{}{}bar\par

3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar

2:foobar

3:foo

bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu-

ally the preceding one, but the following one for the items inserted at the left-hand side of a

word).

Word boundaries are no longer implied by font switches, but by language switches. One word

can have two separate fonts and still be hyphenated correctly (but it can not have two different

languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar=`\-, \posthyphenchar=0, \preexhyphenchar=0

and \postexhyphenchar=0. When you assign the values of one of these four parameters, you

are actually changing the settings for the current \language, this behaviour is compatible with

\patterns and \hyphenation.

LuaTEX also hyphenates the first word in a paragraph. Words can be up to 256 characters long

(up from 64 in TEX82). Longer words are ignored right now, but eventually either the limitation

will be removed or perhaps it will become possible to silently ignore the excess characters (this

is what happens in TEX82, but there the behaviour cannot be controlled).

81Languages, characters, fonts and glyphs

If you are using the Lua function lang.hyphenate, you should be aware that this function expects

to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’,

‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

5.6 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTEX will process the list

to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two

stages: first all ligatures are processed, then all kerning information is applied to the result list.

But those two stages are somewhat dependent on each other: If the used font makes it possible

to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.

While doing so, it removes and interprets \noboundary nodes. The kerning stage deletes those

word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,

at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This word separation is worth mentioning because, if you overrule from Lua only one of the two

callbacks related to font handling, then you have to make sure you perform the tasks normally

done by LuaTEX itself in order to make sure that the other, non-overruled, routine continues to

function properly.

Although we could improve the situation the reality is that in modern OpenType fonts ligatures

can be constructed in many ways: by replacing a sequence of characters by one glyph, or by

selectively replacing individual glyphs, or by kerning, or any combination of this. Add to that

contextual analysis and it will be clear that we have to let Lua do that job instead. The generic

font handler that we provide (which is part of ConTEXt) distinguishes between base mode (which

essentially is what we describe here and which delegates the task to TEX) and node mode (which

deals with more complex fonts.

Let’s look at an example. Take the word office, hyphenated of-fice, using a ‘normal’ font with

all the f-f and f-i type ligatures:

initial {o}{f}{f}{i}{c}{e}

after hyphenation {o}{f}{{-},{},{}}{f}{i}{c}{e}

first ligature stage {o}{{f-},{f},{<ff>}}{i}{c}{e}

final result {o}{{f-},{<fi>},{<ffi>}}{c}{e}

That’s bad enough, but let us assume that there is also a hyphenation point between the f and

the i, to create of-f-ice. Then the final result should be:

{o}{{f-},

{{f-},

{i},

{<fi>}},

{{<ff>-},

{i},

{<ffi>}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level

discretionary that resulted from the first hyphenation point.

Languages, characters, fonts and glyphs82

Here is that nested solution again, in a different representation:

PRE POST REPLACE

topdisc f- (1) sub 1 sub 2

sub 1 f- (2) i (3) <fi> (4)

sub 2 <ff>- (5) i (6) <ffi> (7)

When line breaking is choosing its breakpoints, the following fields will eventually be selected:

of-f-ice f- (1)

f- (2)

i (3)

of-fice f- (1)

<fi> (4)

off-ice <ff>- (5)

i (6)

office <ffi> (7)

The current solution in LuaTEX is not able to handle nested discretionaries, but it is in fact

smart enough to handle this fictional of-f-ice example. It does so by combining two sequential

discretionary nodes as if they were a single object (where the second discretionary node is

treated as an extension of the first node).

One can observe that the of-f-ice and off-ice cases both end with the same actual post re-

placement list (i), and that this would be the case even if i was the first item of a potential

following ligature like ic. This allows LuaTEX to do away with one of the fields, and thus make

the whole stuff fit into just two discretionary nodes.

The mapping of the seven list fields to the six fields in this discretionary node pair is as follows:

FIELD DESCRIPTION

disc1.pre f- (1)

disc1.post <fi> (4)

disc1.replace <ffi> (7)

disc2.pre f- (2)

disc2.post i (3,6)

disc2.replace <ff>- (5)

What is actually generated after ligaturing has been applied is therefore:

{o}{{f-},

{<fi>},

{<ffi>}}

{{f-},

{i},

{<ff>-}}{c}{e}

The two discretionaries have different subtypes from a discretionary appearing on its own: the

first has subtype 4, and the second has subtype 5. The need for these special subtypes stems

83Languages, characters, fonts and glyphs

from the fact that not all of the fields appear in their ‘normal’ location. The second discretionary

especially looks odd, with things like the <ff>- appearing in disc2.replace. The fact that some

of the fields have different meanings (and different processing code internally) is what makes it

necessary to have different subtypes: this enables LuaTEX to distinguish this sequence of two

joined discretionary nodes from the case of two standalone discretionaries appearing in a row.

Of course there is still that relationship with fonts: ligatures can be implemented by mapping a

sequence of glyphs onto one glyph, but also by selective replacement and kerning. This means

that the above examples are just representing the traditional approach.

5.7 Breaking paragraphs into lines

This code is almost unchanged, but because of the above-mentioned changes with respect to

discretionaries and ligatures, line breaking will potentially be different from traditional TEX.

The actual line breaking code is still based on the TEX82 algorithms, and it does not expect

there to be discretionaries inside of discretionaries. But, as patterns evolve and font handling

can influence discretionaries, you need to be aware of the fact that long term consistency is not

an engine matter only.

But that situation is now fairly common in LuaTEX, due to the changes to the ligaturing mech-

anism. And also, the LuaTEX discretionary nodes are implemented slightly different from the

TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these

nodes kept their place in the horizontal list. In traditional TEX the discretionary node contains

a counter indicating how many nodes to skip, but in LuaTEX we store the pre, post and replace

text in the discretionary node.

The combined effect of these two differences is that LuaTEX does not always use all of the poten-

tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course

kerning also complicates matters here.

5.8 The lang library

5.8.1 new and id

This library provides the interface to LuaTEX’s structure representing a language, and the asso-

ciated functions.

<language> l = lang.new()

<language> l = lang.new(<number> id)

This function creates a new userdata object. An object of type <language> is the first argument

to most of the other functions in the lang library. These functions can also be used as if they

were object methods, using the colon syntax. Without an argument, the next available internal

id number will be assigned to this object. With argument, an object will be created that links to

the internal language with that id number.

<number> n = lang.id(<language> l)

Languages, characters, fonts and glyphs84

The number returned is the internal \language id number this object refers to.

5.8.2 hyphenation

You can hyphenate a string directly with:

<string> n = lang.hyphenation(<language> l)

lang.hyphenation(<language> l, <string> n)

5.8.3 clear_hyphenation and clean

This either returns the current hyphenation exceptions for this language, or adds new ones. The

syntax of the string is explained in section 5.4.

lang.clear_hyphenation(<language> l)

This call clears the exception dictionary (string) for this language.

<string> n = lang.clean(<language> l, <string> o)

<string> n = lang.clean(<string> o)

This function creates a hyphenation key from the supplied hyphenation value. The syntax of the

argument string is explained in section 5.4. This function is useful if you want to do something

else based on the words in a dictionary file, like spell-checking.

5.8.4 patterns and clear_patterns

<string> n = lang.patterns(<language> l)

lang.patterns(<language> l, <string> n)

This adds additional patterns for this language object, or returns the current set. The syntax of

this string is explained in section 5.4.

lang.clear_patterns(<language> l)

This can be used to clear the pattern dictionary for a language.

5.8.5 hyphenationmin

This function sets (or gets) the value of the TEX parameter \hyphenationmin.

n = lang.hyphenationmin(<language> l)

lang.hyphenationmin(<language> l, <number> n)

5.8.6 [pre|post][ex|]hyphenchar

<number> n = lang.prehyphenchar(<language> l)

85Languages, characters, fonts and glyphs

lang.prehyphenchar(<language> l, <number> n)

<number> n = lang.posthyphenchar(<language> l)

lang.posthyphenchar(<language> l, <number> n)

These two are used to get or set the ‘pre-break’ and ‘post-break’ hyphen characters for implicit

hyphenation in this language. The intial values are decimal 45 (hyphen) and decimal 0 (indicat-

ing emptiness).

<number> n = lang.preexhyphenchar(<language> l)

lang.preexhyphenchar(<language> l, <number> n)

<number> n = lang.postexhyphenchar(<language> l)

lang.postexhyphenchar(<language> l, <number> n)

These gets or set the ‘pre-break’ and ‘post-break’ hyphen characters for explicit hyphenation in

this language. Both are initially decimal 0 (indicating emptiness).

5.8.7 hyphenate

The next call inserts hyphenation points (discretionary nodes) in a node list. If tail is given as

argument, processing stops on that node. Currently, success is always true if head (and tail,

if specified) are proper nodes, regardless of possible other errors.

<boolean> success = lang.hyphenate(<node> head)

<boolean> success = lang.hyphenate(<node> head, <node> tail)

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node

subtype having the value 1. Glyph modes with different subtypes are not processed. See sec-

tion 5.2 for more details.

5.8.8 [set|get]hjcode

The following two commands can be used to set or query hj codes:

lang.sethjcode(<language> l, <number> char, <number> usedchar)

<number> usedchar = lang.gethjcode(<language> l, <number> char)

When you set a hjcode the current sets get initialized unless the set was already initialized due

to \savinghyphcodes being larger than zero.

Languages, characters, fonts and glyphs86

87Font structure

6 Font structure

6.1 The font tables

All TEX fonts are represented to Lua code as tables, and internally as C structures. All keys in

the table below are saved in the internal font structure if they are present in the table returned

by the define_font callback, or if they result from the normal tfm/vf reading routines if there

is no define_font callback defined.

The column ‘vf’ means that this key will be created by the font.read_vf() routine, ‘tfm’ means

that the key will be created by the font.read_tfm() routine, and ‘used’ means whether or not

the LuaTEX engine itself will do something with the key. The top-level keys in the table are as

follows:

KEY VF TFM USED VALUE TYPE DESCRIPTION

name yes yes yes string metric (file) name

area no yes yes string (directory) location, typically empty

used no yes yes boolean indicates usage (initial: false)

characters yes yes yes table the defined glyphs of this font

checksum yes yes no number default: 0

designsize no yes yes number expected size (default: 655360 == 10pt)

direction no yes yes number default: 0

encodingbytes no no yes number default: depends on format

encodingname no no yes string encoding name

fonts yes no yes table locally used fonts

psname no no yes string This is the PostScript fontname in the in-

coming font source, and it’s used as font-

name identifier in the pdf output. This

has to be a valid string, e.g. no spaces and

such, as the backend will not do a cleanup.

This gives complete control to the loader.

fullname no no yes string output font name, used as a fallback in the

pdf output if the psname is not set

subfont no no yes number default: 0, index in (ttc) font with multiple

fonts

header yes no no string header comments, if any

hyphenchar no no yes number default: TEX’s \hyphenchar

parameters no yes yes hash default: 7 parameters, all zero

size no yes yes number the required scaling (by default the same

as designsize)

skewchar no no yes number default: TEX’s \skewchar

type yes no yes string basic type of this font

format no no yes string disk format type

embedding no no yes string pdf inclusion

filename no no yes string the name of the font on disk

Font structure88

tounicode no yes yes number When this is set to 1 LuaTEX assumes per-

glyph tounicode entries are present in the

font.

stretch no no yes number the ‘stretch’ value from \expandglyphsin-

font

shrink no no yes number the ‘shrink’ value from \expandglyphsin-

font

step no no yes number the ‘step’ value from \expandglyphsinfont

expansion_factor no no no number the actual expansion factor of an expanded

font

attributes no no yes string the \pdffontattr

cache no no yes string This key controls caching of the Lua ta-

ble on the TEX end where yes means: use

a reference to the table that is passed to

LuaTEX (this is the default), and no means:

don’t store the table reference, don’t cache

any Lua data for this font while renew

means: don’t store the table reference, but

save a reference to the table that is created

at the first access to one of its fields in the

font.

nomath no no yes boolean This key allows a minor speedup for text

fonts. If it is present and true, then LuaTEX

will not check the character entries for

math-specific keys.

oldmath no no yes boolean This key flags a font as representing an

old school TEX math font and disables the

OpenType code path.

slant no no yes number This parameter will tilt the font and does

the same as SlantFont in the map file for

Type1 fonts.

extend no no yes number This parameter will scale the font horizon-

tally and does the same as ExtendFont in

the map file for Type1 fonts.

squeeze no no yes number This parameter will scale the font vertically

and has no equivalent in the map file.

width no no yes number The backend will inject pdf operators that

set the penwidth. The value is (as usual

in TEX) divided by 1000. It works with the

mode file.

mode no no yes number The backend will inject pdf operators that

relate to the drawing mode with 0 being a

fill, 1 being an outline, 2 both draw and fill

and 3 no painting at all.

The saved reference in the cache option is thread-local, so be careful when you are using corou-

89Font structure

tines: an error will be thrown if the table has been cached in one thread, but you reference it

from another thread.

The key name is always required. The keys stretch, shrink, step only have meaning when used

together: they can be used to replace a post-loading \expandglyphsinfont command. The

auto_expand option is not supported in LuaTEX. In fact, the primitives that create expanded or

protruding copies are probably only useful when used with traditional fonts because all these

extra OpenType properties are kept out of the picture. The expansion_factor is value that

can be present inside a font in font.fonts. It is the actual expansion factor (a value between

-shrink and stretch, with step step) of a font that was automatically generated by the font

expansion algorithm.

The subfont parameter can be used to specify the subfont in a ttc font. When given, it is used

instead of the psname and fullname combination. The first subfont has number 1. A zero value

signals using the names as lookup.

Because we store the actual state of expansion with each glyph and don’t have special font

instances, we can change some font related parameters before lines are constructed, like:

font.setexpansion(font.current(),100,100,20)

This is mostly meant for experiments (or an optimizing routing written in Lua) so there is no

primitive.

The key attributes can be used to set font attributes in the pdf file. The key used is set by the

engine when a font is actively in use, this makes sure that the font’s definition is written to the

output file (dvi or pdf). The tfm reader sets it to false. The direction is a number signalling the

‘normal’ direction for this font. There are sixteen possibilities:

DIR # DIR # DIR # DIR

0 LT 4 RT 8 TT 12 BT

1 LL 5 RL 9 TL 13 BL

2 LB 6 RB 10 TB 14 BB

3 LR 7 RR 11 TR 15 BR

These are Omega-style direction abbreviations: the first character indicates the ‘first’ edge of

the character glyphs (the edge that is seen first in the writing direction), the second the ‘top’

side. Keep in mind that LuaTEX has a bit different directional model so these values are not used

for anything.

The parameters is a hash with mixed key types. There are seven possible string keys, as well as

a number of integer indices (these start from 8 up). The seven strings are actually used instead

of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

NAME REMAPPING

slant 1

space 2

space_stretch 3

space_shrink 4

Font structure90

x_height 5

quad 6

extra_space 7

The keys type, format, embedding, fullname and filename are used to embed OpenType fonts

in the result pdf.

The characters table is a list of character hashes indexed by an integer number. The number

is the ‘internal code’ TEX knows this character by.

Two very special string indexes can be used also: left_boundary is a virtual character whose

ligatures and kerns are used to handle word boundary processing. right_boundary is similar

but not actually used for anything (yet).

Each character hash itself is a hash. For example, here is the character ‘f’ (decimal 102) in the

font cmr10 at 10pt. The numbers that represent dimensions are in scaled points.

[102] = {

["width"] = 200250,

["height"] = 455111,

["depth"] = 0,

["italic"] = 50973,

["kerns"] = {

[63] = 50973,

[93] = 50973,

[39] = 50973,

[33] = 50973,

[41] = 50973

},

["ligatures"] = {

[102] = { ["char"] = 11, ["type"] = 0 },

[108] = { ["char"] = 13, ["type"] = 0 },

[105] = { ["char"] = 12, ["type"] = 0 }

}

}

The following top-level keys can be present inside a character hash:

KEY VF TFM USED TYPE DESCRIPTION

width yes yes yes number character’s width, in sp (default 0)

height no yes yes number character’s height, in sp (default 0)

depth no yes yes number character’s depth, in sp (default 0)

italic no yes yes number character’s italic correction, in sp (default zero)

top_accent no no maybe number character’s top accent alignment place, in sp

(default zero)

bot_accent no no maybe number character’s bottom accent alignment place,

in sp (default zero)

left_protruding no no maybe number character’s \lpcode

right_protruding no no maybe number character’s \rpcode

91Font structure

expansion_factor no no maybe number character’s \efcode

tounicode no no maybe string character’s Unicode equivalent(s), in utf-16BE

hexadecimal format

next no yes yes number the ‘next larger’ character index

extensible no yes yes table the constituent parts of an extensible recipe

vert_variants no no yes table constituent parts of a vertical variant set

horiz_variants no no yes table constituent parts of a horizontal variant set

kerns no yes yes table kerning information

ligatures no yes yes table ligaturing information

commands yes no yes array virtual font commands

name no no no string the character (PostScript) name

index no no yes number the (OpenType or TrueType) font glyph index

used no yes yes boolean typeset already (default: false)

mathkern no no yes table math cut-in specifications

The values of top_accent, bot_accent and mathkern are used only for math accent and super-

script placement, see page 103 in this manual for details. The values of left_protruding and

right_protruding are used only when \protrudechars is non-zero. Whether or not expan-

sion_factor is used depends on the font’s global expansion settings, as well as on the value of

\adjustspacing.

The usage of tounicode is this: if this font specifies a tounicode=1 at the top level, then LuaTEX

will construct a /ToUnicode entry for the pdf font (or font subset) based on the character-level

tounicode strings, where they are available. If a character does not have a sensible Unicode

equivalent, do not provide a string either (no empty strings).

If the font level tounicode is not set, then LuaTEX will build up /ToUnicode based on the TEX

code points you used, and any character-level tounicodes will be ignored. The string format

is exactly the format that is expected by Adobe CMap files (utf-16BE in hexadecimal encoding),

minus the enclosing angle brackets. For instance the tounicode for a fi ligature would be

00660069. When you pass a number the conversion will be done for you.

A math character can have a next field that points to a next larger shape. However, the presence

of extensible will overrule next, if that is also present. The extensible field in turn can be

overruled by vert_variants, the OpenType version. The extensible table is very simple:

KEY TYPE DESCRIPTION

top number top character index

mid number middle character index

bot number bottom character index

rep number repeatable character index

The horiz_variants and vert_variants are arrays of components. Each of those components

is itself a hash of up to five keys:

KEY TYPE EXPLANATION

glyph number The character index. Note that this is an encoding number, not a name.

extender number One (1) if this part is repeatable, zero (0) otherwise.

start number The maximum overlap at the starting side (in scaled points).

Font structure92

end number The maximum overlap at the ending side (in scaled points).

advance number The total advance width of this item. It can be zero or missing, then the

natural size of the glyph for character component is used.

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either

a non-negative integer or the string value right_boundary), with the values of the kerning to

be applied, in scaled points.

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as

either a non-negative integer or the string value right_boundary), with the values being yet

another small hash, with two fields:

KEY TYPE DESCRIPTION

type number the type of this ligature command, default 0

char number the character index of the resultant ligature

The char field in a ligature is required. The type field inside a ligature is the numerical or

string value of one of the eight possible ligature types supported by TEX. When TEX inserts a

new ligature, it puts the new glyph in the middle of the left and right glyphs. The original left

and right glyphs can optionally be retained, and when at least one of them is kept, it is also

possible to move the new ‘insertion point’ forward one or two places. The glyph that ends up to

the right of the insertion point will become the next ‘left’.

TEXTUAL (KNUTH) NUMBER STRING RESULT

l + r =: n 0 =: |n

l + r =:| n 1 =:| |nr

l + r |=: n 2 |=: |ln

l + r |=:| n 3 |=:| |lnr

l + r =:|> n 5 =:|> n|r

l + r |=:> n 6 |=:> l|n

l + r |=:|> n 7 |=:|> l|nr

l + r |=:|>> n 11 |=:|>> ln|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature

replaces both original glyphs. In this table the | indicates the final insertion point.

The commands array is explained below.

6.2 Real fonts

Whether or not a TEX font is a ‘real’ font that should be written to the pdf document is decided

by the type value in the top-level font structure. If the value is real, then this is a proper font,

and the inclusion mechanism will attempt to add the needed font object definitions to the pdf.

Values for type are:

VALUE DESCRIPTION

real this is a base font

virtual this is a virtual font

93Font structure

The actions to be taken depend on a number of different variables:

‣ Whether the used font fits in an 8-bit encoding scheme or not. This is true for traditional TEX

fonts that communicate via tfm files.

‣ The type of the disk font file, for instance a bitmap file or an outline Type1, TrueType or

OpenType font.

‣ The level of embedding requested, although inmost cases a subset of characters is embedded.

The times when nothing got embedded are (in our opinion at least) basically gone.

A font that uses anything other than an 8-bit encoding vector has to be written to the pdf in

a different way. When the font table has encodingbytes set to 2, then it is a wide font, in all

other cases it isn’t. The value 2 is the default for OpenType and TrueType fonts loaded via Lua.

For Type1 fonts, you have to set encodingbytes to 2 explicitly. For pk bitmap fonts, wide font

encoding is not supported at all.

If no special care is needed, LuaTEX falls back to the mapfile-based solution used by pdfTEX

and dvips, so that legacy fonts are supported transparently. If a ‘wide’ font is used, the new

subsystem kicks in, and some extra fields have to be present in the font structure. In this case,

LuaTEX does not use a map file at all. These extra fields are: format, embedding, fullname,

cidinfo (as explained above), filename, and the index key in the separate characters.

The format variable can have the following values. type3 fonts are provided for backward

compatibility only, and do not support the new wide encoding options.

VALUE DESCRIPTION

type1 this is a PostScript Type1 font

type3 this is a bitmapped (pk) font

truetype this is a TrueType or TrueType-based OpenType font

opentype this is a PostScript-based OpenType font

Valid values for the embedding variable are:

VALUE DESCRIPTION

no don’t embed the font at all

subset include and atttempt to subset the font

full include this font in its entirety

The other fields are used as follows. The fullname will be the PostScript/pdf font name. The

cidinfowill be used as the character set: the CID /Ordering and /Registry keys. The filename

points to the actual font file. If you include the full path in the filename or if the file is in the

local directory, LuaTEX will run a little bit more efficient because it will not have to re-run the

find_*_file callback in that case.

Be careful: when mixing old and new fonts in one document, it is possible to create PostScript

name clashes that can result in printing errors. When this happens, you have to change the

fullname of the font to a more unique one.

Typeset strings are written out in a wide format using 2 bytes per glyph, using the index key

in the character information as value. The overall effect is like having an encoding based on

numbers instead of traditional (PostScript) name-based reencoding. One way to get the correct

Font structure94

index numbers for Type1 fonts is by loading the font via fontloader.open and use the table

indices as index fields.

In order to make sure that cut and paste of the final document works okay you can best make

sure that there is a tounicode vector enforced. Not all pdf viewers handle this right so take

Acrobat as reference.

6.3 Virtual fonts

6.3.1 The structure

You have to take the following steps if you want LuaTEX to treat the returned table from de-

fine_font as a virtual font:

‣ Set the top-level key type to virtual. In most cases it’s optional because we look at the

commands entry anyway.

‣ Make sure there is at least one valid entry in fonts (see below), although recent versions of

LuaTEX add a default entry when this table is missing.

‣ Add a commands array to those characters that matter. A virtual character can itself point to

virtual characters but be careful with nesting as you can create loops and overflow the stack

(which often indicates an error anyway).

The presence of the toplevel type key with the specific value virtual will trigger handling of

the rest of the special virtual font fields in the table, but the mere existence of ’type’ is enough to

prevent LuaTEX from looking for a virtual font on its own. This also works ‘in reverse’: if you are

absolutely certain that a font is not a virtual font, assigning the value real to type will inhibit

LuaTEX from looking for a virtual font file, thereby saving you a disk search. This only matters

when we load a tfm file.

The fonts is an (indexed) Lua table. The values are one- or two-key hashes themselves, each

entry indicating one of the base fonts in a virtual font. In case your font is referring to itself,

you can use the font.nextid() function which returns the index of the next to be defined font

which is probably the currently defined one. So, a table looks like this:

fonts = {

{ name = "ptmr8a", size = 655360 },

{ name = "psyr", size = 600000 },

{ id = 38 }

}

The first referenced font (at index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second

is psyr loaded at a little over 9pt. The third one is a previously defined font that is known to

LuaTEX as font id 38. The array index numbers are used by the character command definitions

that are part of each character.

The commands array is a hash where each item is another small array, with the first entry rep-

resenting a command and the extra items being the parameters to that command. The allowed

commands and their arguments are:

95Font structure

COMMAND ARGUMENTS TYPE DESCRIPTION

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current font,

and move right by the character’s width

node 1 node output this node (list), and move right by the width of

this list

slot 2 2 numbers a shortcut for the combination of a font and char com-

mand

push 0 save current position

nop 0 do nothing

pop 0 pop position

rule 2 2 numbers output a rule ℎ𝑡 ∗ 𝑤𝑑, and move right.
down 1 number move down on the page

right 1 number move right on the page

special 1 string output a \special command

pdf 2 2 strings output a pdf literal, the first string is one of origin,

page, text, font, direct or raw; if you have one string

only origin is assumed

lua 1 string, function execute a Lua script when the glyph is embedded; in

case of a function it gets the font id and character code

passed

image 1 image output an image (the argument can be either an <im-

age> variable or an image_spec table)

comment any any the arguments of this command are ignored

When a font id is set to 0 then it will be replaced by the currently assigned font id. This prevents

the need for hackery with future id’s. Normally one could use font.nextid but when more

complex fonts are built in the meantime other instances could have been loaded.

The pdf option also accepts a mode keyword in which case the third argument sets the mode.

That option will change the mode in an efficient way (passing an empty string would result in

an extra empty lines in the pdf file. This option only makes sense for virtual fonts. The font

mode only makes sense in virtual fonts. Modes are somewhat fuzzy and partially inherited from

pdfTEX.

MODE DESCRIPTION

origin enter page mode and set the position

page enter page mode

text enter text mode

font enter font mode (kind of text mode, only in virtual fonts)

always finish the current string and force a transform if needed

raw finish the current string

You always need to check what pdf code is generated because there can be all kind of inter-

ferences with optimization in the backend and fonts are complicated anyway. Here is a rather

elaborate glyph commands example using such keys:

...

Font structure96

commands = {

{ "push" }, -- remember where we are

{ "right", 5000 }, -- move right about 0.08pt

{ "font", 3 }, -- select the fonts[3] entry

{ "char", 97 }, -- place character 97 (ASCII 'a')

-- { "slot", 2, 97 }, -- an alternative for the previous two

{ "pop" }, -- go all the way back

{ "down", -200000 }, -- move upwards by about 3pt

{ "special", "pdf: 1 0 0 rg" } -- switch to red color

-- { "pdf", "origin", "1 0 0 rg" } -- switch to red color (alternative)

{ "rule", 500000, 20000 } -- draw a bar

{ "special", "pdf: 0 g" } -- back to black

-- { "pdf", "origin", "0 g" } -- back to black (alternative)

}

...

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual

font is essentially only a re-encoding, then you do usually not have created an explicit ‘font’

command in the array.

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.

For correct vertical placement, an extra down command may be needed.

Regardless of the amount of movement you create within the commands, the output pointer will

always move by exactly the width that was given in the width key of the character hash. Any

movements that take place inside the commands array are ignored on the upper level.

The special can have a pdf:, pdf:origin:, pdf:page:, pdf:direct: or pdf:raw: prefix. When

you have to concatenate strings using the pdf command might be more efficient.

6.3.2 Artificial fonts

Even in a ‘real’ font, there can be virtual characters. When LuaTEX encounters a commands field

inside a character when it becomes time to typeset the character, it will interpret the commands,

just like for a true virtual character. In this case, if you have created no ‘fonts’ array, then the

default (and only) ‘base’ font is taken to be the current font itself. In practice, this means that

you can create virtual duplicates of existing characters which is useful if you want to create

composite characters.

Note: this feature does not work the other way around. There can not be ‘real’ characters in a

virtual font! You cannot use this technique for font re-encoding either; you need a truly virtual

font for that (because characters that are already present cannot be altered).

6.3.3 Example virtual font

Finally, here is a plain TEX input file with a virtual font demonstration:

\directlua {

callback.register('define_font',

97Font structure

function (name,size)

if name == 'cmr10-red' then

local f = font.read_tfm('cmr10',size)

f.name = 'cmr10-red'

f.type = 'virtual'

f.fonts = {

{ name = 'cmr10', size = size }

}

for i,v in pairs(f.characters) do

if string.char(i):find('[tacohanshartmut]') then

v.commands = {

{ "special", "pdf: 1 0 0 rg" },

{ "char", i },

{ "special", "pdf: 0 g" },

}

end

end

return f

else

return font.read_tfm(name,size)

end

end

)

}

\font\myfont = cmr10-red at 10pt \myfont This is a line of text \par

\font\myfontx = cmr10 at 10pt \myfontx Here is another line of text \par

6.4 The vf library

The vf library can be used when Lua code, as defined in the commands of the font, is executed.

The functions provided are similar as the commands: char, down, fontid, image, node, nop, pop,

push, right, rule, special and pdf. This library has been present for a while but not been

advertised and tested much, if only because it’s easy to define an invalid font (or mess up the

pdf stream). Keep in mind that the Lua snippets are executed each time when a character is

output.

6.5 The font library

The font library provides the interface into the internals of the font system, and it also contains

helper functions to load traditional TEX font metrics formats. Other font loading functionality is

provided by the fontloader library that will be discussed in the next section.

6.5.1 Loading a TFM file

The behaviour documented in this subsection is considered stable in the sense that there will

not be backward-incompatible changes any more.

Font structure98

<table> fnt =

font.read_tfm(<string> name, <number> s)

The number is a bit special:

‣ If it is positive, it specifies an ‘at size’ in scaled points.

‣ If it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of

the font.

6.5.2 Loading a VF file

The behavior documented in this subsection is considered stable in the sense that there will not

be backward-incompatible changes any more.

<table> vf_fnt =

font.read_vf(<string> name, <number> s)

The meaning of the number s and the format of the returned table are similar to the ones in the

read_tfm function.

6.5.3 The fonts array

The whole table of TEX fonts is accessible from Lua using a virtual array.

font.fonts[n] = { ... }

<table> f = font.fonts[n]

Because this is a virtual array, you cannot call pairs on it, but see below for the font.each

iterator.

The two metatable functions implementing the virtual array are:

<table> f = font.getfont(<number> n)

font.setfont(<number> n, <table> f)

Note that at the moment, each access to the font.fonts or call to font.getfont creates a Lua

table for the whole font unless you cached it. If you want a copy of the internal data you can use

font.getcopy:

<table> f = font.getcopy(<number> n)

This one will return a table of the parameters as known to TEX. These can be different from the

ones in the cached table:

<table> p = font.getparameters(<number> n)

Also note the following: assignments can only be made to fonts that have already been defined

in TEX, but have not been accessed at all since that definition. This limits the usability of the

write access to font.fonts quite a lot, a less stringent ruleset will likely be implemented later.

99Font structure

6.5.4 Checking a font’s status

You can test for the status of a font by calling this function:

<boolean> f =

font.frozen(<number> n)

The return value is one of true (unassignable), false (can be changed) or nil (not a valid font

at all).

6.5.5 Defining a font directly

You can define your own font into font.fonts by calling this function:

<number> i =

font.define(<table> f)

The return value is the internal id number of the defined font (the index into font.fonts). If the

font creation fails, an error is raised. The table is a font structure. An alternative call is:

<number> i =

font.define(<number> n, <table> f)

Where the first argument is a reserved font id (see below).

6.5.6 Extending a font

Within reasonable bounds you can extend a font after it has been defined. Because some prop-

erties are best left unchanged this is limited to adding characters.

font.addcharacters(<number> n, <table> f)

The table passed can have the fields characterswhich is a (sub)table like the one used in define,

and for virtual fonts a fonts table can be added. The characters defined in the characters table

are added (when not yet present) or replace an existing entry. Keep in mind that replacing can

have side effects because a character already can have been used. Instead of posing restrictions

we expect the user to be careful. (The setfont helper is a more drastic replacer.)

6.5.7 Projected next font id

<number> i =

font.nextid()

This returns the font id number that would be returned by a font.define call if it was executed

at this spot in the code flow. This is useful for virtual fonts that need to reference themselves.

If you pass true as argument, the id gets reserved and you can pass to font.define as first

argument. This can be handy when you create complex virtual fonts.

<number> i =

Font structure100

font.nextid(true)

6.5.8 Font ids

<number> i =

font.id(<string> csname)

This returns the font id associated with csname, or −1 if csname is not defined.

<number> i =

font.max()

This is the largest used index in font.fonts.

<number> i = font.current()

font.current(<number> i)

This gets or sets the currently used font number.

6.5.9 Iterating over all fonts

for i,v in font.each() do

...

end

This is an iterator over each of the defined TEX fonts. The first returned value is the index in

font.fonts, the second the font itself, as a Lua table. The indices are listed incrementally, but

they do not always form an array of consecutive numbers: in some cases there can be holes in

the sequence.

6.5.10 \glyphdimensionsmode

Already in the early days of LuaTEX the decision was made to calculate the effective height and

depth of glyphs in a way that reflected the applied vertical offset. The height got that offset

added, the depth only when the offset was larger than zero. We can now control this in more

detail with this mode parameter. An offset is added to the height and/or subtracted from the

depth. The effective values are never negative. The zero mode is the default.

VALUE EFFECT

0 the old behavior: add the offset to the height and only subtract the offset only from the

depth when it is positive

1 add the offset to the height and subtract it from the depth

2 add the offset to the height and subtract it from the depth but keep the maxima of the

current and previous results

3 use the height and depth of the glyph, so no offset is applied

101Font structure

6.5.11 \discretionaryligaturemode

This parameter controls how complex ligatures interact with discretionaries (as injected by the

hyphenator). The non--zero values prevent the construction of so called init and select discre-

tionaries.

0 1 2

xx- xx- xx-

f- f- ff-

f- fi- i-

i- xx xx

xx

Font structure102

103Math

7 Math

7.1 Traditional alongside OPENTYPE

The handling of mathematics in LuaTEX differs quite a bit from how TEX82 (and therefore pdfTEX)

handles math. First, LuaTEX adds primitives and extends some others so that Unicode input can

be used easily. Second, all of TEX82’s internal special values (for example for operator spacing)

have been made accessible and changeable via control sequences. Third, there are extensions

that make it easier to use OpenType math fonts. And finally, there are some extensions that have

been proposed or considered in the past that are now added to the engine.

7.2 Unicode math characters

Character handling is now extended up to the full Unicode range (the \U prefix), which is com-

patible with XƎTEX.

The math primitives from TEX are kept as they are, except for the ones that convert from input to

math commands: mathcode, and delcode. These two now allow for a 21-bit character argument

on the left hand side of the equals sign.

Some of the new LuaTEX primitives read more than one separate value. This is shown in the

tables below by a plus sign.

The input for such primitives would look like this:

\def\overbrace{\Umathaccent 0 1 "23DE }

The altered TEX82 primitives are:

PRIMITIVE MIN MAX MIN MAX

\mathcode 0 10FFFF = 0 8000

\delcode 0 10FFFF = 0 FFFFFF

The unaltered ones are:

PRIMITIVE MIN MAX

\mathchardef 0 8000

\mathchar 0 7FFF

\mathaccent 0 7FFF

\delimiter 0 7FFFFFF

\radical 0 7FFFFFF

For practical reasons \mathchardef will silently accept values larger that 0x8000 and interpret

it as \Umathcharnumdef. This is needed to satisfy older macro packages.

The following new primitives are compatible with XƎTEX:

PRIMITIVE MIN MAX MIN MAX

\Umathchardef 0+0+0 7+FF+10FFFF

Math104

\Umathcharnumdef5 -80000000 7FFFFFFF

\Umathcode 0 10FFFF = 0+0+0 7+FF+10FFFF

\Udelcode 0 10FFFF = 0+0 FF+10FFFF

\Umathchar 0+0+0 7+FF+10FFFF

\Umathaccent 0+0+0 7+FF+10FFFF

\Udelimiter 0+0+0 7+FF+10FFFF

\Uradical 0+0 FF+10FFFF

\Umathcharnum -80000000 7FFFFFFF

\Umathcodenum 0 10FFFF = -80000000 7FFFFFFF

\Udelcodenum 0 10FFFF = -80000000 7FFFFFFF

Specifications typically look like:

\Umathchardef\xx="1"0"456

\Umathcode 123="1"0"789

The new primitives that deal with delimiter-style objects do not set up a ‘large family’. Selecting

a suitable size for display purposes is expected to be dealt with by the font via the \Umathoper-

atorsize parameter.

For some of these primitives, all information is packed into a single signed integer. For the first

two (\Umathcharnum and \Umathcodenum), the lowest 21 bits are the character code, the 3 bits

above that represent the math class, and the family data is kept in the topmost bits. This means

that the values for math families 128–255 are actually negative. For \Udelcodenum there is no

math class. Themath family information is stored in the bits directly on top of the character code.

Using these three commands is not as natural as using the two- and three-value commands, so

unless you know exactly what you are doing and absolutely require the speedup resulting from

the faster input scanning, it is better to use the verbose commands instead.

The \Umathaccent command accepts optional keywords to control various details regarding

math accents. See section 7.6.2 below for details.

There are more new primitives and all of these will be explained in following sections:

PRIMITIVE VALUE RANGE (IN HEX)

\Uroot 0 + 0–FF + 10FFFF

\Uoverdelimiter 0 + 0–FF + 10FFFF

\Uunderdelimiter 0 + 0–FF + 10FFFF

\Udelimiterover 0 + 0–FF + 10FFFF

\Udelimiterunder 0 + 0–FF + 10FFFF

Instead of the pseudo class variable (7) you can use a family number as signal for using the

current family. This permits classifying characters with a class and still let the family adapt.

The trigger family is set with \variablefam. So:

\variablefam"24

\Umathchardef\foo "3 "24 123

\foo \fam9

Results in a curly left brace taken from family 9 with class ‘relation’ and spacing around it will

be accordingly.

105Math

7.3 Math styles

7.3.1 \mathstyle

It is possible to discover the math style that will be used for a formula in an expandable fashion

(while the math list is still being read). To make this possible, LuaTEX adds the new primitive:

\mathstyle. This is a ‘convert command’ like e.g. \romannumeral: its value can only be read,

not set.

The returned value is between 0 and 7 (in math mode), or −1 (all other modes). For easy testing,
the eight math style commands have been altered so that they can be used as numeric values,

so you can write code like this:

\ifnum\mathstyle=\textstyle

\message{normal text style}

\else \ifnum\mathstyle=\crampedtextstyle

\message{cramped text style}

\fi \fi

Sometimes you won’t get what you expect so a bit of explanation might help to understand what

happens. When math is parsed and expanded it gets turned into a linked list. In a second pass

the formula will be build. This has to do with the fact that in order to determine the automatically

chosen sizes (in for instance fractions) following content can influence preceding sizes. A side

effect of this is for instance that one cannot change the definition of a font family (and thereby

reusing numbers) because the number that got used is stored and used in the second pass (so

changing \fam 12 mid-formula spoils over to preceding use of that family).

The style switching primitives like \textstyle are turned into nodes so the styles set there are

frozen. The \mathchoice primitive results in four lists being constructed of which one is used

in the second pass. The fact that some automatic styles are not yet known also means that the

\mathstyle primitive expands to the current style which can of course be different from the one

really used. It’s a snapshot of the first pass state. As a consequence in the following example

you get a style number (first pass) typeset that can actually differ from the used style (second

pass). In the case of a math choice used ungrouped, the chosen style is used after the choice

too, unless you group.

[a:\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (x:d :\mathstyle)}

{\bf \scriptscriptstyle (x:t :\mathstyle)}

{\bf \scriptscriptstyle (x:s :\mathstyle)}

{\bf \scriptscriptstyle (x:ss:\mathstyle)}

\egroup

\quad[b:\mathstyle]\quad

\mathchoice

{\bf \scriptstyle (y:d :\mathstyle)}

{\bf \scriptscriptstyle (y:t :\mathstyle)}

Math106

{\bf \scriptscriptstyle (y:s :\mathstyle)}

{\bf \scriptscriptstyle (y:ss:\mathstyle)}

\quad[c:\mathstyle]\quad

\bgroup

\mathchoice

{\bf \scriptstyle (z:d :\mathstyle)}

{\bf \scriptscriptstyle (z:t :\mathstyle)}

{\bf \scriptscriptstyle (z:s :\mathstyle)}

{\bf \scriptscriptstyle (z:ss:\mathstyle)}

\egroup

\quad[d:\mathstyle]

This gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏 : 0] (𝐲:𝐝:𝟒) [𝑐:0] (𝐳:𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏 : 2] (𝐲:𝐭:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

Using \begingroup . . . \endgroup instead gives:

[𝑎 : 0] (𝐱:𝐝:𝟒) [𝑏:0] (𝐲:𝐬:𝟔) [𝑐:0] (𝐳:𝐬𝐬:𝟔) [𝑑:0]

[𝑎 : 2] (𝐱:𝐭:𝟔) [𝑏:2] (𝐲:𝐬𝐬:𝟔) [𝑐:2] (𝐳:𝐬𝐬:𝟔) [𝑑:2]

This might look wrong but it’s just a side effect of \mathstyle expanding to the current (first

pass) style and the number being injected in the list that gets converted in the second pass. It all

makes sense and it illustrates the importance of grouping. In fact, the math choice style being

effective afterwards has advantages. It would be hard to get it otherwise.

7.3.2 \Ustack

There are a few math commands in TEX where the style that will be used is not known straight

from the start. These commands (\over, \atop, \overwithdelims, \atopwithdelims) would

therefore normally return wrong values for \mathstyle. To fix this, LuaTEX introduces a special

prefix command: \Ustack:

$\Ustack {a \over b}$

The \Ustack command will scan the next brace and start a new math group with the correct

(numerator) math style.

7.3.3 Cramped math styles

LuaTEX has four new primitives to set the cramped math styles directly:

\crampeddisplaystyle

\crampedtextstyle

\crampedscriptstyle

\crampedscriptscriptstyle

107Math

These additional commands are not all that valuable on their own, but they come in handy as

arguments to the math parameter settings that will be added shortly.

In Eijkhouts “TEX by Topic” the rules for handling styles in scripts are described as follows:

‣ In any style superscripts and subscripts are taken from the next smaller style. Exception: in

display style they are in script style.

‣ Subscripts are always in the cramped variant of the style; superscripts are only cramped if

the original style was cramped.

‣ In an ..\over.. formula in any style the numerator and denominator are taken from the next

smaller style.

‣ The denominator is always in cramped style; the numerator is only in cramped style if the

original style was cramped.

‣ Formulas under a \sqrt or \overline are in cramped style.

In LuaTEX one can set the styles in more detail which means that you sometimes have to set

both normal and cramped styles to get the effect you want. (Even) if we force styles in the script

using \scriptstyle and \crampedscriptstyle we get this:

STYLE EXAMPLE

default 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

script 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

crampedscript 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

Now we set the following parameters

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

This gives a different result:

STYLE EXAMPLE

default 𝑏𝑥 =𝑥 𝑥
𝑥=𝑥𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥=𝑥𝑥
𝑥=𝑥𝑥

But, as this is not what is expected (visually) we should say:

\Umathordrelspacing\scriptstyle=30mu

\Umathordordspacing\scriptstyle=30mu

\Umathordrelspacing\crampedscriptstyle=30mu

\Umathordordspacing\crampedscriptstyle=30mu

Now we get:

STYLE EXAMPLE

default 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

script 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

crampedscript 𝑏𝑥 =𝑥 𝑥
𝑥 =𝑥 𝑥

Math108

7.4 Math parameter settings

7.4.1 Many new \Umath* primitives

In LuaTEX, the font dimension parameters that TEX used in math typesetting are now accessible

via primitive commands. In fact, refactoring of the math engine has resulted in many more

parameters than were not accessible before.

PRIMITIVE NAME DESCRIPTION

\Umathquad the width of 18 mu’s

\Umathaxis height of the vertical center axis of the math formula above the

baseline

\Umathoperatorsize minimum size of large operators in display mode

\Umathoverbarkern vertical clearance above the rule

\Umathoverbarrule the width of the rule

\Umathoverbarvgap vertical clearance below the rule

\Umathunderbarkern vertical clearance below the rule

\Umathunderbarrule the width of the rule

\Umathunderbarvgap vertical clearance above the rule

\Umathradicalkern vertical clearance above the rule

\Umathradicalrule the width of the rule

\Umathradicalvgap vertical clearance below the rule

\Umathradicaldegreebefore the forward kern that takes place before placement of the radical

degree

\Umathradicaldegreeafter the backward kern that takes place after placement of the radi-

cal degree

\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical

sign that the degree is raised by; it is expressed in percents, so

60% is expressed as the integer 60
\Umathstackvgap vertical clearance between the two elements in a \atop stack

\Umathstacknumup numerator shift upward in \atop stack

\Umathstackdenomdown denominator shift downward in \atop stack

\Umathfractionrule the width of the rule in a \over

\Umathfractionnumvgap vertical clearance between the numerator and the rule

\Umathfractionnumup numerator shift upward in \over

\Umathfractiondenomvgap vertical clearance between the denominator and the rule

\Umathfractiondenomdown denominator shift downward in \over

\Umathfractiondelsize minimum delimiter size for \...withdelims

\Umathlimitabovevgap vertical clearance for limits above operators

\Umathlimitabovebgap vertical baseline clearance for limits above operators

\Umathlimitabovekern space reserved at the top of the limit

\Umathlimitbelowvgap vertical clearance for limits below operators

\Umathlimitbelowbgap vertical baseline clearance for limits below operators

\Umathlimitbelowkern space reserved at the bottom of the limit

\Umathoverdelimitervgap vertical clearance for limits above delimiters

\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters

109Math

\Umathunderdelimitervgap vertical clearance for limits below delimiters

\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters

\Umathsubshiftdrop subscript drop for boxes and subformulas

\Umathsubshiftdown subscript drop for characters

\Umathsupshiftdrop superscript drop (raise, actually) for boxes and subformulas

\Umathsupshiftup superscript raise for characters

\Umathsubsupshiftdown subscript drop in the presence of a superscript

\Umathsubtopmax the top of standalone subscripts cannot be higher than this above

the baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this

above the baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and subscript

be at least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript

\Umathspaceafterscript additional space added after a super- or subscript

\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

Each of the parameters in this section can be set by a command like this:

\Umathquad\displaystyle=1em

they obey grouping, and you can use \the\Umathquad\displaystyle if needed.

7.4.2 Font-based math parameters

While it is nice to have these math parameters available for tweaking, it would be tedious to have

to set each of them by hand. For this reason, LuaTEX initializes a bunch of these parameters

whenever you assign a font identifier to a math family based on either the traditional math font

dimensions in the font (for assignments to math family 2 and 3 using tfm-based fonts like cmsy

and cmex), or based on the named values in a potential MathConstants table when the font is

loaded via Lua. If there is a MathConstants table, this takes precedence over font dimensions,

and in that case no attention is paid to which family is being assigned to: the MathConstants

tables in the last assigned family sets all parameters.

In the table below, the one-letter style abbreviations and symbolic tfm font dimension names

match those used in the TEXbook. Assignments to \textfont set the values for the cramped and

uncramped display and text styles, \scriptfont sets the script styles, and \scriptscriptfont

sets the scriptscript styles, so we have eight parameters for three font sizes. In the tfm case,

assignments only happen in family 2 and family 3 (and of course only for the parameters for

which there are font dimensions).

Besides the parameters below, LuaTEX also looks at the ‘space’ font dimension parameter. For

math fonts, this should be set to zero.

VARIABLE / STYLE TFM / OPENTYPE

\Umathaxis axis_height

AxisHeight

6 \Umathoperatorsize —

Math110

D, D’ DisplayOperatorMinHeight

9 \Umathfractiondelsize delim1

D, D’ FractionDelimiterDisplayStyleSize

9 \Umathfractiondelsize delim2

T, T’, S, S’, SS, SS’ FractionDelimiterSize

\Umathfractiondenomdown denom1

D, D’ FractionDenominatorDisplayStyleShiftDown

\Umathfractiondenomdown denom2

T, T’, S, S’, SS, SS’ FractionDenominatorShiftDown

\Umathfractiondenomvgap 3*default_rule_thickness

D, D’ FractionDenominatorDisplayStyleGapMin

\Umathfractiondenomvgap default_rule_thickness

T, T’, S, S’, SS, SS’ FractionDenominatorGapMin

\Umathfractionnumup num1

D, D’ FractionNumeratorDisplayStyleShiftUp

\Umathfractionnumup num2

T, T’, S, S’, SS, SS’ FractionNumeratorShiftUp

\Umathfractionnumvgap 3*default_rule_thickness

D, D’ FractionNumeratorDisplayStyleGapMin

\Umathfractionnumvgap default_rule_thickness

T, T’, S, S’, SS, SS’ FractionNumeratorGapMin

\Umathfractionrule default_rule_thickness

FractionRuleThickness

\Umathskewedfractionhgap math_quad/2

SkewedFractionHorizontalGap

\Umathskewedfractionvgap math_x_height

SkewedFractionVerticalGap

\Umathlimitabovebgap big_op_spacing3

UpperLimitBaselineRiseMin

1 \Umathlimitabovekern big_op_spacing5

0

\Umathlimitabovevgap big_op_spacing1

UpperLimitGapMin

\Umathlimitbelowbgap big_op_spacing4

LowerLimitBaselineDropMin

1 \Umathlimitbelowkern big_op_spacing5

0

\Umathlimitbelowvgap big_op_spacing2

LowerLimitGapMin

\Umathoverdelimitervgap big_op_spacing1

StretchStackGapBelowMin

\Umathoverdelimiterbgap big_op_spacing3

111Math

StretchStackTopShiftUp

\Umathunderdelimitervgap big_op_spacing2

StretchStackGapAboveMin

\Umathunderdelimiterbgap big_op_spacing4

StretchStackBottomShiftDown

\Umathoverbarkern default_rule_thickness

OverbarExtraAscender

\Umathoverbarrule default_rule_thickness

OverbarRuleThickness

\Umathoverbarvgap 3*default_rule_thickness

OverbarVerticalGap

1 \Umathquad math_quad

<font_size(f)>

\Umathradicalkern default_rule_thickness

RadicalExtraAscender

2 \Umathradicalrule <not set>

RadicalRuleThickness

3 \Umathradicalvgap default_rule_thickness+abs(math_x_height)/4

D, D’ RadicalDisplayStyleVerticalGap

3 \Umathradicalvgap default_rule_thickness+abs(default_rule_thickness)/4

T, T’, S, S’, SS, SS’ RadicalVerticalGap

2 \Umathradicaldegreebefore <not set>

RadicalKernBeforeDegree

2 \Umathradicaldegreeafter <not set>

RadicalKernAfterDegree

2,7 \Umathradicaldegreeraise <not set>

RadicalDegreeBottomRaisePercent

4 \Umathspaceafterscript script_space

SpaceAfterScript

\Umathstackdenomdown denom1

D, D’ StackBottomDisplayStyleShiftDown

\Umathstackdenomdown denom2

T, T’, S, S’, SS, SS’ StackBottomShiftDown

\Umathstacknumup num1

D, D’ StackTopDisplayStyleShiftUp

\Umathstacknumup num3

T, T’, S, S’, SS, SS’ StackTopShiftUp

\Umathstackvgap 7*default_rule_thickness

D, D’ StackDisplayStyleGapMin

\Umathstackvgap 3*default_rule_thickness

T, T’, S, S’, SS, SS’ StackGapMin

\Umathsubshiftdown sub1

Math112

SubscriptShiftDown

\Umathsubshiftdrop sub_drop

SubscriptBaselineDropMin

8 \Umathsubsupshiftdown —

SubscriptShiftDownWithSuperscript

\Umathsubtopmax abs(math_x_height*4)/5

SubscriptTopMax

\Umathsubsupvgap 4*default_rule_thickness

SubSuperscriptGapMin

\Umathsupbottommin abs(math_x_height/4)

SuperscriptBottomMin

\Umathsupshiftdrop sup_drop

SuperscriptBaselineDropMax

\Umathsupshiftup sup1

D SuperscriptShiftUp

\Umathsupshiftup sup2

T, S, SS, SuperscriptShiftUp

\Umathsupshiftup sup3

D’, T’, S’, SS’ SuperscriptShiftUpCramped

\Umathsupsubbottommax abs(math_x_height*4)/5

SuperscriptBottomMaxWithSubscript

\Umathunderbarkern default_rule_thickness

UnderbarExtraDescender

\Umathunderbarrule default_rule_thickness

UnderbarRuleThickness

\Umathunderbarvgap 3*default_rule_thickness

UnderbarVerticalGap

5 \Umathconnectoroverlapmin 0

MinConnectorOverlap

Note 1: OpenType fonts set \Umathlimitabovekern and \Umathlimitbelowkern to zero and set

\Umathquad to the font size of the used font, because these are not supported in the MATH table,

Note 2: Traditional tfm fonts do not set \Umathradicalrule because TEX82 uses the height of

the radical instead. When this parameter is indeed not set when LuaTEX has to typeset a radi-

cal, a backward compatibility mode will kick in that assumes that an oldstyle TEX font is used.

Also, they do not set \Umathradicaldegreebefore, \Umathradicaldegreeafter, and \Umath-

radicaldegreeraise. These are then automatically initialized to 5/18quad, −10/18quad, and
60.

Note 3: If tfm fonts are used, then the \Umathradicalvgap is not set until the first time LuaTEX

has to typeset a formula because this needs parameters from both family 2 and family 3. This

provides a partial backward compatibility with TEX82, but that compatibility is only partial: once

the \Umathradicalvgap is set, it will not be recalculated any more.

Note 4: When tfm fonts are used a similar situation arises with respect to \Umathspaceafter-

script: it is not set until the first time LuaTEX has to typeset a formula. This provides some

113Math

backward compatibility with TEX82. But once the \Umathspaceafterscript is set, \script-

space will never be looked at again.

Note 5: Traditional tfm fonts set \Umathconnectoroverlapmin to zero because TEX82 always

stacks extensibles without any overlap.

Note 6: The \Umathoperatorsize is only used in \displaystyle, and is only set in OpenType

fonts. In tfm font mode, it is artificially set to one scaled point more than the initial attempt’s

size, so that always the ‘first next’ will be tried, just like in TEX82.

Note 7: The \Umathradicaldegreeraise is a special case because it is the only parameter that

is expressed in a percentage instead of a number of scaled points.

Note 8: SubscriptShiftDownWithSuperscript does not actually exist in the ‘standard’ Open-

Type math font Cambria, but it is useful enough to be added.

Note 9: FractionDelimiterDisplayStyleSize and FractionDelimiterSize do not actually ex-

ist in the ‘standard’ OpenType math font Cambria, but were useful enough to be added.

7.5 Math spacing

7.5.1 Inline surrounding space

Inline math is surrounded by (optional) \mathsurround spacing but that is a fixed dimension.

There is now an additional parameter \mathsurroundskip. When set to a non-zero value (or zero

with some stretch or shrink) this parameter will replace \mathsurround. By using an additional

parameter instead of changing the nature of \mathsurround, we can remain compatible. In the

meantime a bit more control has been added via \mathsurroundmode. This directive can take 6

values with zero being the default behaviour.

\mathsurround 10pt

\mathsurroundskip20pt

MODE XXX X X X EFFECT

0 x𝑥x x 𝑥 x obey \mathsurround when \mathsurroundskip is 0pt

1 x𝑥x x 𝑥 x only add skip to the left

2 x𝑥x x 𝑥 x only add skip to the right

3 x𝑥x x 𝑥 x add skip to the left and right

4 x𝑥x x 𝑥 x ignore the skip setting, obey \mathsurround

5 x𝑥x x 𝑥 x disable all spacing around math

6 x𝑥x x 𝑥 x only apply \mathsurroundskip when also spacing

7 x𝑥x x 𝑥 x only apply \mathsurroundskip when no spacing

Method six omits the surround glue when there is (x)spacing glue present while method seven

does the opposite, the glue is only applied when there is (x)space glue present too. Anything

more fancy, like checking the begining or end of a paragraph (or edges of a box) would not be

robust anyway. If you want that you can write a callback that runs over a list and analyzes a

paragraph. Actually, in that case you could also inject glue (or set the properties of a math node)

explicitly. So, these modes are in practice mostly useful for special purposes and experiments

Math114

(they originate in a tracker item). Keep in mind that this glue is part of the math node and not

always treated as normal glue: it travels with the begin and end math nodes. Also, method 6

and 7 will zero the skip related fields in a node when applicable in the first occasion that checks

them (linebreaking or packaging).

7.5.2 Pairwise spacing

Besides the parameters mentioned in the previous sections, there are also 64 new primitives to

control the math spacing table (as explained in Chapter 18 of the TEXbook). The primitive names

are a simple matter of combining two math atom types, but for completeness’ sake, here is the

whole list:

\Umathordordspacing

\Umathordopspacing

\Umathordbinspacing

\Umathordrelspacing

\Umathordopenspacing

\Umathordclosespacing

\Umathordpunctspacing

\Umathordinnerspacing

\Umathopordspacing

\Umathopopspacing

\Umathopbinspacing

\Umathoprelspacing

\Umathopopenspacing

\Umathopclosespacing

\Umathoppunctspacing

\Umathopinnerspacing

\Umathbinordspacing

\Umathbinopspacing

\Umathbinbinspacing

\Umathbinrelspacing

\Umathbinopenspacing

\Umathbinclosespacing

\Umathbinpunctspacing

\Umathbininnerspacing

\Umathrelordspacing

\Umathrelopspacing

\Umathrelbinspacing

\Umathrelrelspacing

\Umathrelopenspacing

\Umathrelclosespacing

\Umathrelpunctspacing

\Umathrelinnerspacing

\Umathopenordspacing

\Umathopenopspacing

\Umathopenbinspacing

\Umathopenrelspacing

\Umathopenopenspacing

\Umathopenclosespacing

\Umathopenpunctspacing

\Umathopeninnerspacing

\Umathcloseordspacing

\Umathcloseopspacing

\Umathclosebinspacing

\Umathcloserelspacing

\Umathcloseopenspacing

\Umathcloseclosespacing

\Umathclosepunctspacing

\Umathcloseinnerspacing

\Umathpunctordspacing

\Umathpunctopspacing

\Umathpunctbinspacing

\Umathpunctrelspacing

\Umathpunctopenspacing

\Umathpunctclosespacing

\Umathpunctpunctspacing

\Umathpunctinnerspacing

\Umathinnerordspacing

\Umathinneropspacing

\Umathinnerbinspacing

\Umathinnerrelspacing

\Umathinneropenspacing

\Umathinnerclosespacing

\Umathinnerpunctspacing

\Umathinnerinnerspacing

These parameters are of type \muskip, so setting a parameter can be done like this:

115Math

\Umathopordspacing\displaystyle=4mu plus 2mu

They are all initialized by initex to the values mentioned in the table in Chapter 18 of the

TEXbook.

Note 1: for ease of use as well as for backward compatibility, \thinmuskip, \medmuskip and

\thickmuskip are treated specially. In their case a pointer to the corresponding internal para-

meter is saved, not the actual \muskip value. This means that any later changes to one of these

three parameters will be taken into account.

Note 2: Careful readers will realise that there are also primitives for the items marked * in the

TEXbook. These will not actually be used as those combinations of atoms cannot actually happen,

but it seemed better not to break orthogonality. They are initialized to zero.

7.5.3 Skips around display math

The injection of \abovedisplayskip and \belowdisplayskip is not symmetrical. An above one

is always inserted, also when zero, but the below is only inserted when larger than zero. Espe-

cially the latter makes it sometimes hard to fully control spacing. Therefore LuaTEX comes with

a new directive: \mathdisplayskipmode. The following values apply:

VALUE MEANING

0 normal TEX behaviour

1 always (same as 0)

2 only when not zero

3 never, not even when not zero

By default the short skip detection is not adapted to r2l typesetting and that hasn’t been the

case since the start of the project. Changing it could break hacks that users came up with but

when you set \matheqdirmode to a positive value direction will be taken into account.

7.5.4 Nolimit correction

There are two extra math parameters \Umathnolimitsupfactor and \Umathnolimitsubfactor

that were added to provide some control over how limits are spaced (for example the position

of super and subscripts after integral operators). They relate to an extra parameter \mathno-

limitsmode. The half corrections are what happens when scripts are placed above and below.

The problem with italic corrections is that officially that correction italic is used for above/be-

low placement while advanced kerns are used for placement at the right end. The question is:

how often is this implemented, and if so, do the kerns assume correction too. Anyway, with this

parameter one can control it.

∫
0
1

∫
0
1

∫
0
1

∫
0
1

∫
0
1

∫
0
1

mode 0 1 2 3 4 8000

superscript 0 font 0 0 +ic/2 0

subscript -ic font 0 -ic/2 -ic/2 8000ic/1000

When the mode is set to one, the math parameters are used. This way a macro package writer

can decide what looks best. Given the current state of fonts in ConTEXt we currently use mode

Math116

1 with factor 0 for the superscript and 750 for the subscripts. Positive values are used for both

parameters but the subscript shifts to the left. A \mathnolimitsmode larger that 15 is considered

to be a factor for the subscript correction. This feature can be handy when experimenting.

7.5.5 Math italic mess

The \mathitalicsmode parameter can be set to 1 to force italic correction before noads that

represent some more complex structure (read: everything that is not an ord, bin, rel, open,

close, punct or inner). A value of 2 will enforce the old school font code path for all italics. We

show a Cambria example.

\mathitalicsmode = 0 �𝑇1� |𝑇| 𝑇 + 1 𝑇1
2 𝑇√1

\mathitalicsmode = 1 �𝑇1� |𝑇| 𝑇 + 1 𝑇1
2 𝑇√1

This kind of parameters relate to the fact that italic correction in OpenType math is bound to

fuzzy rules. So, control is the solution.

7.5.6 Script and kerning

If you want to typeset text in math macro packages often provide something \text which obeys

the script sizes. As the definition can be anything there is a good chance that the kerning doesn’t

come out well when used in a script. Given that the first glyph ends up in a \hbox we have some

control over this. And, as a bonus we also added control over the normal sublist kerning. The

\mathscriptboxmode parameter defaults to 1.

VALUE MEANING

0 forget about kerning

1 kern math sub lists with a valid glyph

2 also kern math sub boxes that have a valid glyph

2 only kern math sub boxes with a boundary node present

Here we show some examples. Of course this doesn’t solve all our problems, if only because

some fonts have characters with bounding boxes that compensate for italics, while other fonts

can lack kerns.

$T_{\tf fluff}$ $T_{\tf fluff}$ T_{fluff} T_{fluff} $T_{\text{\boundary1 fluff}}$

mode 0 mode 1 mode 1 mode 2 mode 3

modern 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

lucidaot 𝑇fluff 𝑇
-1.389

fluff 𝑇fluff 𝑇fluff 𝑇fluff

pagella 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

cambria 𝑇fluff 𝑇
-1.367

fluff 𝑇fluff 𝑇fluff 𝑇fluff

dejavu 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff 𝑇fluff

Kerning between a character subscript is controlled by \mathscriptcharmode which also de-

faults to 1.

Here is another example. Internally we tag kerns as italic kerns or font kerns where font kerns

result from the staircase kern tables. In 2018 fonts like Latin Modern and Pagella rely on cheats

117Math

with the boundingbox, Cambria uses staircase kerns and Lucida a mixture. Depending on how

fonts evolve we might add some more control over what one can turn on and off.

normal modern 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f
0.872

luf
0.872

f
pagella 𝑇 𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.346luf 0.346f
cambria 𝑇

-2.367

𝑓 𝛾
-1.657

𝑒 𝛾
-1.657

𝑒
0.382

𝑒 𝑇
-2.367

fluff

lucidaot 𝑇 -2.405

𝑓 𝛾 -1.107

𝑒 𝛾 -1.107

𝑒𝑒 𝑇 -2.405

fluff
bold modern 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f

1.003

luf
1.003

f
pagella 𝑇𝑓 𝛾𝑒 𝛾𝑒𝑒 𝑇f 0.398luf 0.398f
cambria 𝑇

-2.331

𝑓 𝛾
-1.632

𝑒 𝛾
-1.632

𝑒
0.440

𝑒 𝑇
-2.331

fluff

lucidaot 𝑇𝑓 𝛾𝑒 𝛾𝑒 0.376𝑒 𝑇f 0.751luf 0.751f

7.5.7 Fixed scripts

We have three parameters that are used for this fixed anchoring:

PARAMETER REGISTER

𝑑 \Umathsubshiftdown

𝑢 \Umathsupshiftup

𝑠 \Umathsubsupshiftdown

When we set \mathscriptsmode to a value other than zero these are used for calculating fixed

positions. This is something that is needed for instance for chemistry. You can manipulate the

mentioned variables to achieve different effects.

MODE DOWN UP EXAMPLE

0 dynamic dynamic CH2 + CH+
2 + CH2

2
1 𝑑 𝑢 CH2 + CH+

2 + CH2
2

2 𝑠 𝑢 CH2 + CH+
2 + CH2

2
3 𝑠 𝑢 + 𝑠 − 𝑑 CH2 + CH+

2 + CH2
2

4 𝑑 + (𝑠 − 𝑑)/2 𝑢 + (𝑠 − 𝑑)/2 CH2 + CH+
2 + CH2

2
5 𝑑 𝑢 + 𝑠 − 𝑑 CH2 + CH+

2 + CH2
2

The value of this parameter obeys grouping but applies to the whole current formula.

7.5.8 Penalties: \mathpenaltiesmode

Only in inline math penalties will be added in a math list. You can force penalties (also in display

math) by setting:

\mathpenaltiesmode = 1

This primnitive is not really needed in LuaTEX because you can use the callback mlist_to_hlist

to force penalties by just calling the regular routine with forced penalties. However, as part

Math118

of opening up and control this primitive makes sense. As a bonus we also provide two extra

penalties:

\prebinoppenalty = -100 % example value

\prerelpenalty = 900 % example value

They default to inifinite which signals that they don’t need to be inserted. When set they are

injected before a binop or rel noad. This is an experimental feature.

7.5.9 Equation spacing: \matheqnogapstep

By default TEX will add one quad between the equation and the number. This is hard coded. A

new primitive can control this:

\matheqnogapstep = 1000

Because a math quad from the math text font is used instead of a dimension, we use a step to

control the size. A value of zero will suppress the gap. The step is divided by 1000 which is the

usual way to mimmick floating point factors in TEX.

7.6 Math constructs

7.6.1 Unscaled fences

The \mathdelimitersmode primitive is experimental and deals with the following (potential)

problems. Three bits can be set. The first bit prevents an unwanted shift when the fence symbol

is not scaled (a cambria side effect). The second bit forces italic correction between a preceding

character ordinal and the fenced subformula, while the third bit turns that subformula into an

ordinary so that the same spacing applies as with unfenced variants. Here we show Cambria

(with \mathitalicsmode enabled).

\mathdelimitersmode = 0 𝑓
0.293

(𝑥
0.303

) 𝑓 (𝑥
0.303

)

\mathdelimitersmode = 1 𝑓
0.293

(𝑥
0.303

) 𝑓 (𝑥
0.303

)

\mathdelimitersmode = 2 𝑓
0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)

\mathdelimitersmode = 3 𝑓
0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)

\mathdelimitersmode = 4 𝑓
0.293

(𝑥
0.303

) 𝑓(𝑥
0.303

)

\mathdelimitersmode = 5 𝑓
0.293

(𝑥
0.303

) 𝑓(𝑥
0.303

)

\mathdelimitersmode = 6 𝑓
0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)

\mathdelimitersmode = 7 𝑓
0.293

(𝑥
0.303

) 𝑓
0.293

(𝑥
0.303

)

So, when set to 7 fenced subformulas with unscaled delimiters come out the same as unfenced

ones. This can be handy for cases where one is forced to use \left and \right always be-

cause of unpredictable content. As said, it’s an experimental feature (which somehow fits in the

exceptional way fences are dealt with in the engine). The full list of flags is given in the next

table:

VALUE MEANING

"01 don’t apply the usual shift

119Math

"02 apply italic correction when possible

"04 force an ordinary subformula

"08 no shift when a base character

"10 only shift when an extensible

The effect can depend on the font (and for Cambria one can use for instance "16).

7.6.2 Accent handling

LuaTEX supports both top accents and bottom accents in math mode, and math accents stretch

automatically (if this is supported by the font the accent comes from, of course). Bottom and

combined accents as well as fixed-width math accents are controlled by optional keywords fol-

lowing \Umathaccent.

The keyword bottom after \Umathaccent signals that a bottom accent is needed, and the keyword

both signals that both a top and a bottom accent are needed (in this case two accents need to

be specified, of course).

Then the set of three integers defining the accent is read. This set of integers can be prefixed by

the fixed keyword to indicate that a non-stretching variant is requested (in case of both accents,

this step is repeated).

A simple example:

\Umathaccent both fixed 0 0 "20D7 fixed 0 0 "20D7 {example}

If a math top accent has to be placed and the accentee is a character and has a non-zero top_ac-

cent value, then this value will be used to place the accent instead of the \skewchar kern used

by TEX82.

The top_accent value represents a vertical line somewhere in the accentee. The accent will be

shifted horizontally such that its own top_accent line coincides with the one from the accentee.

If the top_accent value of the accent is zero, then half the width of the accent followed by its

italic correction is used instead.

The vertical placement of a top accent depends on the x_height of the font of the accentee (as

explained in the TEXbook), but if a value turns out to be zero and the font had a MathConstants

table, then AccentBaseHeight is used instead.

The vertical placement of a bottom accent is straight below the accentee, no correction takes

place.

Possible locations are top, bottom, both and center. When no location is given top is assumed.

An additional parameter fraction can be specified followed by a number; a value of for instance

1200 means that the criterium is 1.2 times the width of the nucleus. The fraction only applies

to the stepwise selected shapes and is mostly meant for the overlay location. It also works for

the other locations but then it concerns the width.

7.6.3 Radical extensions

The new primitive \Uroot allows the construction of a radical noad including a degree field. Its

syntax is an extension of \Uradical:

Math120

\Uradical <fam integer> <char integer> <radicand>

\Uroot <fam integer> <char integer> <degree> <radicand>

The placement of the degree is controlled by themath parameters \Umathradicaldegreebefore,

\Umathradicaldegreeafter, and \Umathradicaldegreeraise. The degree will be typeset in

\scriptscriptstyle.

7.6.4 Super- and subscripts

The character fields in a Lua-loaded OpenType math font can have a ‘mathkern’ table. The

format of this table is the same as the ‘mathkern’ table that is returned by the fontloader

library, except that all height and kern values have to be specified in actual scaled points.

When a super- or subscript has to be placed next to a math item, LuaTEX checks whether the

super- or subscript and the nucleus are both simple character items. If they are, and if the

fonts of both character items are OpenType fonts (as opposed to legacy TEX fonts), then LuaTEX

will use the OpenType math algorithm for deciding on the horizontal placement of the super- or

subscript.

This works as follows:

‣ The vertical position of the script is calculated.

‣ The default horizontal position is flat next to the base character.

‣ For superscripts, the italic correction of the base character is added.

‣ For a superscript, two vertical values are calculated: the bottom of the script (after shifting

up), and the top of the base. For a subscript, the two values are the top of the (shifted down)

script, and the bottom of the base.

‣ For each of these two locations:

– find the math kern value at this height for the base (for a subscript placement, this is the

bottom_right corner, for a superscript placement the top_right corner)

– find the math kern value at this height for the script (for a subscript placement, this is the

top_left corner, for a superscript placement the bottom_left corner)

– add the found values together to get a preliminary result.

‣ The horizontal kern to be applied is the smallest of the two results from previous step.

The math kern value at a specific height is the kern value that is specified by the next higher

height and kern pair, or the highest one in the character (if there is no value high enough in the

character), or simply zero (if the character has no math kern pairs at all).

7.6.5 Scripts on extensibles

The primitives \Uunderdelimiter and \Uoverdelimiter allow the placement of a subscript or

superscript on an automatically extensible item and \Udelimiterunder and \Udelimiterover

allow the placement of an automatically extensible item as a subscript or superscript on a nu-

cleus. The input:

$\Uoverdelimiter 0 "2194 {\hbox{\strut overdelimiter}}$

$\Uunderdelimiter 0 "2194 {\hbox{\strut underdelimiter}}$

121Math

$\Udelimiterover 0 "2194 {\hbox{\strut delimiterover}}$

$\Udelimiterunder 0 "2194 {\hbox{\strut delimiterunder}}$

will render this:

overdelimiter
↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

underdelimiter

↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔
delimiterover delimiterunder↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

The vertical placements are controlled by \Umathunderdelimiterbgap, \Umathunderdelim-

itervgap, \Umathoverdelimiterbgap, and \Umathoverdelimitervgap in a similar way as limit

placements on large operators. The superscript in \Uoverdelimiter is typeset in a suitable

scripted style, the subscript in \Uunderdelimiter is cramped as well.

These primitives accepts an option width specification. When used the also optional keywords

left, middle and rightwill determine what happens when a requested size can’t be met (which

can happen when we step to successive larger variants).

An extra primitive \Uhextensible is available that can be used like this:

$\Uhextensible width 10cm 0 "2194$

This will render this:

↔↔↔

Here you can also pass options, like:

$\Uhextensible width 1pt middle 0 "2194$

This gives:

↔

LuaTEX internally uses a structure that supports OpenType ‘MathVariants’ as well as tfm ‘exten-

sible recipes’. In most cases where font metrics are involved we have a different code path for

traditional fonts end OpenType fonts.

Sometimes you might want to act upon the size of a delimiter, something that is not really pos-

sible because of the fact that they are calculated after most has been typeset already. In the fol-

lowing example the all-zero specification is the trigger to make a fake box with the last delimiter

dimensions and shift. It’s an ugly hack but its relative simple and not intrusive implementation

has no side effects. Any other heuristic solution would not satisfy possible demands anyway.

Here is a rather low level example:

\startformula

\Uleft \Udelimiter 5 0 "222B

\frac{\frac{a}{b}}{\frac{c}{d}}

\Uright \Udelimiter 5 0 "222B

\kern-2\fontcharwd\textfont0 "222B

\mathlimop{\Uvextensible \Udelimiter 0 0 0}_1^2 x

\stopformula

Math122

The last line, by passing zero values, results in a fake operator that has the dimensions of the

previous delimiter. We can then backtrack over the (presumed) width and the two numbers

become limit operators. As said, it’s not pretty but it works.

7.6.6 Fractions

The \abovewithdelims command accepts a keyword exact. When issued the extra space rela-

tive to the rule thickness is not added. One can of course use the \Umathfraction..gap com-

mands to influence the spacing. Also the rule is still positioned around the math axis.

$$ { {a} \abovewithdelims() exact 4pt {b} }$$

The math parameter table contains some parameters that specify a horizontal and vertical gap

for skewed fractions. Of course some guessing is needed in order to implement something that

uses them. And so we now provide a primitive similar to the other fraction related ones but with

a few options so that one can influence the rendering. Of course a user can also mess around a

bit with the parameters \Umathskewedfractionhgap and \Umathskewedfractionvgap.

The syntax used here is:

{ {1} \Uskewed / <options> {2} }

{ {1} \Uskewedwithdelims / () <options> {2} }

where the options can be noaxis and exact. By default we add half the axis to the shifts and by

default we zero the width of the middle character. For Latin Modern the result looks as follows:

𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥
exact noaxis 𝑥 + 𝑎/𝑏 + 𝑥 𝑥 + 1/2 + 𝑥 𝑥 + (𝑎/𝑏) + 𝑥 𝑥 + (1/2) + 𝑥

The keyword norule will hide the rule with the above variants while keeping the rule related

spacing.

7.6.7 Delimiters: \Uleft, \Umiddle and \Uright

Normally you will force delimiters to certain sizes by putting an empty box or rule next to it. The

resulting delimiter will either be a character from the stepwise size range or an extensible. The

latter can be quite differently positioned than the characters as it depends on the fit as well as

the fact if the used characters in the font have depth or height. Commands like (plain TEXs) \big

need use this feature. In LuaTEX we provide a bit more control by three variants that support

optional parameters height, depth and axis. The following example uses this:

\Uleft height 30pt depth 10pt \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt \Udelimiter "0 "0 "000029

\quad \quad \quad

123Math

\Uleft height 30pt depth 10pt axis \Udelimiter "0 "0 "000028

\quad x\quad

\Umiddle height 40pt depth 15pt axis \Udelimiter "0 "0 "002016

\quad x\quad

\Uright height 30pt depth 10pt axis \Udelimiter "0 "0 "000029

⎛⎜⎜⎜⎜
⎝

𝑥

∥
∥
∥
∥
∥
∥
∥

𝑥
⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝ 𝑥

∥
∥
∥
∥
∥
∥
∥

𝑥

⎞⎟⎟⎟⎟
⎠

The keyword exact can be used as directive that the real dimensions should be applied when

the criteria can’t be met which can happen when we’re still stepping through the successively

larger variants. When no dimensions are given the noaxis command can be used to prevent

shifting over the axis.

You can influence the final class with the keyword class which will influence the spacing. The

numbers are the same as for character classes.

7.7 Extracting values

7.7.1 Codes

You can extract the components of a math character. Say that we have defined:

\Umathcode 1 2 3 4

then

[\Umathcharclass1] [\Umathcharfam1] [\Umathcharslot1]

will return:

[2] [3] [4]

These commands are provides as convenience. Before they come available you could do the

following:

\def\Umathcharclass{\directlua{tex.print(tex.getmathcode(token.scan_int())[1])}}

\def\Umathcharfam {\directlua{tex.print(tex.getmathcode(token.scan_int())[2])}}

\def\Umathcharslot {\directlua{tex.print(tex.getmathcode(token.scan_int())[3])}}

7.7.2 Last lines

There is a new primitive to control the overshoot in the calculation of the previous line in mid-

paragraph display math. The default value is 2 times the em width of the current font:

\predisplaygapfactor=2000

Math124

If you want to have the length of the last line independent of math i.e. you don’t want to revert

to a hack where you insert a fake display math formula in order to get the length of the last line,

the following will often work too:

\def\lastlinelength{\dimexpr

\directlua {tex.sprint (

(nodes.dimensions(node.tail(tex.lists.page_head).list))

)}sp

\relax}

7.8 Math mode

7.8.1 Verbose versions of single-character math commands

LuaTEX defines six new primitives that have the same function as ^, _, $, and $$:

PRIMITIVE EXPLANATION

\Usuperscript duplicates the functionality of ^

\Usubscript duplicates the functionality of _

\Ustartmath duplicates the functionality of $, when used in non-math mode.

\Ustopmath duplicates the functionality of $, when used in inline math mode.

\Ustartdisplaymath duplicates the functionality of $$, when used in non-math mode.

\Ustopdisplaymath duplicates the functionality of $$, when used in display math mode.

The \Ustopmath and \Ustopdisplaymath primitives check if the current math mode is the cor-

rect one (inline vs. displayed), but you can freely intermix the four mathon/mathoff commands

with explicit dollar sign(s).

7.8.2 Script commands \Unosuperscript and \Unosubscript

These two commands result in super- and subscripts but with the current style (at the time of

rendering). So,

$

x\Usuperscript {1}\Usubscript {2} =

x\Unosuperscript{1}\Unosubscript{2} =

x\Usuperscript {1}\Unosubscript{2} =

x\Unosuperscript{1}\Usubscript {2}

$

results in 𝑥1
2 = 𝑥1

2 = 𝑥1
2 = 𝑥1

2 .

7.8.3 Allowed math commands in non-math modes

The commands \mathchar, and \Umathchar and control sequences that are the result of \math-

chardef or \Umathchardef are also acceptable in the horizontal and vertical modes. In those

cases, the \textfont from the requested math family is used.

125Math

7.9 Goodies

7.9.1 Flattening: \mathflattenmode

The TEX math engine collapses ord noads without sub- and superscripts and a character as

nucleus. and which has the side effect that in OpenType mode italic corrections are applied

(given that they are enabled).

\switchtobodyfont[modern]

$V \mathbin{\mathbin{v}} V$\par

$V \mathord{\mathord{v}} V$\par

This renders as:

𝑉 𝑣 𝑉
𝑉 𝑣𝑉

When we set \mathflattenmode to 31 we get:

𝑉 𝑣 𝑉
𝑉 𝑣𝑉

When you see no difference, then the font probably has the proper character dimensions and no

italic correction is needed. For Latin Modern (at least till 2018) there was a visual difference. In

that respect this parameter is not always needed unless of course you want efficient math lists

anyway.

You can influence flattening by adding the appropriate number to the value of the mode para-

meter. The default value is 1.

MODE CLASS

1 ord

2 bin

4 rel

8 punct

16 inner

7.9.2 Less Tracing

Because there are quite some math related parameters and values, it is possible to limit tracing.

Only when tracingassigns and/or tracingrestores are set to 2 or more they will be traced.

7.9.3 Math options with \mathdefaultsmode

This option has been introduced because LATEX developers wanted some of the defaults to be

different from the ones that were set in stone when we froze LuaTEX. The default values are:

Math126

SCANNING RENDERING

radical/root cramped cramped

under delimiter cramped supstyle

over delimiter cramped substyle

delimiter under cramped current

delimiter over cramped current

When \mathdefaultsmode is larger than zero, we have:

SCANNING RENDERING

radical/root cramped cramped

under delimiter substyle substyle

over delimiter supstyle supstyle

delimiter under current current

delimiter over cramped cramped

It is outside the scope of this manual to discuss the rationale behind these defaults. The zero

values date back from the early times. If needed you can explicitly set the style in the content

argument.

7.9.4 Math options with \mathoption

The logic in the math engine is rather complex and there are often no universal solutions (read:

what works out well for one font, fails for another). Therefore some variations in the imple-

mentation are driven by parameters (modes). In addition there is a new primitive \mathoption

which will be used for testing. Don’t rely on any option to be there in a production version as

they are meant for development.

This option was introduced for testing purposes when the math engine got split code paths and

it forces the engine to treat new fonts as old ones with respect to italic correction etc. There are

no guarantees given with respect to the final result and unexpected side effects are not seen as

bugs as they relate to font properties. There is currently only one option:

The oldmath boolean flag in the Lua font table is the official way to force old treatment as it’s

bound to fonts. Like with all options we may temporarily introduce with this command this

feature is not meant for production.

127Nodes

8 Nodes

8.1 LUA node representation

TEX’s nodes are represented in Lua as userdata objects with a variable set of fields. In the

following syntax tables, such as the type of such a userdata object is represented as ⟨node⟩.

The current return value of node.types() is: hlist (0), vlist (1), rule (2), ins (3), mark (4), ad-

just (5), boundary (6), disc (7), whatsit (8), local_par (9), dir (10), math (11), glue (12), kern

(13), penalty (14), unset (15), style (16), choice (17), noad (18), radical (19), fraction (20),

accent (21), fence (22), math_char (23), sub_box (24), sub_mlist (25), math_text_char (26),

delim (27), margin_kern (28), glyph (29), align_record (30), pseudo_file (31), pseudo_line

(32), page_insert (33), split_insert (34), expr_stack (35), nested_list (36), span (37),

attribute (38), glue_spec (39), attribute_list (40), temp (41), align_stack (42), move-

ment_stack (43), if_stack (44), unhyphenated (45), hyphenated (46), delta (47), passive (48),

shape (49).

The \lastnodetype primitive is 𝜀-TEX compliant. The valid range is still [−1, 15] and glyph nodes
(formerly known as char nodes) have number 0 while ligature nodes are mapped to 7. That way

macro packages can use the same symbolic names as in traditional 𝜀-TEX. Keep in mind that
these 𝜀-TEX node numbers are different from the real internal ones and that there are more

𝜀-TEX node types than 15.

You can ask for a list of fields with node.fields and for valid subtypes with node.subtypes. The

node.values function reports some used values. Valid arguments are dir, direction, glue,

pdf_literal, pdf_action, pdf_window and color_stack. Keep in mind that the setters nor-

mally expect a number, but this helper gives you a list of what numbers matter. For practical

reason the pagestate values are also reported with this helper.

8.2 Main text nodes

These are the nodes that comprise actual typesetting commands. A few fields are present in all

nodes regardless of their type, these are:

FIELD TYPE EXPLANATION

next node the next node in a list, or nil

id number the node’s type (id) number

subtype number the node subtype identifier

The subtype is sometimes just a dummy entry because not all nodes actually use the subtype,

but this way you can be sure that all nodes accept it as a valid field name, and that is often handy

in node list traversal. In the following tables next and id are not explicitly mentioned.

Besides these three fields, almost all nodes also have an attr field, and there is a also a field

called prev. That last field is always present, but only initialized on explicit request: when the

function node.slide() is called, it will set up the prev fields to be a backwards pointer in the

argument node list. By now most of TEX’s node processing makes sure that the prev nodes are

Nodes128

valid but there can be exceptions, especially when the internal magic uses a leading temp nodes

to temporarily store a state.

8.2.1 hlist nodes

FIELD TYPE EXPLANATION

subtype number 0 = unknown, 1 = line, 2 = box, 3 = indent, 4 = alignment, 5 = cell,

6 = equation, 7 = equationnumber, 8 = math, 9 = mathchar, 10 = hex-

tensible, 11 = vextensible, 12 = hdelimiter, 13 = vdelimiter, 14 =

overdelimiter, 15 = underdelimiter, 16 = numerator, 17 = denomi-

nator, 18 = limits, 19 = fraction, 20 = nucleus, 21 = sup, 22 = sub,

23 = degree, 24 = scripts, 25 = over, 26 = under, 27 = accent, 28 =

radical

attr node list of attributes

width number the width of the box

height number the height of the box

depth number the depth of the box

shift number a displacement perpendicular to the character progression direction

glue_order number a number in the range [0, 4], indicating the glue order
glue_set number the calculated glue ratio

glue_sign number 0 = normal, 1 = stretching, 2 = shrinking

head/list node the first node of the body of this list

dir string the direction of this box, see 8.2.15

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may result.

Note: the field name head and list are both valid. Sometimes it makes more sense to refer to

a list by head, sometimes list makes more sense.

8.2.2 vlist nodes

This node is similar to hlist, except that ‘shift’ is a displacement perpendicular to the line

progression direction, and ‘subtype’ only has the values 0, 4, and 5.

8.2.3 rule nodes

Contrary to traditional TEX, LuaTEX has more \rule subtypes because we also use rules to store

reuseable objects and images. User nodes are invisible and can be intercepted by a callback.

FIELD TYPE EXPLANATION

subtype number 0 = normal, 1 = box, 2 = image, 3 = empty, 4 = user, 5 = over, 6 = under,

7 = fraction, 8 = radical, 9 = outline

attr node list of attributes

width number the width of the rule where the special value −1073741824 is used for
‘running’ glue dimensions

129Nodes

height number the height of the rule (can be negative)

depth number the depth of the rule (can be negative)

left number shift at the left end (also subtracted from width)

right number (subtracted from width)

dir string the direction of this rule, see 8.2.15

index number an optional index that can be referred to

transform number an private variable (also used to specify outline width)

The left and type right keys are somewhat special (and experimental). When rules are auto

adapting to the surrounding box width you can enforce a shift to the right by setting left. The

value is also subtracted from the width which can be a value set by the engine itself and is not

entirely under user control. The right is also subtracted from the width. It all happens in the

backend so these are not affecting the calculations in the frontend (actually the auto settings

also happen in the backend). For a vertical rule left affects the height and right affects the

depth. There is no matching interface at the TEX end (although we can have more keywords

for rules it would complicate matters and introduce a speed penalty.) However, you can just

construct a rule node with Lua and write it to the TEX input. The outline subtype is just a

convenient variant and the transform field specifies the width of the outline.

8.2.4 ins nodes

This node relates to the \insert primitive.

FIELD TYPE EXPLANATION

subtype number the insertion class

attr node list of attributes

cost number the penalty associated with this insert

height number height of the insert

depth number depth of the insert

head/list node the first node of the body of this insert

There is a set of extra fields that concern the associated glue: width, stretch, stretch_order,

shrink and shrink_order. These are all numbers.

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may result. You can use list instead (often in functions you want

to use local variable with similar names and both names are equally sensible).

8.2.5 mark nodes

This one relates to the \mark primitive.

FIELD TYPE EXPLANATION

subtype number unused

attr node list of attributes

class number the mark class

mark table a table representing a token list

Nodes130

8.2.6 adjust nodes

This node comes from \vadjust primitive.

FIELD TYPE EXPLANATION

subtype number 0 = normal, 1 = pre

attr node list of attributes

head/list node adjusted material

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error may be the result.

8.2.7 disc nodes

The \discretionary and \-, the - character but also the hyphenation mechanism produces

these nodes.

FIELD TYPE EXPLANATION

subtype number 0 = discretionary, 1 = explicit, 2 = automatic, 3 = regular, 4 = first,

5 = second

attr node list of attributes

pre node pointer to the pre-break text

post node pointer to the post-break text

replace node pointer to the no-break text

penalty number the penalty associated with the break, normally \hyphenpenalty or \exhy-

phenpenalty

The subtype numbers 4 and 5 belong to the ‘of-f-ice’ explanation given elsewhere. These disc

nodes are kind of special as at some point they also keep information about breakpoints and

nested ligatures.

The pre, post and replace fields at the Lua end are in fact indirectly accessed and have a prev

pointer that is not nil. This means that when you mess around with the head of these (three)

lists, you also need to reassign them because that will restore the proper prev pointer, so:

pre = d.pre

-- change the list starting with pre

d.pre = pre

Otherwise you can end up with an invalid internal perception of reality and LuaTEX might even

decide to crash on you. It also means that running forward over for instance pre is ok but

backward you need to stop at pre. And you definitely must not mess with the node that prev

points to, if only because it is not really a node but part of the disc data structure (so freeing it

again might crash LuaTEX).

8.2.8 math nodes

Math nodes represent the boundaries of a math formula, normally wrapped into $ signs.

131Nodes

FIELD TYPE EXPLANATION

subtype number 0 = beginmath, 1 = endmath

attr node list of attributes

surround number width of the \mathsurround kern

There is a set of extra fields that concern the associated glue: width, stretch, stretch_order,

shrink and shrink_order. These are all numbers.

8.2.9 glue nodes

Skips are about the only type of data objects in traditional TEX that are not a simple value.

They are inserted when TEX sees a space in the text flow but also by \hskip and \vskip. The

structure that represents the glue components of a skip is called a glue_spec, and it has the

following accessible fields:

FIELD TYPE EXPLANATION

width number the horizontal or vertical displacement

stretch number extra (positive) displacement or stretch amount

stretch_order number factor applied to stretch amount

shrink number extra (negative) displacement or shrink amount

shrink_order number factor applied to shrink amount

The effective width of some glue subtypes depends on the stretch or shrink needed to make

the encapsulating box fit its dimensions. For instance, in a paragraph lines normally have glue

representing spaces and these stretch or shrink to make the content fit in the available space.

The effective_glue function that takes a glue node and a parent (hlist or vlist) returns the

effective width of that glue item. When you pass true as third argument the value will be

rounded.

A glue_spec node is a special kind of node that is used for storing a set of glue values in registers.

Originally they were also used to store properties of glue nodes (using a system of reference

counts) but we now keep these properties in the glue nodes themselves, which gives a cleaner

interface to Lua.

The indirect spec approach was in fact an optimization in the original TEX code. First of all it can

save quite some memory because all these spaces that become glue now share the same spec-

ification (only the reference count is incremented), and zero testing is also a bit faster because

only the pointer has to be checked (this is no longer true for engines that implement for instance

protrusion where we really need to ensure that zero is zero when we test for bounds). Another

side effect is that glue specifications are read-only, so in the end copies need to be made when

they are used from Lua (each assignment to a field can result in a new copy). So in the end the

advantages of sharing are not that high (and nowadays memory is less an issue, also given that

a glue node is only a few memory words larger than a spec).

FIELD TYPE EXPLANATION

subtype number 0= userskip, 1 = lineskip, 2 = baselineskip, 3 = parskip, 4 = abovedis-

playskip, 5 = belowdisplayskip, 6 = abovedisplayshortskip, 7 = be-

lowdisplayshortskip, 8 = leftskip, 9 = rightskip, 10 = topskip, 11

Nodes132

= splittopskip, 12 = tabskip, 13 = spaceskip, 14 = xspaceskip, 15

= parfillskip, 16 = mathskip, 17 = thinmuskip, 18 = medmuskip, 19 =

thickmuskip, 98 = conditionalmathskip, 99 = muglue, 100 = leaders,

101 = cleaders, 102 = xleaders, 103 = gleaders

attr node list of attributes

leader node pointer to a box or rule for leaders

In addition there are the width, stretch stretch_order, shrink, and shrink_order fields. Note

that we use the key width in both horizontal and vertical glue. This suits the TEX internals well

so we decided to stick to that naming.

A regular word space also results in a spaceskip subtype (this used to be a userskip with

subtype zero).

8.2.10 kern nodes

The \kern command creates such nodes but for instance the font and math machinery can also

add them.

FIELD TYPE EXPLANATION

subtype number 0 = fontkern, 1 = userkern, 2 = accentkern, 3 = italiccorrection

attr node list of attributes

kern number fixed horizontal or vertical advance

8.2.11 penalty nodes

The \penalty command is one that generates these nodes.

FIELD TYPE EXPLANATION

subtype number 0 = userpenalty, 1 = linebreakpenalty, 2 = linepenalty, 3 = word-

penalty, 4 = finalpenalty, 5 = noadpenalty, 6 = beforedisplaypenalty,

7 = afterdisplaypenalty, 8 = equationnumberpenalty

attr node list of attributes

penalty number the penalty value

The subtypes are just informative and TEX itself doesn’t use them. When you run into an line-

breakpenalty you need to keep in mind that it’s a accumulation of club, widow and other rele-

vant penalties.

8.2.12 glyph nodes

These are probably the mostly used nodes and although you can push them in the current list

with for instance \char TEX will normally do it for you when it considers some input to be text.

FIELD TYPE EXPLANATION

subtype number bit field

133Nodes

attr node list of attributes

char number the character index in the font

font number the font identifier

lang number the language identifier

left number the frozen \lefthyphenmnin value

right number the frozen \righthyphenmnin value

uchyph boolean the frozen \uchyph value

components node pointer to ligature components

xoffset number a virtual displacement in horizontal direction

yoffset number a virtual displacement in vertical direction

width number the (original) width of the character

height number the (original) height of the character

depth number the (original) depth of the character

expansion_factor number the to be applied expansion_factor

data number a general purpose field for users (we had room for it)

The width, height and depth values are read-only. The expansion_factor is assigned in the

par builder and used in the backend.

A warning: never assign a node list to the components field unless you are sure its internal link

structure is correct, otherwise an error may be result. Valid bits for the subtype field are:

BIT MEANING

0 character

1 ligature

2 ghost

3 left

4 right

See section 5.2 for a detailed description of the subtype field.

The expansion_factor has been introduced as part of the separation between font- and back-

end. It is the result of extensive experiments with a more efficient implementation of expansion.

Early versions of LuaTEX already replaced multiple instances of fonts in the backend by scaling

but contrary to pdfTEX in LuaTEX we now also got rid of font copies in the frontend and replaced

them by expansion factors that travel with glyph nodes. Apart from a cleaner approach this is

also a step towards a better separation between front- and backend.

The is_char function checks if a node is a glyph node with a subtype still less than 256. This

function can be used to determine if applying font logic to a glyph node makes sense. The value

nil gets returned when the node is not a glyph, a character number is returned if the node is

still tagged as character and false gets returned otherwise. When nil is returned, the id is also

returned. The is_glyph variant doesn’t check for a subtype being less than 256, so it returns

either the character value or nil plus the id. These helpers are not always faster than separate

calls but they sometimes permit making more readable tests. The uses_font helpers takes a

node and font id and returns true when a glyph or disc node references that font.

Nodes134

8.2.13 boundary nodes

This node relates to the \noboundary, \boundary, \protrusionboundary and \wordboundary

primitives.

FIELD TYPE EXPLANATION

subtype number 0 = cancel, 1 = user, 2 = protrusion, 3 = word

attr node list of attributes

value number values 0–255 are reserved

8.2.14 local_par nodes

This node is inserted at the start of a paragraph. You should not mess too much with this one.

FIELD TYPE EXPLANATION

attr node list of attributes

pen_inter number local interline penalty (from \localinterlinepenalty)

pen_broken number local broken penalty (from \localbrokenpenalty)

dir string the direction of this par. see 8.2.15

box_left node the \localleftbox

box_left_width number width of the \localleftbox

box_right node the \localrightbox

box_right_width number width of the \localrightbox

A warning: never assign a node list to the box_left or box_right field unless you are sure its

internal link structure is correct, otherwise an error may result.

8.2.15 dir nodes

Direction nodes mark parts of the running text that need a change of direction and the \textdir

command generates them.

FIELD TYPE EXPLANATION

attr node list of attributes

dir string the direction (but see below)

level number nesting level of this direction whatsit

Direction specifiers are three-letter combinations of T, B, R, and L. These are built up out of three

separate items:

‣ the first is the direction of the ‘top’ of paragraphs

‣ the second is the direction of the ‘start’ of lines

‣ the third is the direction of the ‘top’ of glyphs

However, only four combinations are accepted: TLT, TRT, RTT, and LTL. Inside actual dir nodes,

the representation of dir is not a three-letter but a combination of numbers. When printed the

135Nodes

direction is indicated by a + or -, indicating whether the value is pushed or popped from the

direction stack.

8.2.16 marginkern nodes

Margin kerns result from protrusion.

FIELD TYPE EXPLANATION

subtype number 0 = left, 1 = right

attr node list of attributes

width number the advance of the kern

glyph node the glyph to be used

8.3 Math noads

These are the so--called ‘noad’s and the nodes that are specifically associated with math pro-

cessing. Most of these nodes contain subnodes so that the list of possible fields is actually quite

small. First, the subnodes:

8.3.1 Math kernel subnodes

Many object fields in math mode are either simple characters in a specific family or math lists

or node lists. There are four associated subnodes that represent these cases (in the following

node descriptions these are indicated by the word <kernel>).

The next and prev fields for these subnodes are unused.

8.3.2 math_char and math_text_char subnodes

FIELD TYPE EXPLANATION

attr node list of attributes

char number the character index

fam number the family number

The math_char is the simplest subnode field, it contains the character and family for a single

glyph object. The math_text_char is a special case that you will not normally encounter, it

arises temporarily during math list conversion (its sole function is to suppress a following italic

correction).

8.3.3 sub_box and sub_mlist subnodes

FIELD TYPE EXPLANATION

attr node list of attributes

head/list node list of nodes

Nodes136

These two subnode types are used for subsidiary list items. For sub_box, the head points to a

‘normal’ vbox or hbox. For sub_mlist, the head points to a math list that is yet to be converted.

A warning: never assign a node list to the head field unless you are sure its internal link structure

is correct, otherwise an error is triggered.

8.3.4 delim subnodes

There is a fifth subnode type that is used exclusively for delimiter fields. As before, the next and

prev fields are unused.

FIELD TYPE EXPLANATION

attr node list of attributes

small_char number character index of base character

small_fam number family number of base character

large_char number character index of next larger character

large_fam number family number of next larger character

The fields large_char and large_fam can be zero, in that case the font that is set for the

small_fam is expected to provide the large version as an extension to the small_char.

8.3.5 Math core nodes

First, there are the objects (the TEXbook calls them ‘atoms’) that are associated with the simple

math objects: ord, op, bin, rel, open, close, punct, inner, over, under, vcent. These all have the

same fields, and they are combined into a single node type with separate subtypes for differen-

tiation.

Some noads have an option field. The values in this bitset are common:

MEANING BITS

set 0x08

internal 0x00 + 0x08

internal 0x01 + 0x08

axis 0x02 + 0x08

no axis 0x04 + 0x08

exact 0x10 + 0x08

left 0x11 + 0x08

middle 0x12 + 0x08

right 0x14 + 0x08

no sub script 0x21 + 0x08

no super script 0x22 + 0x08

no script 0x23 + 0x08

137Nodes

8.3.6 simple noad nodes

FIELD TYPE EXPLANATION

subtype number 0 = ord, 1 = opdisplaylimits, 2 = oplimits, 3 = opnolimits, 4 = bin,

5 = rel, 6 = open, 7 = close, 8 = punct, 9 = inner, 10 = under, 11 =

over, 12 = vcenter

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

options number bitset of rendering options

8.3.7 accent nodes

FIELD TYPE EXPLANATION

subtype number 0 = bothflexible, 1 = fixedtop, 2 = fixedbottom, 3 = fixedboth

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

accent kernel node top accent

bot_accent kernel node bottom accent

fraction number larger step criterium (divided by 1000)

8.3.8 style nodes

FIELD TYPE EXPLANATION

style string contains the style

There are eight possibilities for the string value: one of display, text, script, or scriptscript.

Each of these can have be prefixed by cramped.

8.3.9 choice nodes

FIELD TYPE EXPLANATION

attr node list of attributes

display node list of display size alternatives

text node list of text size alternatives

script node list of scriptsize alternatives

scriptscript node list of scriptscriptsize alternatives

Warning: never assign a node list to the display, text, script, or scriptscript field unless

you are sure its internal link structure is correct, otherwise an error can occur.

Nodes138

8.3.10 radical nodes

FIELD TYPE EXPLANATION

subtype number 0 = radical, 1 = uradical, 2 = uroot, 3 = uunderdelimiter, 4 =

uoverdelimiter, 5 = udelimiterunder, 6 = udelimiterover

attr node list of attributes

nucleus kernel node base

sub kernel node subscript

sup kernel node superscript

left delimiter node

degree kernel node only set by \Uroot

width number required width

options number bitset of rendering options

Warning: never assign a node list to the nucleus, sub, sup, left, or degree field unless you are

sure its internal link structure is correct, otherwise an error can be triggered.

8.3.11 fraction nodes

FIELD TYPE EXPLANATION

attr node list of attributes

width number (optional) width of the fraction

num kernel node numerator

denom kernel node denominator

left delimiter node left side symbol

right delimiter node right side symbol

middle delimiter node middle symbol

options number bitset of rendering options

Warning: never assign a node list to the num, or denom field unless you are sure its internal link

structure is correct, otherwise an error can result.

8.3.12 fence nodes

FIELD TYPE EXPLANATION

subtype number 0 = unset, 1 = left, 2 = middle, 3 = right, 4 = no

attr node list of attributes

delim delimiter node delimiter specification

italic number italic correction

height number required height

depth number required depth

options number bitset of rendering options

class number spacing related class

Warning: some of these fields are used by the renderer and might get adapted in the process.

139Nodes

8.4 Front-end whatsits

Whatsit nodes come in many subtypes that you can ask for them by running node.whatsits:

open (0), write (1), close (2), special (3), late_special (4), save_pos (7), late_lua (8),

user_defined (9), pdf_literal (16), pdf_late_literal (17), pdf_refobj (18), pdf_annot (19),

pdf_start_link (20), pdf_end_link (21), pdf_dest (22), pdf_action (23), pdf_thread (24),

pdf_start_thread (25), pdf_end_thread (26), pdf_thread_data (27), pdf_link_data (28),

pdf_colorstack (29), pdf_setmatrix (30), pdf_save (31), pdf_restore (32), pdf_link_state

(33).

Some of them are generic and independent of the output mode and others are specific to the

chosen backend: dvi or pdf. Here we discuss the generic font-end nodes nodes.

8.4.1 open

FIELD TYPE EXPLANATION

attr node list of attributes

stream number TEX’s stream id number

name string file name

ext string file extension

area string file area (this may become obsolete)

8.4.2 write

FIELD TYPE EXPLANATION

attr node list of attributes

stream number TEX’s stream id number

data table a table representing the token list to be written

8.4.3 close

FIELD TYPE EXPLANATION

attr node list of attributes

stream number TEX’s stream id number

8.4.4 user_defined

User-defined whatsit nodes can only be created and handled from Lua code. In effect, they are

an extension to the extension mechanism. The LuaTEX engine will simply step over such whatsits

without ever looking at the contents.

FIELD TYPE EXPLANATION

attr node list of attributes

user_id number id number

Nodes140

type number type of the value

value number a Lua number

node a node list

string a Lua string

table a Lua table

The type can have one of six distinct values. The number is the ascii value if the first character

of the type name (so you can use string.byte("l") instead of 108).

VALUE MEANING EXPLANATION

97 a list of attributes (a node list)

100 d a Lua number

108 l a Lua value (table, number, boolean, etc)

110 n a node list

115 s a Lua string

116 t a Lua token list in Lua table form (a list of triplets)

8.4.5 save_pos

FIELD TYPE EXPLANATION

attr node list of attributes

8.4.6 late_lua

FIELD TYPE EXPLANATION

attr node list of attributes

data string or function the to be written information stored as Lua value

token string the to be written information stored as token list

name string the name to use for Lua error reporting

The difference between data and string is that on assignment, the data field is converted to a

token list, cf. use as \latelua. The string version is treated as a literal string.

When a function is used, it gets called with as first argument the node that triggers the call.

8.5 DVI backend whatsits

8.5.1 special

There is only one dvi backend whatsit, and it just flushes its content to the output file.

FIELD TYPE EXPLANATION

attr node list of attributes

data string the \special information

141Nodes

8.6 PDF backend whatsits

8.6.1 pdf_literal and pdf_late_literal

FIELD TYPE EXPLANATION

attr node list of attributes

mode number the ‘mode’ setting of this literal

data string the to be written information stored as Lua string

token string the to be written information stored as token list

Possible mode values are:

VALUE KEYWORD

0 origin

1 page

2 direct

3 raw

4 text

The higher the number, the less checking and the more you can run into trouble. Especially the

raw variant can produce bad pdf so you can best check what you generate.

8.6.2 pdf_refobj

FIELD TYPE EXPLANATION

attr node list of attributes

objnum number the referenced pdf object number

8.6.3 pdf_annot

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)

height number the height (not used in calculations)

depth number the depth (not used in calculations)

objnum number the referenced pdf object number

data string the annotation data

8.6.4 pdf_start_link

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)

Nodes142

height number the height (not used in calculations)

depth number the depth (not used in calculations)

objnum number the referenced pdf object number

link_attr table the link attribute token list

action node the action to perform

8.6.5 pdf_end_link

FIELD TYPE EXPLANATION

attr node

8.6.6 pdf_dest

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)

height number the height (not used in calculations)

depth number the depth (not used in calculations)

named_id number is the dest_id a string value?

dest_id number the destination id

string the destination name

dest_type number type of destination

xyz_zoom number the zoom factor (times 1000)

objnum number the pdf object number; for structure references the pdf object number of

the linked structure element

8.6.7 pdf_action

These are a special kind of items that only appear inside pdf start link objects.

FIELD TYPE EXPLANATION

action_type number the kind of action involved

action_id number or string token list reference or string

named_id number are dest_id and struct_id string values?

file string the target filename

new_window number the window state of the target

data string the name of the destination

struct_id nil the action does not reference a structure destination

number id of the referenced structure destination

string name of the referenced structure destination

Valid action types are:

VALUE MEANING

0 page

143Nodes

1 goto

2 thread

3 user

Valid window types are:

VALUE MEANING

0 notset

1 new

2 nonew

8.6.8 pdf_thread

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)

height number the height (not used in calculations)

depth number the depth (not used in calculations)

named_id number is tread_id a string value?

tread_id number the thread id

string the thread name

thread_attr number extra thread information

8.6.9 pdf_start_thread

FIELD TYPE EXPLANATION

attr node list of attributes

width number the width (not used in calculations)

height number the height (not used in calculations)

depth number the depth (not used in calculations)

named_id number is tread_id a string value?

tread_id number the thread id

string the thread name

thread_attr number extra thread information

8.6.10 pdf_end_thread

FIELD TYPE EXPLANATION

attr node

8.6.11 pdf_colorstack

FIELD TYPE EXPLANATION

attr node list of attributes

Nodes144

stack number colorstack id number

command number command to execute

data string data

8.6.12 pdf_setmatrix

FIELD TYPE EXPLANATION

attr node list of attributes

data string data

8.6.13 pdf_save

FIELD TYPE EXPLANATION

attr node list of attributes

8.6.14 pdf_restore

FIELD TYPE EXPLANATION

attr node list of attributes

8.7 The node library

8.7.1 Introduction

The node library contains functions that facilitate dealing with (lists of) nodes and their values.

They allow you to create, alter, copy, delete, and insert LuaTEX node objects, the core objects

within the typesetter.

LuaTEX nodes are represented in Lua as userdata with the metadata type luatex.node. The

various parts within a node can be accessed using named fields.

Each node has at least the three fields next, id, and subtype:

‣ The next field returns the userdata object for the next node in a linked list of nodes, or nil,

if there is no next node.

‣ The id indicates TEX’s ‘node type’. The field id has a numeric value for efficiency reasons,

but some of the library functions also accept a string value instead of id.

‣ The subtype is another number. It often gives further information about a node of a particular

id, but it is most important when dealing with ‘whatsits’, because they are differentiated

solely based on their subtype.

The other available fields depend on the id (and for ‘whatsits’, the subtype) of the node.

Support for unset (alignment) nodes is partial: they can be queried and modified from Lua code,

but not created.

145Nodes

Nodes can be compared to each other, but: you are actually comparing indices into the node

memory. This means that equality tests can only be trusted under very limited conditions. It will

not work correctly in any situation where one of the two nodes has been freed and/or reallocated:

in that case, there will be false positives.

At the moment, memory management of nodes should still be done explicitly by the user. Nodes

are not ‘seen’ by the Lua garbage collector, so you have to call the node freeing functions yourself

when you are no longer in need of a node (list). Nodes form linked lists without reference

counting, so you have to be careful that when control returns back to LuaTEX itself, you have

not deleted nodes that are still referenced from a next pointer elsewhere, and that you did not

create nodes that are referenced more than once. Normally the setters and getters handle this

for you.

There are statistics available with regards to the allocated node memory, which can be handy

for tracing.

8.7.2 is_node

<boolean|integer> t =

node.is_node(<any> item)

This function returns a number (the internal index of the node) if the argument is a userdata

object of type <node> and false when no node is passed.

8.7.3 types and whatsits

This function returns an array that maps node id numbers to node type strings, providing an

overview of the possible top-level id types.

<table> t =

node.types()

TEX’s ‘whatsits’ all have the same id. The various subtypes are defined by their subtype fields.

The function is much like types, except that it provides an array of subtype mappings.

<table> t =

node.whatsits()

8.7.4 id

This converts a single type name to its internal numeric representation.

<number> id =

node.id(<string> type)

8.7.5 type and subtype

If the argument is a number, then the next function converts an internal numeric representa-

tion to an external string representation. Otherwise, it will return the string node if the object

represents a node, and nil otherwise.

Nodes146

<string> type =

node.type(<any> n)

This next one converts a single whatsit name to its internal numeric representation (subtype).

<number> subtype =

node.subtype(<string> type)

8.7.6 fields

This function returns an array of valid field names for a particular type of node. If you want to

get the valid fields for a ‘whatsit’, you have to supply the second argument also. In other cases,

any given second argument will be silently ignored.

<table> t =

node.fields(<number> id)

<table> t =

node.fields(<number> id, <number> subtype)

The function accepts string id and subtype values as well.

8.7.7 has_field

This function returns a boolean that is only true if n is actually a node, and it has the field.

<boolean> t =

node.has_field(<node> n, <string> field)

8.7.8 new

The new function creates a new node. All its fields are initialized to either zero or nil except

for id and subtype. Instead of numbers you can also use strings (names). If you create a new

whatsit node the second argument is required. As with all node functions, this function creates

a node at the TEX level.

<node> n =

node.new(<number> id)

<node> n =

node.new(<number> id, <number> subtype)

8.7.9 free, flush_node and flush_list

The next one removes the node n from TEX’s memory. Be careful: no checks are done on whether

this node is still pointed to from a register or some next field: it is up to you to make sure that

the internal data structures remain correct.

<node> next =

147Nodes

node.free(<node> n)

flush_node(<node> n)

The free function returns the next field of the freed node, while the flush_node alternative

returns nothing.

A list starting with node n can be flushed from TEX’s memory too. Be careful: no checks are

done on whether any of these nodes is still pointed to from a register or some next field: it is up

to you to make sure that the internal data structures remain correct.

node.flush_list(<node> n)

8.7.10 copy and copy_list

This creates a deep copy of node n, including all nested lists as in the case of a hlist or vlist node.

Only the next field is not copied.

<node> m =

node.copy(<node> n)

A deep copy of the node list that starts at n can be created too. If m is also given, the copy stops

just before node m.

<node> m =

node.copy_list(<node> n)

<node> m =

node.copy_list(<node> n, <node> m)

Note that you cannot copy attribute lists this way. However, there is normally no need to copy at-

tribute lists as when you do assignments to the attr field or make changes to specific attributes,

the needed copying and freeing takes place automatically.

8.7.11 prev and next

These returns the node preceding or following the given node, or nil if there is no such node.

<node> m =

node.next(<node> n)

<node> m =

node.prev(<node> n)

8.7.12 current_attr

This returns the currently active list of attributes, if there is one.

<node> m =

node.current_attr()

The intended usage of current_attr is as follows:

Nodes148

local x1 = node.new("glyph")

x1.attr = node.current_attr()

local x2 = node.new("glyph")

x2.attr = node.current_attr()

or:

local x1 = node.new("glyph")

local x2 = node.new("glyph")

local ca = node.current_attr()

x1.attr = ca

x2.attr = ca

The attribute lists are ref counted and the assignment takes care of incrementing the refcount.

You cannot expect the value ca to be valid any more when you assign attributes (using tex.se-

tattribute) or when control has been passed back to TEX.

Note: this function is somewhat experimental, and it returns the actual attribute list, not a copy

thereof. Therefore, changing any of the attributes in the list will change these values for all

nodes that have the current attribute list assigned to them.

8.7.13 hpack

This function creates a new hlist by packaging the list that begins at node n into a horizontal

box. With only a single argument, this box is created using the natural width of its components.

In the three argument form, infomust be either additional or exactly, and w is the additional

(\hbox spread) or exact (\hbox to) width to be used. The second return value is the badness

of the generated box.

<node> h, <number> b =

node.hpack(<node> n)

<node> h, <number> b =

node.hpack(<node> n, <number> w, <string> info)

<node> h, <number> b =

node.hpack(<node> n, <number> w, <string> info, <string> dir)

Caveat: there can be unexpected side-effects to this function, like updating some of the \marks

and \inserts. Also note that the content of h is the original node list n: if you call node.free(h)

you will also free the node list itself, unless you explicitly set the list field to nil beforehand.

And in a similar way, calling node.free(n) will invalidate h as well!

8.7.14 vpack

This function creates a new vlist by packaging the list that begins at node n into a vertical box.

With only a single argument, this box is created using the natural height of its components. In

the three argument form, info must be either additional or exactly, and w is the additional

(\vbox spread) or exact (\vbox to) height to be used.

<node> h, <number> b =

149Nodes

node.vpack(<node> n)

<node> h, <number> b =

node.vpack(<node> n, <number> w, <string> info)

<node> h, <number> b =

node.vpack(<node> n, <number> w, <string> info, <string> dir)

The second return value is the badness of the generated box. See the description of hpack for a

few memory allocation caveats.

8.7.15 prepend_prevdepth

This function is somewhat special in the sense that it is an experimental helper that adds the

interlinespace to a line keeping the baselineskip and lineskip into account.

<node> n, <number> delta =

node.prepend_prevdepth(<node> n,<number> prevdepth)

8.7.16 dimensions and rangedimensions

<number> w, <number> h, <number> d =

node.dimensions(<node> n)

<number> w, <number> h, <number> d =

node.dimensions(<node> n, <string> dir)

<number> w, <number> h, <number> d =

node.dimensions(<node> n, <node> t)

<number> w, <number> h, <number> d =

node.dimensions(<node> n, <node> t, <string> dir)

This function calculates the natural in-line dimensions of the node list starting at node n and

terminating just before node t (or the end of the list, if there is no second argument). The

return values are scaled points. An alternative format that starts with glue parameters as the

first three arguments is also possible:

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign, <number> glue_order,

<node> n)

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign, <number> glue_order,

<node> n, <string> dir)

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign, <number> glue_order,

<node> n, <node> t)

<number> w, <number> h, <number> d =

node.dimensions(<number> glue_set, <number> glue_sign, <number> glue_order,

<node> n, <node> t, <string> dir)

Nodes150

This calling method takes glue settings into account and is especially useful for finding the actual

width of a sublist of nodes that are already boxed, for example in code like this, which prints the

width of the space in between the a and b as it would be if \box0 was used as-is:

\setbox0 = \hbox to 20pt {a b}

\directlua{print (node.dimensions(

tex.box[0].glue_set,

tex.box[0].glue_sign,

tex.box[0].glue_order,

tex.box[0].head.next,

node.tail(tex.box[0].head)

)) }

You need to keep in mind that this is one of the few places in TEX where floats are used, which

means that you can get small differences in rounding when you compare the width reported by

hpack with dimensions.

The second alternative saves a few lookups and can be more convenient in some cases:

<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first)

<number> w, <number> h, <number> d =

node.rangedimensions(<node> parent, <node> first, <node> last)

8.7.17 mlist_to_hlist

<node> h =

node.mlist_to_hlist(<node> n, <string> display_type, <boolean> penalties)

This runs the internal mlist to hlist conversion, converting the math list in n into the horizontal

list h. The interface is exactly the same as for the callback mlist_to_hlist.

8.7.18 slide

<node> m =

node.slide(<node> n)

Returns the last node of the node list that starts at n. As a side-effect, it also creates a reverse

chain of prev pointers between nodes.

8.7.19 tail

<node> m =

node.tail(<node> n)

Returns the last node of the node list that starts at n.

151Nodes

8.7.20 length and type count

<number> i =

node.length(<node> n)

<number> i =

node.length(<node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n. If m is also supplied it

stops at m instead of at the end of the list. The node m is not counted.

<number> i =

node.count(<number> id, <node> n)

<number> i =

node.count(<number> id, <node> n, <node> m)

Returns the number of nodes contained in the node list that starts at n that have a matching id

field. If m is also supplied, counting stops at m instead of at the end of the list. The node m is not

counted. This function also accept string id’s.

8.7.21 is_char and is_glyph

The subtype of a glyph node signals if the glyph is already turned into a character reference or

not.

<boolean> b =

node.is_char(<node> n)

<boolean> b =

node.is_glyph(<node> n)

8.7.22 traverse

<node> t, id, subtype =

node.traverse(<node> n)

This is a Lua iterator that loops over the node list that starts at n. Typically code looks like this:

for n in node.traverse(head) do

...

end

is functionally equivalent to:

do

local n

local function f (head,var)

local t

if var == nil then

t = head

Nodes152

else

t = var.next

end

return t

end

while true do

n = f (head, n)

if n == nil then break end

...

end

end

It should be clear from the definition of the function f that even though it is possible to add or

remove nodes from the node list while traversing, you have to take great care to make sure all

the next (and prev) pointers remain valid.

If the above is unclear to you, see the section ‘For Statement’ in the Lua Reference Manual.

8.7.23 traverse_id

<node> t, subtype =

node.traverse_id(<number> id, <node> n)

This is an iterator that loops over all the nodes in the list that starts at n that have a matching

id field.

See the previous section for details. The change is in the local function f, which now does an

extra while loop checking against the upvalue id:

local function f(head,var)

local t

if var == nil then

t = head

else

t = var.next

end

while not t.id == id do

t = t.next

end

return t

end

8.7.24 traverse_char and traverse_glyph

The traverse_char iterator loops over the glyph nodes in a list. Only nodes with a subtype less

than 256 are seen.

<node> n, char, font =

153Nodes

node.traverse_char(<node> n)

The traverse_glyph iterator loops over a list and returns the list and filters all glyphs:

<node> n, char, font =

node.traverse_glyph(<node> n)

8.7.25 traverse_list

This iterator loops over the hlist and vlist nodes in a list.

<node> n, id, subtype, list =

node.traverse_list(<node> n)

The four return values can save some time compared to fetching these fields but in practice you

seldom need them all. So consider it a (side effect of experimental) convenience.

8.7.26 has_glyph

This function returns the first glyph or disc node in the given list:

<node> n =

node.has_glyph(<node> n)

8.7.27 end_of_math

<node> t =

node.end_of_math(<node> start)

Looks for and returns the next math_node following the start. If the given node is a math end

node this helper returns that node, else it follows the list and returns the next math endnote. If

no such node is found nil is returned.

8.7.28 remove

<node> head, current =

node.remove(<node> head, <node> current)

This function removes the node current from the list following head. It is your responsibility to

make sure it is really part of that list. The return values are the new head and current nodes.

The returned current is the node following the current in the calling argument, and is only

passed back as a convenience (or nil, if there is no such node). The returned head is more

important, because if the function is called with current equal to head, it will be changed.

8.7.29 insert_before

<node> head, new =

Nodes154

node.insert_before(<node> head, <node> current, <node> new)

This function inserts the node new before current into the list following head. It is your respon-

sibility to make sure that current is really part of that list. The return values are the (potentially

mutated) head and the node new, set up to be part of the list (with correct next field). If head is

initially nil, it will become new.

8.7.30 insert_after

<node> head, new =

node.insert_after(<node> head, <node> current, <node> new)

This function inserts the node new after current into the list following head. It is your respon-

sibility to make sure that current is really part of that list. The return values are the head and

the node new, set up to be part of the list (with correct next field). If head is initially nil, it will

become new.

8.7.31 first_glyph

<node> n =

node.first_glyph(<node> n)

<node> n =

node.first_glyph(<node> n, <node> m)

Returns the first node in the list starting at n that is a glyph node with a subtype indicating it is

a glyph, or nil. If m is given, processing stops at (but including) that node, otherwise processing

stops at the end of the list.

8.7.32 ligaturing

<node> h, <node> t, <boolean> success =

node.ligaturing(<node> n)

<node> h, <node> t, <boolean> success =

node.ligaturing(<node> n, <node> m)

Apply TEX-style ligaturing to the specified nodelist. The tail node m is optional. The two returned

nodes h and t are the new head and tail (both n and m can change into a new ligature).

8.7.33 kerning

<node> h, <node> t, <boolean> success =

node.kerning(<node> n)

<node> h, <node> t, <boolean> success =

node.kerning(<node> n, <node> m)

Apply TEX-style kerning to the specified node list. The tail node m is optional. The two returned

nodes h and t are the head and tail (either one of these can be an inserted kern node, because

special kernings with word boundaries are possible).

155Nodes

8.7.34 unprotect_glyph[s]

node.unprotect_glyph(<node> n)

node.unprotect_glyphs(<node> n,[<node> ,m])

Subtracts 256 from all glyph node subtypes. This and the next function are helpers to con-

vert from characters to glyphs during node processing. The second argument is optional and

indicates the end of a range.

8.7.35 protect_glyph[s]

node.protect_glyph(<node> n)

node.protect_glyphs(<node> n,[<node> m])

Adds 256 to all glyph node subtypes in the node list starting at n, except that if the value is 1,

it adds only 255. The special handling of 1 means that characters will become glyphs after

subtraction of 256. A single character can be marked by the singular call. The second argument

is optional and indicates the end of a range.

8.7.36 last_node

<node> n =

node.last_node()

This function pops the last node from TEX’s ‘current list’. It returns that node, or nil if the

current list is empty.

8.7.37 write

node.write(<node> n)

This function that will append a node list to TEX’s ‘current list’. The node list is not deep-copied!

There is no error checking either! You mignt need to enforce horizontal mode in order for this

to work as expected.

8.7.38 protrusion_skippable

<boolean> skippable =

node.protrusion_skippable(<node> n)

Returns true if, for the purpose of line boundary discovery when character protrusion is active,

this node can be skipped.

8.8 Glue handling

8.8.1 setglue

You can set the five properties of a glue in one go. Non-numeric values are equivalent to zero

and reset a property.

Nodes156

node.setglue(<node> n)

node.setglue(<node> n,width,stretch,shrink,stretch_order,shrink_order)

When you pass values, only arguments that are numbers are assigned so

node.setglue(n,655360,false,65536)

will only adapt the width and shrink.

When a list node is passed, you set the glue, order and sign instead.

8.8.2 getglue

The next call will return 5 values or nothing when no glue is passed.

<integer> width, <integer> stretch, <integer> shrink, <integer> stretch_order,

<integer> shrink_order = node.getglue(<node> n)

When the second argument is false, only the width is returned (this is consistent with tex.get).

When a list node is passed, you get back the glue that is set, the order of that glue and the sign.

8.8.3 is_zero_glue

This function returns true when the width, stretch and shrink properties are zero.

<boolean> isglue =

node.is_zero_glue(<node> n)

8.9 Attribute handling

8.9.1 Attributes

The newly introduced attribute registers are non-trivial, because the value that is attached to a

node is essentially a sparse array of key-value pairs. It is generally easiest to deal with attribute

lists and attributes by using the dedicated functions in the node library, but for completeness,

here is the low-level interface.

Attributes appear as linked list of userdata objects in the attr field of individual nodes. They can

be handled individually, but it is much safer and more efficient to use the dedicated functions

associated with them.

8.9.2 attribute_list nodes

An attribute_list item is used as a head pointer for a list of attribute items. It has only one

user-visible field:

FIELD TYPE EXPLANATION

next node pointer to the first attribute

157Nodes

8.9.3 attr nodes

A normal node’s attribute field will point to an item of type attribute_list, and the next field

in that item will point to the first defined ‘attribute’ item, whose next will point to the second

‘attribute’ item, etc.

FIELD TYPE EXPLANATION

next node pointer to the next attribute

number number the attribute type id

value number the attribute value

As mentioned it’s better to use the official helpers rather than edit these fields directly. For

instance the prev field is used for other purposes and there is no double linked list.

8.9.4 has_attribute

<number> v =

node.has_attribute(<node> n, <number> id)

<number> v =

node.has_attribute(<node> n, <number> id, <number> val)

Tests if a node has the attribute with number id set. If val is also supplied, also tests if the value

matches val. It returns the value, or, if no match is found, nil.

8.9.5 get_attribute

<number> v =

node.get_attribute(<node> n, <number> id)

Tests if a node has an attribute with number id set. It returns the value, or, if no match is found,

nil. If no id is given then the zero attributes is assumed.

8.9.6 find_attribute

<number> v, <node> n =

node.find_attribute(<node> n, <number> id)

Finds the first node that has attribute with number id set. It returns the value and the node if

there is a match and otherwise nothing.

8.9.7 set_attribute

node.set_attribute(<node> n, <number> id, <number> val)

Sets the attribute with number id to the value val. Duplicate assignments are ignored.

Nodes158

8.9.8 unset_attribute

<number> v =

node.unset_attribute(<node> n, <number> id)

<number> v =

node.unset_attribute(<node> n, <number> id, <number> val)

Unsets the attribute with number id. If val is also supplied, it will only perform this operation

if the value matches val. Missing attributes or attribute-value pairs are ignored.

If the attribute was actually deleted, returns its old value. Otherwise, returns nil.

8.9.9 slide

This helper makes sure that the node lists is double linked and returns the found tail node.

<node> tail =

node.slide(<node> n)

After some callbacks automatic sliding takes place. This feature can be turned off with

node.fix_node_lists(false) but you better make sure then that you don’t mess up lists. In

most cases TEX itself only uses next pointers but your other callbacks might expect proper prev

pointers too. Future versions of LuaTEX can add more checking but this will not influence usage.

8.9.10 check_discretionary, check_discretionaries

When you fool around with disc nodes you need to be aware of the fact that they have a special

internal data structure. As long as you reassign the fields when you have extended the lists it’s

ok because then the tail pointers get updated, but when you add to list without reassigning you

might end up in trouble when the linebreak routine kicks in. You can call this function to check

the list for issues with disc nodes.

node.check_discretionary(<node> n)

node.check_discretionaries(<node> head)

The plural variant runs over all disc nodes in a list, the singular variant checks one node only (it

also checks if the node is a disc node).

8.9.11 flatten_discretionaries

This function will remove the discretionaries in the list and inject the replace field when set.

<node> head, count = node.flatten_discretionaries(<node> n)

8.9.12 family_font

When you pass a proper family identifier the next helper will return the font currently associated

with it. You can normally also access the font with the normal font field or getter because it will

resolve the family automatically for noads.

159Nodes

<integer> id =

node.family_font(<integer> fam)

8.10 Two access models

Deep down in TEX a node has a number which is a numeric entry in a memory table. In fact, this

model, where TEX manages memory is real fast and one of the reasons why plugging in callbacks

that operate on nodes is quite fast too. Each node gets a number that is in fact an index in the

memory table and that number often is reported when you print node related information. You

go from userdata nodes and there numeric references and back with:

<integer> d = node.direct.todirect(<node> n))

<node> n = node.direct.tonode(<integer> d))

The userdata model is rather robust as it is a virtual interface with some additional checking

while themore direct access which uses the node numbers directly. However, even with userdata

you can get into troubles when you free nodes that are no longer allocated or mess up lists. if

you apply tostring to a node you see its internal (direct) number and id.

The first model provides key based access while the second always accesses fields via functions:

nodeobject.char

getfield(nodenumber,"char")

If you use the direct model, even if you know that you deal with numbers, you should not depend

on that property but treat it as an abstraction just like traditional nodes. In fact, the fact that we

use a simple basic datatype has the penalty that less checking can be done, but less checking

is also the reason why it’s somewhat faster. An important aspect is that one cannot mix both

methods, but you can cast both models. So, multiplying a node number makes no sense.

So our advice is: use the indexed (table) approach when possible and investigate the direct

one when speed might be a real issue. For that reason LuaTEX also provide the get* and set*

functions in the top level node namespace. There is a limited set of getters. When implementing

this direct approach the regular index by key variant was also optimized, so direct access only

makes sense when nodes are accessed millions of times (which happens in some font processing

for instance).

We’re talking mostly of getters because setters are less important. Documents have not that

many content related nodes and setting many thousands of properties is hardly a burden con-

trary to millions of consultations.

Normally you will access nodes like this:

local next = current.next

if next then

-- do something

end

Here next is not a real field, but a virtual one. Accessing it results in a metatable method being

called. In practice it boils down to looking up the node type and based on the node type checking

Nodes160

for the field name. In a worst case you have a node type that sits at the end of the lookup list and

a field that is last in the lookup chain. However, in successive versions of LuaTEX these lookups

have been optimized and the most frequently accessed nodes and fields have a higher priority.

Because in practice the next accessor results in a function call, there is some overhead involved.

The next code does the same and performs a tiny bit faster (but not that much because it is still

a function call but one that knows what to look up).

local next = node.next(current)

if next then

-- do something

end

Some accessors are used frequently and for these we provide more efficient helpers:

FUNCTION EXPLANATION

getnext parsing nodelist always involves this one

getprev used less but a logical companion to getnext

getboth returns the next and prev pointer of a node

getid consulted a lot

getsubtype consulted less but also a topper

getfont used a lot in OpenType handling (glyph nodes are consulted a lot)

getchar idem and also in other places

getwhd returns the width, height and depth of a list, rule or (unexpanded) glyph as well

as glue (its spec is looked at) and unset nodes

getdisc returns the pre, post and replace fields and optionally when true is passed also

the tail fields

getlist we often parse nested lists so this is a convenient one too

getleader comparable to list, seldom used in TEX (but needs frequent consulting like lists;

leaders could have been made a dedicated node type)

getfield generic getter, sufficient for the rest (other field names are often shared so a spe-

cific getter makes no sense then)

getbox gets the given box (a list node)

getoffsets gets the xoffset and yoffset of a glyph or left and right values of a rule

In the direct namespace there are more such helpers and most of them are accompanied by

setters. The getters and setters are clever enough to see what node is meant. We don’t deal

with whatsit nodes: their fields are always accessed by name. It doesn’t make sense to add

getters for all fields, we just identifier the most likely candidates. In complex documents, many

node and fields types never get seen, or seen only a few times, but for instance glyphs are

candidates for such optimization. The node.direct interface has some more helpers.2

The setdisc helper takes three (optional) arguments plus an optional fourth indicating the sub-

type. Its getdisc takes an optional boolean; when its value is true the tail nodes will also be

returned. The setfont helper takes an optional second argument, it being the character. The

directmode setter setlink takes a list of nodes and will link them, thereby ignoring nil entries.

2 We can define the helpers in the node namespace with getfield which is about as efficient, so at some point we might

provide that as module.

161Nodes

The first valid node is returned (beware: for good reason it assumes single nodes). For rarely

used fields no helpers are provided and there are a few that probably are used seldom too but

were added for consistency. You can of course always define additional accessors using get-

field and setfield with little overhead. When the second argument of setattributelist is

true the current attribute list is assumed.

FUNCTION NODE DIRECT

check_discretionaries + +
check_discretionary + +
copy_list + +
copy + +
count + +
current_attr + +
dimensions + +
effective_glue + +
end_of_math + +
family_font + −
fields + −
find_attribute + +
first_glyph + +
flatten_discretionaries + +
flush_list + +
flush_node + +
free + +
get_attribute + +
get_synctex_fields − +
getattributelist − +
getboth + +
getbox − +
getchar + +
getcomponents − +
getdepth − +
getdirection − +
getdir − +
getdisc + +
getfam − +
getfield + +
getfont + +
getglue + +
getheight − +
getid + +
getkern − +
getlang − +
getleader + +
getlist + +
getnext + +

Nodes162

getnucleus − +
getoffsets − +
getpenalty − +
getprev + +
getproperty + +
getshift − +
getsubtype + +
getsub − +
getsup − +
getdata − +
getwhd + +
getwidth − +
has_attribute + +
has_field + +
has_glyph + +
hpack + +
id + −
insert_after + +
insert_before + +
is_char + +
is_direct − +
is_glyph + +
is_node + +
is_zero_glue + +
kerning + +
last_node + +
length + +
ligaturing + +
mlist_to_hlist + −
new + +
next + −
prepend_prevdepth − +
prev + −
protect_glyphs + +
protect_glyph + +
protrusion_skippable + +
rangedimensions + +
remove + +
set_attribute + +
set_synctex_fields − +
setattributelist − +
setboth − +
setbox − +
setchar − +
setcomponents − +
setdepth − +

163Nodes

setdirection − +
setdir − +
setdisc − +
setfam − +
setfield + +
setfont − +
setexpansion − +
setglue + +
setheight − +
setkern − +
setlang − +
setleader − +
setlink − +
setlist − +
setnext − +
setnucleus − +
setoffsets − +
setpenalty − +
setprev − +
setproperty + +
setshift − +
setsplit − +
setsubtype − +
setsub − +
setsup − +
setwhd − +
setwidth − +
slide + +
subtypes + −
subtype + −
tail + +
todirect − +
tonode − +
tostring + +
traverse_char + +
traverse_glyph + +
traverse_id + +
traverse + +
types + −
type + −
unprotect_glyphs + +
unprotect_glyph + +
unset_attribute + +
usedlist + +
uses_font + +
vpack + +

Nodes164

whatsits + −
write + +

The node.next and node.prev functions will stay but for consistency there are variants called

getnext and getprev. We had to use get because node.id and node.subtype are already taken

for providing meta information about nodes. Note: The getters do only basic checking for valid

keys. You should just stick to the keys mentioned in the sections that describe node properties.

Some of the getters and setters handle multiple node types, given that the field is relevant. In

that case, some field names are considered similar (like kern and width, or data and value. In

retrospect we could have normalized field names better but we decided to stick to the original

(internal) names as much as possible. After all, at the Lua end one can easily create synonyms.

Some nodes have indirect references. For instance a math character refers to a family instead

of a font. In that case we provide a virtual font field as accessor. So, getfont and .font can be

used on them. The same is true for the width, height and depth of glue nodes. These actually

access the spec node properties, and here we can set as well as get the values.

In some places LuaTEX can do a bit of extra checking for valid node lists and you can enable that

with:

node.fix_node_lists(<boolean> b)

You can set and query the SyncTEX fields, a file number aka tag and a line number, for a glue,

kern, hlist, vlist, rule and math nodes as well as glyph nodes (although this last one is not used

in native SyncTEX).

node.direct.set_synctex_fields(<integer> n, <integer> f, <integer> l)

<integer> f, <integer> l =

node.direct.get_synctex_fields(<integer> n)

Of course you need to know what you’re doing as no checking on sane values takes place. Also,

the synctex interpreter used in editors is rather peculiar and has some assumptions (heuristics).

8.11 Properties

Attributes are a convenient way to relate extra information to a node. You can assign them at the

TEX end as well as at the Lua end and and consult them at the Lua end. One big advantage is that

they obey grouping. They are linked lists and normally checking for them is pretty efficient, even

if you use a lot of them. A macro package has to provide some way to manage these attributes

at the TEX end because otherwise clashes in their usage can occur.

Each node also can have a properties table and you can assign values to this table using the

setproperty function and get properties using the getproperty function. Managing properties

is way more demanding than managing attributes.

Take the following example:

\directlua {

local n = node.new("glyph")

165Nodes

node.setproperty(n,"foo")

print(node.getproperty(n))

node.setproperty(n,"bar")

print(node.getproperty(n))

node.free(n)

}

This will print foo and bar which in itself is not that useful when multiple mechanisms want to

use this feature. A variant is:

\directlua {

local n = node.new("glyph")

node.setproperty(n,{ one = "foo", two = "bar" })

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

This time we store two properties with the node. It really makes sense to have a table as property

because that way we can store more. But in order for that to work well you need to do it this

way:

\directlua {

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

t = { }

node.setproperty(n,t)

end

t.one = "foo"

t.two = "bar"

print(node.getproperty(n).one)

print(node.getproperty(n).two)

node.free(n)

}

Here our own properties will not overwrite other users properties unless of course they use the

same keys. So, eventually you will end up with something:

\directlua {

Nodes166

local n = node.new("glyph")

local t = node.getproperty(n)

if not t then

t = { }

node.setproperty(n,t)

end

t.myself = { one = "foo", two = "bar" }

print(node.getproperty(n).myself.one)

print(node.getproperty(n).myself.two)

node.free(n)

}

This assumes that only you use myself as subtable. The possibilities are endless but care is

needed. For instance, the generic font handler that ships with ConTEXt uses the injections

subtable and you should not mess with that one!

There are a few helper functions that you normally should not touch as user: flush_proper-

ties_table will wipe the table (normally a bad idea), get_properties_table and will give the

table that stores properties (using direct entries) and you can best not mess too much with that

one either because LuaTEX itself will make sure that entries related to nodes will get wiped when

nodes get freed, so that the Lua garbage collector can do its job. In fact, the main reason why

we have this mechanism is that it saves the user (or macro package) some work. One can easily

write a property mechanism in Lua where after a shipout properties gets cleaned up but it’s not

entirely trivial to make sure that with each freed node also its properties get freed, due to the

fact that there can be nodes left over for a next page. And having a callback bound to the node

deallocator would add way to much overhead.

Managing properties in the node (de)allocator functions is disabled by default and is enabled

by:

node.set_properties_mode(true)

When we copy a node list that has a table as property, there are several possibilities: we do the

same as a new node, we copy the entry to the table in properties (a reference), we do a deep copy

of a table in the properties, we create a new table and give it the original one as a metatable.

After some experiments (that also included timing) with these scenarios we decided that a deep

copy made no sense, nor did nilling. In the end both the shallow copy and the metatable variant

were both ok, although the second one is slower. The most important aspect to keep in mind is

that references to other nodes in properties no longer can be valid for that copy. We could use

two tables (one unique and one shared) or metatables but that only complicates matters.

When defining a new node, we could already allocate a table but it is rather easy to do that at

the lua end e.g. using a metatable __indexmethod. That way it is under macro package control.

When deleting a node, we could keep the slot (e.g. setting it to false) but it could make memory

consumption raise unneeded when we have temporary large node lists and after that only small

lists. Both are not done.

167Nodes

So in the end this is what happens now: when a node is copied, and it has a table as property, the

new node will share that table. If the second argument of set_properties_mode is true then a

metatable approach is chosen: the copy gets its own table with the original table as metatable.

If you use the generic font loader the mode is enabled that way.

A few more xperiments were done. For instance: copy attributes to the properties so that we

have fast access at the Lua end. In the end the overhead is not compensated by speed and

convenience, in fact, attributes are not that slow when it comes to accessing them. So this was

rejected.

Another experiment concerned a bitset in the node but again the gain compared to attributes

was neglectable and given the small amount of available bits it also demands a pretty strong

agreement over what bit represents what, and this is unlikely to succeed in the TEX community.

It doesn’t pay off.

Just in case one wonders why properties make sense: it is not so much speed that we gain, but

more convenience: storing all kind of (temporary) data in attributes is no fun and this mechanism

makes sure that properties are cleaned up when a node is freed. Also, the advantage of a more or

less global properties table is that we stay at the Lua end. An alternative is to store a reference

in the node itself but that is complicated by the fact that the register has some limitations (no

numeric keys) and we also don’t want to mess with it too much.

Nodes168

169Lua callbacks

9 LUA callbacks

9.1 Registering callbacks

This library has functions that register, find and list callbacks. Callbacks are Lua functions

that are called in well defined places. There are two kind of callbacks: those that mix with

existing functionality, and those that (when enabled) replace functionality. In mosty cases the

second category is expected to behave similar to the built in functionality because in a next step

specific data is expected. For instance, you can replace the hyphenation routine. The function

gets a list that can be hyphenated (or not). The final list should be valid and is (normally) used

for constructing a paragraph. Another function can replace the ligature builder and/or kerner.

Doing something else is possible but in the end might not give the user the expected outcome.

The first thing you need to do is registering a callback:

id, error =

callback.register(<string> callback_name, <function> func)

id, error =

callback.register(<string> callback_name, nil)

id, error =

callback.register(<string> callback_name, false)

Here the callback_name is a predefined callback name, see below. The function returns the

internal id of the callback or nil, if the callback could not be registered. In the latter case,

error contains an error message, otherwise it is nil.

LuaTEX internalizes the callback function in such a way that it does not matter if you redefine a

function accidentally.

Callback assignments are always global. You can use the special value nil instead of a function

for clearing the callback.

For some minor speed gain, you can assign the boolean false to the non-file related callbacks,

doing so will prevent LuaTEX from executing whatever it would execute by default (when no

callback function is registered at all). Be warned: this may cause all sorts of grief unless you

know exactly what you are doing!

<table> info =

callback.list()

The keys in the table are the known callback names, the value is a boolean where true means

that the callback is currently set (active).

<function> f = callback.find(callback_name)

If the callback is not set, find returns nil.

9.2 File discovery callbacks

The behaviour documented in this subsection is considered stable in the sense that there will

not be backward-incompatible changes any more.

Lua callbacks170

9.2.1 find_read_file and find_write_file

Your callback function should have the following conventions:

<string> actual_name =

function (<number> id_number, <string> asked_name)

Arguments:

id_number

This number is zero for the log or \input files. For TEX’s \read or \write the number is

incremented by one, so \read0 becomes 1.

asked_name

This is the user-supplied filename, as found by \input, \openin or \openout.

Return value:

actual_name

This is the filename used. For the very first file that is read in by TEX, you have to make sure

you return an actual_name that has an extension and that is suitable for use as jobname. If

you don’t, you will have to manually fix the name of the log file and output file after LuaTEX

is finished, and an eventual format filename will become mangled. That is because these file

names depend on the jobname.

You have to return nil if the file cannot be found.

9.2.2 find_font_file

Your callback function should have the following conventions:

<string> actual_name =

function (<string> asked_name)

The asked_name is an otf or tfm font metrics file.

Return nil if the file cannot be found.

9.2.3 find_output_file

Your callback function should have the following conventions:

<string> actual_name =

function (<string> asked_name)

The asked_name is the pdf or dvi file for writing.

9.2.4 find_format_file

Your callback function should have the following conventions:

<string> actual_name =

171Lua callbacks

function (<string> asked_name)

The asked_name is a format file for reading (the format file for writing is always opened in the

current directory).

9.2.5 find_vf_file

Like find_font_file, but for virtual fonts. This applies to both Aleph’s ovf files and traditional

Knuthian vf files.

9.2.6 find_map_file

Like find_font_file, but for map files.

9.2.7 find_enc_file

Like find_font_file, but for enc files.

9.2.8 find_pk_file

Like find_font_file, but for pk bitmap files. This callback takes two arguments: name and dpi.

In your callback you can decide to look for:

<base res>dpi/<fontname>.<actual res>pk

but other strategies are possible. It is up to you to find a ‘reasonable’ bitmap file to go with that

specification.

9.2.9 find_data_file

Like find_font_file, but for embedded files (\pdfobj file '...').

9.2.10 find_opentype_file

Like find_font_file, but for OpenType font files.

9.2.11 find_truetype_file and find_type1_file

Your callback function should have the following conventions:

<string> actual_name =

function (<string> asked_name)

The asked_name is a font file. This callback is called while LuaTEX is building its internal list of

needed font files, so the actual timing may surprise you. Your return value is later fed back into

the matching read_file callback.

Lua callbacks172

Strangely enough, find_type1_file is also used for OpenType (otf) fonts.

9.2.12 find_image_file

Your callback function should have the following conventions:

<string> actual_name =

function (<string> asked_name)

The asked_name is an image file. Your return value is used to open a file from the hard disk, so

make sure you return something that is considered the name of a valid file by your operating

system.

9.3 File reading callbacks

The behavior documented in this subsection is considered stable in the sense that there will not

be backward-incompatible changes any more.

9.3.1 open_read_file

Your callback function should have the following conventions:

<table> env =

function (<string> file_name)

Argument:

file_name

The filename returned by a previous find_read_file or the return value of

kpse.find_file() if there was no such callback defined.

Return value:

env

This is a table containing at least one required and one optional callback function for this file.

The required field is reader and the associated function will be called once for each new line

to be read, the optional one is close that will be called once when LuaTEX is done with the

file.

LuaTEX never looks at the rest of the table, so you can use it to store your private per-file

data. Both the callback functions will receive the table as their only argument.

9.3.1.1 reader

LuaTEX will run this function whenever it needs a new input line from the file.

function(<table> env)

return <string> line

173Lua callbacks

end

Your function should return either a string or nil. The value nil signals that the end of file has

occurred, and will make TEX call the optional close function next.

9.3.1.2 close

LuaTEX will run this optional function when it decides to close the file.

function(<table> env)

end

Your function should not return any value.

9.3.2 General file readers

There is a set of callbacks for the loading of binary data files. These all use the same interface:

function(<string> name)

return <boolean> success, <string> data, <number> data_size

end

The name will normally be a full path name as it is returned by either one of the file discovery

callbacks or the internal version of kpse.find_file().

success

Return false when a fatal error occurred (e.g. when the file cannot be found, after all).

data

The bytes comprising the file.

data_size

The length of the data, in bytes.

Return an empty string and zero if the file was found but there was a reading problem.

The list of functions is:

FUNCTION USAGE

read_font_file ofm or tfm files

read_vf_file virtual fonts

read_map_file map files

read_enc_file encoding files

read_pk_file pk bitmap files

read_data_file embedded files (as is possible with pdf objects)

read_truetype_file TrueType font files

read_type1_file Type1 font files

read_opentype_file OpenType font files

Lua callbacks174

9.4 Data processing callbacks

9.4.1 process_input_buffer

This callback allows you to change the contents of the line input buffer just before LuaTEX actu-

ally starts looking at it.

function(<string> buffer)

return <string> adjusted_buffer

end

If you return nil, LuaTEX will pretend like your callback never happened. You can gain a small

amount of processing time from that. This callback does not replace any internal code.

9.4.2 process_output_buffer

This callback allows you to change the contents of the line output buffer just before LuaTEX

actually starts writing it to a file as the result of a \write command. It is only called for output

to an actual file (that is, excluding the log, the terminal, and so called \write 18 calls).

function(<string> buffer)

return <string> adjusted_buffer

end

If you return nil, LuaTEX will pretend like your callback never happened. You can gain a small

amount of processing time from that. This callback does not replace any internal code.

9.4.3 process_jobname

This callback allows you to change the jobname given by \jobname in TEX and tex.jobname in

Lua. It does not affect the internal job name or the name of the output or log files.

function(<string> jobname)

return <string> adjusted_jobname

end

The only argument is the actual job name; you should not use tex.jobname inside this function

or infinite recursion may occur. If you return nil, LuaTEX will pretend your callback never

happened. This callback does not replace any internal code.

9.5 Node list processing callbacks

The description of nodes and node lists is in chapter 8.

9.5.1 contribute_filter

This callback is called when LuaTEX adds contents to list:

175Lua callbacks

function(<string> extrainfo)

end

The string reports the group code. From this you can deduce from what list you can give a treat.

VALUE EXPLANATION

pre_box interline material is being added

pre_adjust \vadjust material is being added

box a typeset box is being added (always called)

adjust \vadjust material is being added

9.5.2 buildpage_filter

This callback is called whenever LuaTEX is ready to move stuff to the main vertical list. You can

use this callback to do specialized manipulation of the page building stage like imposition or

column balancing.

function(<string> extrainfo)

end

The string extrainfo gives some additional information about what TEX’s state is with respect

to the ‘current page’. The possible values for the buildpage_filter callback are:

VALUE EXPLANATION

alignment a (partial) alignment is being added

after_output an output routine has just finished

new_graf the beginning of a new paragraph

vmode_par \par was found in vertical mode

hmode_par \par was found in horizontal mode

insert an insert is added

penalty a penalty (in vertical mode)

before_display immediately before a display starts

after_display a display is finished

end LuaTEX is terminating (it’s all over)

9.5.3 build_page_insert

This callback is called when the pagebuilder adds an insert. There is not much control over this

mechanism but this callback permits some last minute manipulations of the spacing before an

insert, something that might be handy when for instance multiple inserts (types) are appended

in a row.

function(<number> n, <number> i)

return <number> register

end

with

Lua callbacks176

VALUE EXPLANATION

n the insert class

i the order of the insert

The return value is a number indicating the skip register to use for the prepended spacing. This

permits for instance a different top space (when i equals one) and intermediate space (when i

is larger than one). Of course you can mess with the insert box but you need to make sure that

LuaTEX is happy afterwards.

9.5.4 pre_linebreak_filter

This callback is called just before LuaTEX starts converting a list of nodes into a stack of \hboxes,

after the addition of \parfillskip.

function(<node> head, <string> groupcode)

return true | false | <node> newhead

end

The string called groupcode identifies the nodelist’s context within TEX’s processing. The range

of possibilities is given in the table below, but not all of those can actually appear in pre_line-

break_filter, some are for the hpack_filter and vpack_filter callbacks that will be ex-

plained in the next two paragraphs.

VALUE EXPLANATION

<empty> main vertical list

hbox \hbox in horizontal mode

adjusted_hbox \hbox in vertical mode

vbox \vbox

vtop \vtop

align \halign or \valign

disc discretionaries

insert packaging an insert

vcenter \vcenter

local_box \localleftbox or \localrightbox

split_off top of a \vsplit

split_keep remainder of a \vsplit

align_set alignment cell

fin_row alignment row

As for all the callbacks that deal with nodes, the return value can be one of three things:

‣ boolean true signals successful processing

‣ <node> signals that the ‘head’ node should be replaced by the returned node

‣ boolean false signals that the ‘head’ node list should be ignored and flushed from memory

This callback does not replace any internal code.

177Lua callbacks

9.5.5 linebreak_filter

This callback replaces LuaTEX’s line breaking algorithm.

function(<node> head, <boolean> is_display)

return <node> newhead

end

The returned node is the head of the list that will be added to the main vertical list, the boolean

argument is true if this paragraph is interrupted by a following math display.

If you return something that is not a <node>, LuaTEX will apply the internal linebreak algorithm

on the list that starts at <head>. Otherwise, the <node> you return is supposed to be the head

of a list of nodes that are all allowed in vertical mode, and at least one of those has to represent

a hbox. Failure to do so will result in a fatal error.

Setting this callback to false is possible, but dangerous, because it is possible you will end up

in an unfixable ‘deadcycles loop’.

9.5.6 append_to_vlist_filter

This callback is called whenever LuaTEX adds a box to a vertical list:

function(<node> box, <string> locationcode, <number prevdepth>,

<boolean> mirrored)

return list, prevdepth

end

It is ok to return nothing in which case you also need to flush the box or deal with it yourself.

The prevdepth is also optional. Locations are box, alignment, equation, equation_number and

post_linebreak. You can pass nil instead of a node.

9.5.7 post_linebreak_filter

This callback is called just after LuaTEX has converted a list of nodes into a stack of \hboxes.

function(<node> head, <string> groupcode)

return true | false | <node> newhead

end

This callback does not replace any internal code.

9.5.8 hpack_filter

This callback is called when TEX is ready to start boxing some horizontal mode material. Math

items and line boxes are ignored at the moment.

function(<node> head, <string> groupcode, <number> size,

<string> packtype [, <string> direction] [, <node> attributelist])

Lua callbacks178

return true | false | <node> newhead

end

The packtype is either additional or exactly. If additional, then the size is a \hbox spread

... argument. If exactly, then the size is a \hbox to In both cases, the number is in

scaled points.

The direction is either one of the three-letter direction specifier strings, or nil.

This callback does not replace any internal code.

9.5.9 vpack_filter

This callback is called when TEX is ready to start boxing some vertical mode material. Math

displays are ignored at the moment.

This function is very similar to the hpack_filter. Besides the fact that it is called at different

moments, there is an extra variable that matches TEX’s \maxdepth setting.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <string> direction] [, <node> attributelist]))

return true | false | <node> newhead

end

This callback does not replace any internal code.

9.5.10 hpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

horizontal list (as happens in the par builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

return <node> whatever

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed

(when protrusion or expansion is enabled, this is an intermediate list). Optionally you can return

a node, for instance an overfull rule indicator. That node will be appended to the list (just like

TEX’s own rule would).

9.5.11 vpack_quality

This callback can be used to intercept the overfull messages that can result from packing a

vertical list (as happens in the page builder). The function takes a few arguments:

function(<string> incident, <number> detail, <node> head, <number> first,

<number> last)

179Lua callbacks

end

The incident is one of overfull, underfull, loose or tight. The detail is either the amount of

overflow in case of overfull, or the badness otherwise. The head is the list that is constructed.

9.5.12 process_rule

This is an experimental callback. It can be used with rules of subtype 4 (user). The callback gets

three arguments: the node, the width and the height. The callback can use pdf.print to write

code to the pdf file but beware of not messing up the final result. No checking is done.

9.5.13 pre_output_filter

This callback is called when TEX is ready to start boxing the box 255 for \output.

function(<node> head, <string> groupcode, <number> size, <string> packtype,

<number> maxdepth [, <string> direction])

return true | false | <node> newhead

end

This callback does not replace any internal code.

9.5.14 hyphenate

function(<node> head, <node> tail)

end

No return values. This callback has to insert discretionary nodes in the node list it receives.

Setting this callback to false will prevent the internal discretionary insertion pass.

9.5.15 ligaturing

function(<node> head, <node> tail)

end

No return values. This callback has to apply ligaturing to the node list it receives.

You don’t have to worry about return values because the head node that is passed on to the

callback is guaranteed not to be a glyph_node (if need be, a temporary node will be prepended),

and therefore it cannot be affected by the mutations that take place. After the callback, the

internal value of the ‘tail of the list’ will be recalculated.

The next of head is guaranteed to be non-nil.

The next of tail is guaranteed to be nil, and therefore the second callback argument can often

be ignored. It is provided for orthogonality, and because it can sometimes be handy when special

processing has to take place.

Setting this callback to false will prevent the internal ligature creation pass.

Lua callbacks180

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LuaTEX into panic mode.

9.5.16 kerning

function(<node> head, <node> tail)

end

No return values. This callback has to apply kerning between the nodes in the node list it

receives. See ligaturing for calling conventions.

Setting this callback to false will prevent the internal kern insertion pass.

You must not ruin the node list. For instance, the head normally is a local par node, and the tail

a glue. Messing too much can push LuaTEX into panic mode.

9.5.17 insert_local_par

Each paragraph starts with a local par node that keeps track of for instance the direction. You

can hook a callback into the creator:

function(<node> local_par, <string> location)

end

There is no return value and you should make sure that the node stays valid as otherwise TEX

can get confused.

9.5.18 mlist_to_hlist

This callback replaces LuaTEX’s math list to node list conversion algorithm.

function(<node> head, <string> display_type, <boolean> need_penalties)

return <node> newhead

end

The returned node is the head of the list that will be added to the vertical or horizontal list, the

string argument is either ‘text’ or ‘display’ depending on the current math mode, the boolean

argument is true if penalties have to be inserted in this list, false otherwise.

Setting this callback to false is bad, it will almost certainly result in an endless loop.

9.6 Information reporting callbacks

9.6.1 pre_dump

function()

end

181Lua callbacks

This function is called just before dumping to a format file starts. It does not replace any code

and there are neither arguments nor return values.

9.6.2 start_run

function()

end

This callback replaces the code that prints LuaTEX’s banner. Note that for successful use, this

callback has to be set in the Lua initialization script, otherwise it will be seen only after the run

has already started.

9.6.3 stop_run

function()

end

This callback replaces the code that prints LuaTEX’s statistics and ‘output written to’ messages.

The engine can still do housekeeping and therefore you should not rely on this hook for postpro-

cessing the pdf or log file.

9.6.4 start_page_number

function()

end

Replaces the code that prints the [and the page number at the begin of \shipout. This callback

will also override the printing of box information that normally takes place when \tracingout-

put is positive.

9.6.5 stop_page_number

function()

end

Replaces the code that prints the] at the end of \shipout.

9.6.6 show_error_hook

function()

end

This callback is run from inside the TEX error function, and the idea is to allow you to do some

extra reporting on top of what TEX already does (none of the normal actions are removed). You

may find some of the values in the status table useful. This callback does not replace any

internal code.

Lua callbacks182

9.6.7 show_error_message

function()

end

This callback replaces the code that prints the error message. The usual interaction after the

message is not affected.

9.6.8 show_lua_error_hook

function()

end

This callback replaces the code that prints the extra Lua error message.

9.6.9 start_file

function(category,filename)

end

This callback replaces the code that prints LuaTEX’s when a file is opened like (filename for

regular files. The category is a number:

VALUE MEANING

1 a normal data file, like a TEX source

2 a font map coupling font names to resources

3 an image file (png, pdf, etc)

4 an embedded font subset

5 a fully embedded font

9.6.10 stop_file

function(category)

end

This callback replaces the code that prints LuaTEX’s when a file is closed like the) for regular

files.

9.6.11 call_edit

function(filename,linenumber)

end

This callback replaces the call to an external editor when ‘E’ is pressed in reply to an error mes-

sage. Processing will end immediately after the callback returns control to the main program.

183Lua callbacks

9.6.12 finish_synctex

This callback can be used to wrap up alternative synctex methods. It kicks in after the normal

synctex finalizer (that happens to remove the synctex files after a run when native synctex is not

enabled).

9.6.13 wrapup_run

This callback is called after the pdf and log files are closed. Use it at your own risk.

9.7 PDF related callbacks

9.7.1 finish_pdffile

function()

end

This callback is called when all document pages are already written to the pdf file and LuaTEX

is about to finalize the output document structure. Its intended use is final update of pdf dictio-

naries such as /Catalog or /Info. The callback does not replace any code. There are neither

arguments nor return values.

9.7.2 finish_pdfpage

function(shippingout)

end

This callback is called after the pdf page stream has been assembled and before the page object

gets finalized.

9.7.3 page_order_index

This is one that experts can use to juggle the page tree, a data structure that determines the

order in a pdf file:

function(pagenumber)

return pagenumber

end

Say that we have 12 pages, then we can do this:

callback.register("page_order_index",function(page)

if page == 1 then return 12

elseif page == 2 then return 11

elseif page == 11 then return 2

elseif page == 12 then return 1

Lua callbacks184

else return page

end

end)

This will swap the first two and last two pages. You need to know the number of pages which is

a side effect of the implementation. When you mess things up . . . don’t complain.

9.7.4 process_pdf_image_content

When a page from a pdf file is embedded its page stream as well as related objects are copied

to the target file. However, it can be that the page stream has operators that assume additional

resources, for instance marked text. You can decide to filter that for which LuaTEX provides a

callback. Here is a simple demonstration of use:

pdf.setrecompress(1)

callback.register("process_pdf_image_content",function(s)

print(s)

return s

end)

You need to explicitly enable recompression because otherwise the content stream gets just

passed on in its original compressed form.

9.8 Font-related callbacks

9.8.1 define_font

function(<string> name, <number> size, <number> id)

return <table> font | <number> id

end

The string name is the filename part of the font specification, as given by the user.

The number size is a bit special:

‣ If it is positive, it specifies an ‘at size’ in scaled points.

‣ If it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of

the font.

The id is the internal number assigned to the font.

The internal structure of the font table that is to be returned is explained in chapter 6. That

table is saved internally, so you can put extra fields in the table for your later Lua code to use.

In alternative, retval can be a previously defined fontid. This is useful if a previous definition

can be reused instead of creating a whole new font structure.

Setting this callback to false is pointless as it will prevent font loading completely but will

nevertheless generate errors.

185Lua callbacks

9.8.2 glyph_not_found and glyph_info

The glyph_not_found callback, when set, kicks in when the backend cannot insert a glyph.

When no callback is defined a message is written to the log.

function(<number> id, <number> char)

-- do something with font id and char code

end

The glyph_info callback can be set to report a useful representation of a glyph.

function(<node> g)

-- return a string or nil

end

When nil is returned the character code is printed, otherwise the returned string is used. By

default the utf representation is shown which is not always that useful, especially when there

is no real representation. Keep in mind that setting this callback can change the log in an

incompatible way.

Lua callbacks186

187The TEX related libraries

10 The TEX related libraries

10.1 The lua library

10.1.1 Version information

This library contains one read-only item:

<string> s = lua.version

This returns the Lua version identifier string. The value is currently Lua 5.3.

10.1.2 Bytecode registers

Lua registers can be used to store Lua code chunks. The accepted values for assignments are

functions and nil. Likewise, the retrieved value is either a function or nil.

lua.bytecode[<number> n] = <function> f

lua.bytecode[<number> n]()

The contents of the lua.bytecode array is stored inside the format file as actual Lua bytecode,

so it can also be used to preload Lua code. The function must not contain any upvalues. The

associated function calls are:

<function> f = lua.getbytecode(<number> n)

lua.setbytecode(<number> n, <function> f)

Note: Since a Lua file loaded using loadfile(filename) is essentially an anonymous function,

a complete file can be stored in a bytecode register like this:

lua.bytecode[n] = loadfile(filename)

Now all definitions (functions, variables) contained in the file can be created by executing this

bytecode register:

lua.bytecode[n]()

Note that the path of the file is stored in the Lua bytecode to be used in stack backtraces and

therefore dumped into the format file if the above code is used in iniTEX. If it contains private

information, i.e. the user name, this information is then contained in the format file as well. This

should be kept in mind when preloading files into a bytecode register in iniTEX.

10.1.3 Chunk name registers

There is an array of 65536 (0–65535) potential chunk names for use with the \directlua and

\latelua primitives.

The TEX related libraries188

lua.name[<number> n] = <string> s

<string> s = lua.name[<number> n]

If you want to unset a Lua name, you can assign nil to it. The function accessors are:

lua.setluaname(<string> s,<number> n])

<string> s = lua.getluaname(<number> n)

10.1.4 Introspection

The getstacktop andgetcalllevel functions return numbers indicating how much nesting is

going on. They are only of use as breakpoints when checking some mechanism going haywire.

10.2 The status library

This contains a number of run-time configuration items that you may find useful in message

reporting, as well as an iterator function that gets all of the names and values as a table.

<table> info = status.list()

The keys in the table are the known items, the value is the current value. Almost all of the

values in status are fetched through a metatable at run-time whenever they are accessed, so

you cannot use pairs on status, but you can use pairs on info, of course. If you do not need

the full list, you can also ask for a single item by using its name as an index into status. The

current list is:

KEY EXPLANATION

banner terminal display banner

best_page_break the current best break (a node)

buf_size current allocated size of the line buffer

callbacks total number of executed callbacks so far

cs_count number of control sequences

dest_names_size pdf destination table size

dvi_gone written dvi bytes

dvi_ptr not yet written dvi bytes

dyn_used token (multi-word) memory in use

filename name of the current input file

fix_mem_end maximum number of used tokens

fix_mem_min minimum number of allocated words for tokens

fix_mem_max maximum number of allocated words for tokens

font_ptr number of active fonts

hash_extra extra allowed hash

hash_size size of hash

indirect_callbacks number of those that were themselves a result of other callbacks (e.g.

file readers)

ini_version true if this is an iniTEX run

init_pool_ptr iniTEX string pool index

189The TEX related libraries

init_str_ptr number of iniTEX strings

input_ptr the level of input we’re at

inputid numeric id of the current input

largest_used_mark max referenced marks class

lasterrorcontext last error context string (with newlines)

lasterrorstring last TEX error string

lastluaerrorstring last Lua error string

lastwarningstring last warning tag, normally an indication of in what part

lastwarningtag last warning string

linenumber location in the current input file

log_name name of the log file

luabytecode_bytes number of bytes in Lua bytecode registers

luabytecodes number of active Lua bytecode registers

luastate_bytes number of bytes in use by Lua interpreters

luatex_engine the LuaTEX engine identifier

luatex_hashchars length to which Lua hashes strings (2𝑛)
luatex_hashtype the hash method used (in LuajitTEX)

luatex_version the LuaTEX version number

luatex_revision the LuaTEX revision string

max_buf_stack max used buffer position

max_in_stack max used input stack entries

max_nest_stack max used nesting stack entries

max_param_stack max used parameter stack entries

max_save_stack max used save stack entries

max_strings maximum allowed strings

nest_size nesting stack size

node_mem_usage a string giving insight into currently used nodes

obj_ptr max pdf object pointer

obj_tab_size pdf object table size

output_active true if the \output routine is active

output_file_name name of the pdf or dvi file

param_size parameter stack size

pdf_dest_names_ptr max pdf destination pointer

pdf_gone written pdf bytes

pdf_mem_ptr max pdf memory used

pdf_mem_size pdf memory size

pdf_os_cntr max pdf object stream pointer

pdf_os_objidx pdf object stream index

pdf_ptr not yet written pdf bytes

pool_ptr string pool index

pool_size current size allocated for string characters

save_size save stack size

shell_escape 0 means disabled, 1 means anything is permitted, and 2 is restricted

safer_option 1 means safer is enforced

kpse_used 1 means that kpse is used

stack_size input stack size

The TEX related libraries190

str_ptr number of strings

total_pages number of written pages

var_mem_max number of allocated words for nodes

var_used variable (one-word) memory in use

lc_collate the value of LC_COLLATE at startup time (becomes C at startup)

lc_ctype the value of LC_CTYPE at startup time (becomes C at startup)

lc_numeric the value of LC_NUMERIC at startup time

The error and warning messages can be wiped with the resetmessages function. A return value

can be set with setexitcode.

10.3 The tex library

10.3.1 Introduction

The tex table contains a large list of virtual internal TEX parameters that are partially writable.

The designation ‘virtual’ means that these items are not properly defined in Lua, but are only

frontends that are handled by a metatable that operates on the actual TEX values. As a result,

most of the Lua table operators (like pairs and #) do not work on such items.

At the moment, it is possible to access almost every parameter that you can use after \the,

is a single tokens or is sort of special in TEX. This excludes parameters that need extra argu-

ments, like \the\scriptfont. The subset comprising simple integer and dimension registers

are writable as well as readable (like \tracingcommands and \parindent).

10.3.2 Internal parameter values, set and get

For all the parameters in this section, it is possible to access them directly using their names as

index in the tex table, or by using one of the functions tex.get and tex.set.

The exact parameters and return values differ depending on the actual parameter, and so does

whether tex.set has any effect. For the parameters that can be set, it is possible to use global

as the first argument to tex.set; this makes the assignment global instead of local.

tex.set (["global",] <string> n, ...)

... = tex.get (<string> n)

Glue is kind of special because there are five values involved. The return value is a glue_spec

node but when you pass false as last argument to tex.get you get the width of the glue and

when you pass true you get all five values. Otherwise you get a node which is a copy of the

internal value so you are responsible for its freeing at the Lua end. When you set a glue quantity

you can either pass a glue_spec or upto five numbers. If you pass true to get you get 5 values

returned for a glue and when you pass false you only get the width returned.

10.3.2.1 Integer parameters

The integer parameters accept and return Lua numbers. These are read-write:

191The TEX related libraries

tex.adjdemerits

tex.binoppenalty

tex.brokenpenalty

tex.catcodetable

tex.clubpenalty

tex.day

tex.defaulthyphenchar

tex.defaultskewchar

tex.delimiterfactor

tex.displaywidowpenalty

tex.doublehyphendemerits

tex.endlinechar

tex.errorcontextlines

tex.escapechar

tex.exhyphenpenalty

tex.fam

tex.finalhyphendemerits

tex.floatingpenalty

tex.globaldefs

tex.hangafter

tex.hbadness

tex.holdinginserts

tex.hyphenpenalty

tex.interlinepenalty

tex.language

tex.lastlinefit

tex.lefthyphenmin

tex.linepenalty

tex.localbrokenpenalty

tex.localinterlinepenalty

tex.looseness

tex.mag

tex.maxdeadcycles

tex.month

tex.newlinechar

tex.outputpenalty

tex.pausing

tex.postdisplaypenalty

tex.predisplaydirection

tex.predisplaypenalty

tex.pretolerance

tex.relpenalty

tex.righthyphenmin

tex.savinghyphcodes

tex.savingvdiscards

tex.showboxbreadth

tex.showboxdepth

tex.time

tex.tolerance

tex.tracingassigns

tex.tracingcommands

tex.tracinggroups

tex.tracingifs

tex.tracinglostchars

tex.tracingmacros

tex.tracingnesting

tex.tracingonline

tex.tracingoutput

tex.tracingpages

tex.tracingparagraphs

tex.tracingrestores

tex.tracingscantokens

tex.tracingstats

tex.uchyph

tex.vbadness

tex.widowpenalty

tex.year

These are read-only:

tex.deadcycles

tex.insertpenalties

tex.parshape

tex.interlinepenalties

tex.clubpenalties

tex.widowpenalties

tex.displaywidowpenalties

tex.prevgraf

tex.spacefactor

10.3.2.2 Dimension parameters

The dimension parameters accept Lua numbers (signifying scaled points) or strings (with in-

cluded dimension). The result is always a number in scaled points. These are read-write:

The TEX related libraries192

tex.boxmaxdepth

tex.delimitershortfall

tex.displayindent

tex.displaywidth

tex.emergencystretch

tex.hangindent

tex.hfuzz

tex.hoffset

tex.hsize

tex.lineskiplimit

tex.mathsurround

tex.maxdepth

tex.nulldelimiterspace

tex.overfullrule

tex.pagebottomoffset

tex.pageheight

tex.pageleftoffset

tex.pagerightoffset

tex.pagetopoffset

tex.pagewidth

tex.parindent

tex.predisplaysize

tex.scriptspace

tex.splitmaxdepth

tex.vfuzz

tex.voffset

tex.vsize

tex.prevdepth

tex.prevgraf

tex.spacefactor

These are read-only:

tex.pagedepth

tex.pagefilllstretch

tex.pagefillstretch

tex.pagefilstretch

tex.pagegoal

tex.pageshrink

tex.pagestretch

tex.pagetotal

Beware: as with all Lua tables you can add values to them. So, the following is valid:

tex.foo = 123

When you access a TEX parameter a look up takes place. For read--only variables that means

that you will get something back, but when you set them you create a new entry in the table

thereby making the original invisible.

There are a few special cases that we make an exception for: prevdepth, prevgraf and space-

factor. These normally are accessed via the tex.nest table:

tex.nest[tex.nest.ptr].prevdepth = p

tex.nest[tex.nest.ptr].spacefactor = s

However, the following also works:

tex.prevdepth = p

tex.spacefactor = s

Keep in mind that when you mess with node lists directly at the Lua end you might need to

update the top of the nesting stack’s prevdepth explicitly as there is no way LuaTEX can guess

your intentions. By using the accessor in the tex tables, you get and set the values at the top of

the nesting stack.

10.3.2.3 Direction parameters

The direction parameters are read-only and return a Lua string.

tex.bodydir

tex.mathdir

tex.pagedir

tex.pardir

tex.textdir

193The TEX related libraries

10.3.2.4 Glue parameters

The glue parameters accept and return a userdata object that represents a glue_spec node.

tex.abovedisplayshortskip

tex.abovedisplayskip

tex.baselineskip

tex.belowdisplayshortskip

tex.belowdisplayskip

tex.leftskip

tex.lineskip

tex.parfillskip

tex.parskip

tex.rightskip

tex.spaceskip

tex.splittopskip

tex.tabskip

tex.topskip

tex.xspaceskip

10.3.2.5 Muglue parameters

All muglue parameters are to be used read-only and return a Lua string.

tex.medmuskip tex.thickmuskip tex.thinmuskip

10.3.2.6 Tokenlist parameters

The tokenlist parameters accept and return Lua strings. Lua strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or other

(12). It follows that assigning to some of these, like ‘tex.output’, is actually useless, but it feels

bad to make exceptions in view of a coming extension that will accept full-blown token strings.

tex.errhelp

tex.everycr

tex.everydisplay

tex.everyeof

tex.everyhbox

tex.everyjob

tex.everymath

tex.everypar

tex.everyvbox

tex.output

10.3.3 Convert commands

All ‘convert’ commands are read-only and return a Lua string. The supported commands at this

moment are:

tex.eTeXVersion

tex.eTeXrevision

tex.formatname

tex.jobname

tex.luatexbanner

tex.luatexrevision

tex.fontname(number)

tex.uniformdeviate(number)

tex.number(number)

tex.romannumeral(number)

tex.fontidentifier(number)

If you are wondering why this list looks haphazard; these are all the cases of the ‘convert’ in-

ternal command that do not require an argument, as well as the ones that require only a simple

numeric value. The special (Lua-only) case of tex.fontidentifier returns the csname string

that matches a font id number (if there is one).

The TEX related libraries194

10.3.4 Last item commands

All ‘last item’ commands are read-only and return a number. The supported commands at this

moment are:

tex.lastpenalty

tex.lastkern

tex.lastskip

tex.lastnodetype

tex.inputlineno

tex.lastxpos

tex.lastypos

tex.randomseed

tex.luatexversion

tex.eTeXminorversion

tex.eTeXversion

tex.currentgrouplevel

tex.currentgrouptype

tex.currentiflevel

tex.currentiftype

tex.currentifbranch

10.3.5 Accessing registers: set*, get* and is*

TEX’s attributes (\attribute), counters (\count), dimensions (\dimen), skips (\skip, \muskip)

and token (\toks) registers can be accessed and written to using two times five virtual sub-tables

of the tex table:

tex.attribute

tex.count

tex.dimen

tex.skip

tex.glue

tex.muskip

tex.muglue

tex.toks

It is possible to use the names of relevant \attributedef, \countdef, \dimendef, \skipdef, or

\toksdef control sequences as indices to these tables:

tex.count.scratchcounter = 0

enormous = tex.dimen['maxdimen']

In this case, LuaTEX looks up the value for you on the fly. You have to use a valid \countdef (or

\attributedef, or \dimendef, or \skipdef, or \toksdef), anything else will generate an error

(the intent is to eventually also allow <chardef tokens> and even macros that expand into a

number).

‣ The count registers accept and return Lua numbers.

‣ The dimension registers accept Lua numbers (in scaled points) or strings (with an included

absolute dimension; em and ex and px are forbidden). The result is always a number in scaled

points.

‣ The token registers accept and return Lua strings. Lua strings are converted to and from

token lists using \the \toks style expansion: all category codes are either space (10) or

other (12).

‣ The skip registers accept and return glue_spec userdata node objects (see the description

of the node interface elsewhere in this manual).

‣ The glue registers are just skip registers but instead of userdata are verbose.

‣ Like the counts, the attribute registers accept and return Lua numbers.

As an alternative to array addressing, there are also accessor functions defined for all cases, for

example, here is the set of possibilities for \skip registers:

195The TEX related libraries

tex.setskip (["global",] <number> n, <node> s)

tex.setskip (["global",] <string> s, <node> s)

<node> s = tex.getskip (<number> n)

<node> s = tex.getskip (<string> s)

We have similar setters for count, dimen, muskip, and toks. Counters and dimen are represented

by numbers, skips and muskips by nodes, and toks by strings.

Again the glue variants are not using the glue_spec userdata nodes. The setglue function

accepts upto 5 arguments: width, stretch, shrink, stretch order and shrink order. If you pass

no values or if a value is not a number the corresponding property will become a zero. The

getglue function reports all properties, unless the second argument is false in which care only

the width is returned.

Here is an example using a threesome:

local d = tex.getdimen("foo")

if tex.isdimen("bar") then

tex.setdimen("bar",d)

end

There are six extra skip (glue) related helpers:

tex.setglue (["global"], <number> n,

width, stretch, shrink, stretch_order, shrink_order)

tex.setglue (["global"], <string> s,

width, stretch, shrink, stretch_order, shrink_order)

width, stretch, shrink, stretch_order, shrink_order =

tex.getglue (<number> n)

width, stretch, shrink, stretch_order, shrink_order =

tex.getglue (<string> s)

The other two are tex.setmuglue and tex.getmuglue.

There are such helpers for dimen, count, skip, muskip, box and attribute registers but the

glue ones are special because they have to deal with more properties.

As with the general get and set function discussed before, for the skip registers getskip returns

a node and getglue returns numbers, while setskip accepts a node and setglue expects upto

five numbers. Again, when you pass false as second argument to getglue you only get the width

returned. The same is true for the mu variants getmuskip, setmuskip, getmuskip andsetmuskip.

For tokens registers we have an alternative where a catcode table is specified:

tex.scantoks(0,3,"$e=mc^2$")

tex.scantoks("global",0,"$\int\limits^1_2$")

In the function-based interface, it is possible to define values globally by using the string global

as the first function argument.

There is a dedicated getter for marks: getmark that takes two arguments. The first argument

is one of top, bottom, first, splitbottom or splitfirst, and the second argument is a marks

The TEX related libraries196

class number. When no arguments are given the current maximum number of classes is re-

turned.

10.3.6 Character code registers: [get|set]*code[s]

TEX’s character code tables (\lccode, \uccode, \sfcode, \catcode, \mathcode, \delcode) can

be accessed and written to using six virtual subtables of the tex table

tex.lccode

tex.uccode

tex.sfcode

tex.catcode

tex.mathcode

tex.delcode

The function call interfaces are roughly as above, but there are a few twists. sfcodes are the

simple ones:

tex.setsfcode (["global",] <number> n, <number> s)

<number> s = tex.getsfcode (<number> n)

The function call interface for lccode and uccode additionally allows you to set the associated

sibling at the same time:

tex.setlccode (["global"], <number> n, <number> lc)

tex.setlccode (["global"], <number> n, <number> lc, <number> uc)

<number> lc = tex.getlccode (<number> n)

tex.setuccode (["global"], <number> n, <number> uc)

tex.setuccode (["global"], <number> n, <number> uc, <number> lc)

<number> uc = tex.getuccode (<number> n)

The function call interface for catcode also allows you to specify a category table to use on

assignment or on query (default in both cases is the current one):

tex.setcatcode (["global"], <number> n, <number> c)

tex.setcatcode (["global"], <number> cattable, <number> n, <number> c)

<number> lc = tex.getcatcode (<number> n)

<number> lc = tex.getcatcode (<number> cattable, <number> n)

The interfaces for delcode and mathcode use small array tables to set and retrieve values:

tex.setmathcode (["global"], <number> n, <table> mval)

<table> mval = tex.getmathcode (<number> n)

tex.setdelcode (["global"], <number> n, <table> dval)

<table> dval = tex.getdelcode (<number> n)

Where the table for mathcode is an array of 3 numbers, like this:

{

<number> class,

<number> family,

<number> character

197The TEX related libraries

}

And the table for delcode is an array with 4 numbers, like this:

{

<number> small_fam,

<number> small_char,

<number> large_fam,

<number> large_char

}

You can also avoid the table:

tex.setmathcode (["global"], <number> n, <number> class,

<number> family, <number> character)

class, family, char =

tex.getmathcodes (<number> n)

tex.setdelcode (["global"], <number> n, <number> smallfam,

<number> smallchar, <number> largefam, <number> largechar)

smallfam, smallchar, largefam, largechar =

tex.getdelcodes (<number> n)

Normally, the third and fourth values in a delimiter code assignment will be zero according to

\Udelcode usage, but the returned table can have values there (if the delimiter code was set

using \delcode, for example). Unset delcode’s can be recognized because dval[1] is −1.

10.3.7 Box registers: [get|set]box

It is possible to set and query actual boxes, coming for instance from \hbox, \vbox or \vtop,

using the node interface as defined in the node library:

tex.box

for array access, or

tex.setbox(["global",] <number> n, <node> s)

tex.setbox(["global",] <string> cs, <node> s)

<node> n = tex.getbox(<number> n)

<node> n = tex.getbox(<string> cs)

for function-based access. In the function-based interface, it is possible to define values globally

by using the string global as the first function argument.

Be warned that an assignment like

tex.box[0] = tex.box[2]

does not copy the node list, it just duplicates a node pointer. If \box2 will be cleared by TEX com-

mands later on, the contents of \box0 becomes invalid as well. To prevent this from happening,

always use node.copy_list unless you are assigning to a temporary variable:

The TEX related libraries198

tex.box[0] = node.copy_list(tex.box[2])

10.3.8 Reusing boxes: [use|save]boxresource and

getboxresourcedimensions

The following function will register a box for reuse (this is modelled after so called xforms in

pdf). You can (re)use the box with \useboxresource or by creating a rule node with subtype 2.

local index = tex.saveboxresource(n,attributes,resources,immediate,type,margin)

The optional second and third arguments are strings, the fourth is a boolean. The fifth argument

is a type. When set to non-zero the /Type entry is omitted. A value of 1 or 3 still writes a /BBox,

while 2 or 3 will write a /Matrix. The sixth argument is the (virtual) margin that extends beyond

the effective boundingbox as seen by TEX. Instead of a box number one can also pass a [h|v]list

node.

You can generate the reference (a rule type) with:

local reused = tex.useboxresource(n,wd,ht,dp)

The dimensions are optional and the final ones are returned as extra values. The following is

just a bonus (no dimensions returned means that the resource is unknown):

local w, h, d, m = tex.getboxresourcedimensions(n)

This returns the width, height, depth and margin of the resource.

10.3.9 triggerbuildpage

You should not expect to much from the triggerbuildpage helpers because often TEX doesn’t

do much if it thinks nothing has to be done, but it might be useful for some applications. It just

does as it says it calls the internal function that build a page, given that there is something to

build.

10.3.10 splitbox

You can split a box:

local vlist = tex.splitbox(n,height,mode)

The remainder is kept in the original box and a packaged vlist is returned. This operation is

comparable to the \vsplit operation. The mode can be additional or exactly and concerns

the split off box.

10.3.11 Accessing math parameters: [get|set]math

It is possible to set and query the internal math parameters using:

199The TEX related libraries

tex.setmath(["global",] <string> n, <string> t, <number> n)

<number> n = tex.getmath(<string> n, <string> t)

As before an optional first parameter global indicates a global assignment.

The first string is the parameter name minus the leading ‘Umath’, and the second string is the

style name minus the trailing ‘style’. Just to be complete, the values for the math parameter

name are:

quad axis operatorsize

overbarkern overbarrule overbarvgap

underbarkern underbarrule underbarvgap

radicalkern radicalrule radicalvgap

radicaldegreebefore radicaldegreeafter radicaldegreeraise

stackvgap stacknumup stackdenomdown

fractionrule fractionnumvgap fractionnumup

fractiondenomvgap fractiondenomdown fractiondelsize

limitabovevgap limitabovebgap limitabovekern

limitbelowvgap limitbelowbgap limitbelowkern

underdelimitervgap underdelimiterbgap

overdelimitervgap overdelimiterbgap

subshiftdrop supshiftdrop subshiftdown

subsupshiftdown subtopmax supshiftup

supbottommin supsubbottommax subsupvgap

spaceafterscript connectoroverlapmin

ordordspacing ordopspacing ordbinspacing ordrelspacing

ordopenspacing ordclosespacing ordpunctspacing ordinnerspacing

opordspacing opopspacing opbinspacing oprelspacing

opopenspacing opclosespacing oppunctspacing opinnerspacing

binordspacing binopspacing binbinspacing binrelspacing

binopenspacing binclosespacing binpunctspacing bininnerspacing

relordspacing relopspacing relbinspacing relrelspacing

relopenspacing relclosespacing relpunctspacing relinnerspacing

openordspacing openopspacing openbinspacing openrelspacing

openopenspacing openclosespacing openpunctspacing openinnerspacing

closeordspacing closeopspacing closebinspacing closerelspacing

closeopenspacing closeclosespacing closepunctspacing closeinnerspacing

punctordspacing punctopspacing punctbinspacing punctrelspacing

punctopenspacing punctclosespacing punctpunctspacing punctinnerspacing

innerordspacing inneropspacing innerbinspacing innerrelspacing

inneropenspacing innerclosespacing innerpunctspacing innerinnerspacing

The values for the style parameter are:

display crampeddisplay

text crampedtext

script crampedscript

scriptscript crampedscriptscript

The TEX related libraries200

The value is either a number (representing a dimension or number) or a glue spec node repre-

senting a muskip for ordordspacing and similar spacing parameters.

10.3.12 Special list heads: [get|set]list

The virtual table tex.lists contains the set of internal registers that keep track of building

page lists.

FIELD EXPLANATION

page_ins_head circular list of pending insertions

contrib_head the recent contributions

page_head the current page content

hold_head used for held-over items for next page

adjust_head head of the current \vadjust list

pre_adjust_head head of the current \vadjust pre list

page_discards_head head of the discarded items of a page break

split_discards_head head of the discarded items in a vsplit

The getter and setter functions are getlist and setlist. You have to be careful with what you

set as TEX can have expectations with regards to how a list is constructed or in what state it is.

10.3.13 Semantic nest levels: getnest and ptr

The virtual table nest contains the currently active semantic nesting state. It has twomain parts:

a zero-based array of userdata for the semantic nest itself, and the numerical value ptr, which

gives the highest available index. Neither the array items in nest[] nor ptr can be assigned to

(as this would confuse the typesetting engine beyond repair), but you can assign to the individual

values inside the array items, e.g. tex.nest[tex.nest.ptr].prevdepth.

tex.nest[tex.nest.ptr] is the current nest state, nest[0] the outermost (main vertical list)

level. The getter function is getnest. You can pass a number (which gives you a list), nothing or

top, which returns the topmost list, or the string ptr which gives you the index of the topmost

list.

The known fields are:

KEY TYPE MODES EXPLANATION

mode number all the meaning of these numbers depends on the engine and

sometimes even the version; you can use tex.getmodeval-

ues() to get the mapping: positive values signal vertical, hor-

izontal and math mode, while negative values indicate inner

and inline variants

modeline number all source input line where this mode was entered in, negative

inside the output routine

head node all the head of the current list

tail node all the tail of the current list

prevgraf number vmode number of lines in the previous paragraph

201The TEX related libraries

prevdepth number vmode depth of the previous paragraph

spacefactor number hmode the current space factor

dirs node hmode used for temporary storage by the line break algorithm

noad node mmode used for temporary storage of a pending fraction numerator,

for \over etc.

delimptr node mmode used for temporary storage of the previous math delimiter, for

\middle

mathdir boolean mmode true when during math processing the \mathdir is not the

same as the surrounding \textdir

mathstyle number mmode the current \mathstyle

10.3.14 Print functions

The tex table also contains the three print functions that are the major interface from Lua

scripting to TEX. The arguments to these three functions are all stored in an in-memory virtual

file that is fed to the TEX scanner as the result of the expansion of \directlua.

The total amount of returnable text from a \directlua command is only limited by available

system ram. However, each separate printed string has to fit completely in TEX’s input buffer.

The result of using these functions from inside callbacks is undefined at the moment.

10.3.14.1 print

tex.print(<string> s, ...)

tex.print(<number> n, <string> s, ...)

tex.print(<table> t)

tex.print(<number> n, <table> t)

Each string argument is treated by TEX as a separate input line. If there is a table argument

instead of a list of strings, this has to be a consecutive array of strings to print (the first non-string

value will stop the printing process).

The optional parameter can be used to print the strings using the catcode regime defined by

\catcodetable n. If n is −1, the currently active catcode regime is used. If n is −2, the resulting
catcodes are the result of \the \toks: all category codes are 12 (other) except for the space

character, that has category code 10 (space). Otherwise, if n is not a valid catcode table, then it

is ignored, and the currently active catcode regime is used instead.

The very last string of the very last tex.print command in a \directlua will not have the

\endlinechar appended, all others do.

10.3.14.2 sprint

tex.sprint(<string> s, ...)

tex.sprint(<number> n, <string> s, ...)

tex.sprint(<table> t)

tex.sprint(<number> n, <table> t)

The TEX related libraries202

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a partial line input mechanism:

‣ TEX does not switch to the ‘new line’ state, so that leading spaces are not ignored.

‣ No \endlinechar is inserted.

‣ Trailing spaces are not removed. Note that this does not prevent TEX itself from eating spaces

as result of interpreting the line. For example, in

before\directlua{tex.sprint("\\relax")tex.sprint(" inbetween")}after

the space before in between will be gobbled as a result of the ‘normal’ scanning of \relax.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

The optional argument sets the catcode regime, as with tex.print. This influences the string

arguments (or numbers turned into strings).

Although this needs to be used with care, you can also pass token or node userdata objects.

These get injected into the stream. Tokens had best be valid tokens, while nodes need to be

around when they get injected. Therefore it is important to realize the following:

‣ When you inject a token, you need to pass a valid token userdata object. This object will

be collected by Lua when it no longer is referenced. When it gets printed to TEX the token

itself gets copied so there is no interference with the Lua garbage collection. You manage the

object yourself. Because tokens are actually just numbers, there is no real extra overhead at

the TEX end.

‣ When you inject a node, you need to pass a valid node userdata object. The node related

to the object will not be collected by Lua when it no longer is referenced. It lives on at the

TEX end in its own memory space. When it gets printed to TEX the node reference is used

assuming that node stays around. There is no Lua garbage collection involved. Again, you

manage the object yourself. The node itself is freed when TEX is done with it.

If you consider the last remark you might realize that we have a problem when a printed mix

of strings, tokens and nodes is reused. Inside TEX the sequence becomes a linked list of input

buffers. So, "123" or "\foo{123}" gets read and parsed on the fly, while <token userdata>

already is tokenized and effectively is a token list now. A <node userdata> is also tokenized into

a token list but it has a reference to a real node. Normally this goes fine. But now assume that

you store the whole lot in a macro: in that case the tokenized node can be flushed many times.

But, after the first such flush the node is used and its memory freed. You can prevent this by

using copies which is controlled by setting \luacopyinputnodes to a non-zero value. This is one

of these fuzzy areas you have to live with if you really mess with these low level issues.

10.3.14.3 tprint

tex.tprint({<number> n, <string> s, ...}, {...})

This function is basically a shortcut for repeated calls to tex.sprint(<number> n, <string>

s, ...), once for each of the supplied argument tables.

203The TEX related libraries

10.3.14.4 cprint

This function takes a number indicating the to be used catcode, plus either a table of strings or

an argument list of strings that will be pushed into the input stream.

tex.cprint(1," 1: $&{\\foo}") tex.print("\\par") -- a lot of \bgroup s

tex.cprint(2," 2: $&{\\foo}") tex.print("\\par") -- matching \egroup s

tex.cprint(9," 9: $&{\\foo}") tex.print("\\par") -- all get ignored

tex.cprint(10,"10: $&{\\foo}") tex.print("\\par") -- all become spaces

tex.cprint(11,"11: $&{\\foo}") tex.print("\\par") -- letters

tex.cprint(12,"12: $&{\\foo}") tex.print("\\par") -- other characters

tex.cprint(14,"12: $&{\\foo}") tex.print("\\par") -- comment triggers

10.3.14.5 write

tex.write(<string> s, ...)

tex.write(<table> t)

Each string argument is treated by TEX as a special kind of input line that makes it suitable for

use as a quick way to dump information:

‣ All catcodes on that line are either ‘space’ (for ’ ’) or ‘character’ (for all others).

‣ There is no \endlinechar appended.

If there is a table argument instead of a list of strings, this has to be a consecutive array of

strings to print (the first non-string value will stop the printing process).

10.3.15 Helper functions

10.3.15.1 round

<number> n = tex.round(<number> o)

Rounds Lua number o, and returns a number that is in the range of a valid TEX register value.

If the number starts out of range, it generates a ‘number too big’ error as well.

10.3.15.2 scale

<number> n = tex.scale(<number> o, <number> delta)

<table> n = tex.scale(table o, <number> delta)

Multiplies the Lua numbers o and delta, and returns a rounded number that is in the range of

a valid TEX register value. In the table version, it creates a copy of the table with all numeric

top--level values scaled in that manner. If the multiplied number(s) are of range, it generates

‘number too big’ error(s) as well.

Note: the precision of the output of this function will depend on your computer’s architecture

and operating system, so use with care! An interface to LuaTEX’s internal, 100% portable scale

function will be added at a later date.

The TEX related libraries204

10.3.15.3 number and romannumeral

These are the companions to the primitives \number and \romannumeral. They can be used like:

tex.print(tex.romannumeral(123))

10.3.15.4 fontidentifier and fontname

The first one returns the name only, the second one reports the size too.

tex.print(tex.fontidentifier(1))

tex.print(tex.fontname(1))

10.3.15.5 sp

<number> n = tex.sp(<number> o)

<number> n = tex.sp(<string> s)

Converts the number o or a string s that represents an explicit dimension into an integer number

of scaled points.

For parsing the string, the same scanning and conversion rules are used that LuaTEX would use

if it was scanning a dimension specifier in its TEX-like input language (this includes generating

errors for bad values), expect for the following:

1. only explicit values are allowed, control sequences are not handled

2. infinite dimension units (fil...) are forbidden

3. mu units do not generate an error (but may not be useful either)

10.3.15.6 error and show_context

tex.error(<string> s)

tex.error(<string> s, <table> help)

This creates an error somewhat like the combination of \errhelp and \errmessage would. Dur-

ing this error, deletions are disabled.

The array part of the help table has to contain strings, one for each line of error help.

In case of an error the show_context function will show the current context where we’re at (in

the expansion).

10.3.15.7 run, finish

These two functions start the interpretations and force its end. A runs normally boils down to TEX

entering the so called main loop. A token is fetched and depending on it current meaning some

actions takes place. Sometimes that actions comes immediately, sometimes more scanning is

needed. Quite often tokens get pushed back into the input. This all means that the TEX scanner

is constantly pushing and popping input states, but in the end after all the action is done returns

to the main loop.

205The TEX related libraries

10.3.15.8 runtoks

Because of the fact that TEX is in a complex dance of expanding, dealing with fonts, typesetting

paragraphs, messing around with boxes, building pages, and so on, you cannot easily run a

nested TEX run (read nested main loop). However, there is an option to force a local run with

runtoks. The content of the given token list register gets expanded locally after which we return

to where we triggered this expansion, at the Lua end. Instead a function can get passed that

does some work. You have to make sure that at the end TEX is in a sane state and this is not

always trivial. A more complex mechanism would complicate TEX itself (and probably also harm

performance) so this simple local expansion loop has to do.

tex.runtoks(<token register>)

tex.runtoks(<lua function>)

When the \tracingnesting parameter is set to a value larger than 2 some information is re-

ported about the state of the local loop.

This function has two optional arguments in case a token register is passed:

tex.runtoks(<token register>,force,grouped)

Inside for instance an \edef the runtoks function behaves (at least tries to) like it were an \the.

This prevents unwanted side effects: normally in such an definition tokens remain tokens and

(for instance) characters don’t become nodes. With the second argument you can force the local

main loop, no matter what. The third argument adds a level of grouping.

You can quit the local loop with \endlocalcontrol or from the Lua end with tex.quittoks. In

that case you end one level up! Of course in the end that can mean that you arrive at the main

level in which case an extra end will trigger a redundancy warning (not an abort!).

10.3.15.9 forcehmode

An example of a (possible error triggering) complication is that TEX expects to be in some state,

say horizontal mode, and you have to make sure it is when you start feeding back something

from Lua into TEX. Normally a user will not run into issues but when you start writing tokens or

nodes or have a nested run there can be situations that you need to run forcehmode. There is

no recipe for this and intercepting possible cases would weaken LuaTEX’s flexibility.

10.3.15.10 hashtokens

for i,v in pairs (tex.hashtokens()) do ... end

Returns a list of names. This can be useful for debugging, but note that this also reports control

sequences that may be unreachable at this moment due to local redefinitions: it is strictly a

dump of the hash table. You can use token.create to inspect properties, for instance when the

command key in a created table equals 123, you have the cmdname value undefined_cs.

10.3.15.11 definefont

tex.definefont(<string> csname, <number> fontid)

The TEX related libraries206

tex.definefont(<boolean> global, <string> csname, <number> fontid)

Associates csname with the internal font number fontid. The definition is global if (and only if)

global is specified and true (the setting of globaldefs is not taken into account).

10.3.16 Functions for dealing with primitives

10.3.16.1 enableprimitives

tex.enableprimitives(<string> prefix, <table> primitive names)

This function accepts a prefix string and an array of primitive names. For each combination of

‘prefix’ and ‘name’, the tex.enableprimitives first verifies that ‘name’ is an actual primitive

(it must be returned by one of the tex.extraprimitives calls explained below, or part of TEX82,

or \directlua). If it is not, tex.enableprimitives does nothing and skips to the next pair.

But if it is, then it will construct a csname variable by concatenating the ‘prefix’ and ‘name’,

unless the ‘prefix’ is already the actual prefix of ‘name’. In the latter case, it will discard the

‘prefix’, and just use ‘name’.

Then it will check for the existence of the constructed csname. If the csname is currently un-

defined (note: that is not the same as \relax), it will globally define the csname to have the

meaning: run code belonging to the primitive ‘name’. If for some reason the csname is already

defined, it does nothing and tries the next pair.

An example:

tex.enableprimitives('LuaTeX', {'formatname'})

will define \LuaTeXformatname with the same intrinsic meaning as the documented primitive

\formatname, provided that the control sequences \LuaTeXformatname is currently undefined.

When LuaTEX is run with --ini only the TEX82 primitives and \directlua are available, so no

extra primitives at all.

If you want to have all the new functionality available using their default names, as it is now,

you will have to add

\ifx\directlua\undefined \else

\directlua {tex.enableprimitives('',tex.extraprimitives ())}

\fi

near the beginning of your format generation file. Or you can choose different prefixes for

different subsets, as you see fit.

Calling some form of tex.enableprimitives is highly important though, because if you do not,

you will end up with a TEX82-lookalike that can run Lua code but not do much else. The defined

csnames are (of course) saved in the format and will be available at runtime.

10.3.16.2 extraprimitives

<table> t = tex.extraprimitives(<string> s, ...)

207The TEX related libraries

This function returns a list of the primitives that originate from the engine(s) given by the re-

quested string value(s). The possible values and their (current) return values are given in the

following table. In addition the somewhat special primitives ‘\ ’, ‘\/’ and ‘-’ are defined.

NAME VALUES

tex Uleft Umiddle Uright above abovedisplayshortskip abovedisplayskip abovewith-

delims accent adjdemerits advance afterassignment aftergroup atop atopwith-

delims badness baselineskip batchmode begingroup belowdisplayshortskip be-

lowdisplayskip binoppenalty botmark boundary box boxmaxdepth brokenpenalty

catcode char chardef cleaders closein closeout clubpenalty copy count count-

def cr crcr csname day deadcycles def defaulthyphenchar defaultskewchar de-

ferred delcode delimiter delimiterfactor delimitershortfall dimen dimendef

discretionary displayindent displaylimits displaystyle displaywidowpenalty

displaywidth divide doublehyphendemerits dp dump edef else emergencystretch

end endcsname endgroup endinput endlinechar eqno errhelp errmessage errorcon-

textlines errorstopmode escapechar everycr everydisplay everyhbox everyjob

everymath everypar everyvbox exhyphenchar exhyphenpenalty expandafter fam fi

finalhyphendemerits firstmark firstvalidlanguage floatingpenalty font font-

dimen fontname futurelet gdef glet global globaldefs halign hangafter hangin-

dent hbadness hbox hfil hfill hfilneg hfuzz hoffset holdinginserts hpack hrule

hsize hskip hss ht hyphenation hyphenchar hyphenpenalty if ifcase ifcat ifdim

ifeof iffalse ifhbox ifhmode ifinner ifmmode ifnum ifodd iftrue ifvbox ifv-

mode ifvoid ifx ignorespaces immediate indent input inputlineno insert in-

sertpenalties interlinepenalty jobname kern language lastbox lastkern last-

penalty lastskip lccode leaders left lefthyphenmin leftskip leqno let lim-

its linepenalty lineskip lineskiplimit long looseness lower lowercase mag

mark mathaccent mathbin mathchar mathchardef mathchoice mathclose mathcode

mathinner mathop mathopen mathord mathpunct mathrel mathsurround maxdeadcy-

cles maxdepth meaning medmuskip message middle mkern month moveleft moveright

mskip multiply muskip muskipdef newlinechar noalign noboundary noexpand noin-

dent nolimits nonscript nonstopmode nulldelimiterspace nullfont number omit

openin openout or outer output outputpenalty over overfullrule overline over-

withdelims pagedepth pagefilllstretch pagefillstretch pagefilstretch page-

goal pageshrink pagestretch pagetotal par parfillskip parindent parshape

parskip patterns pausing penalty postdisplaypenalty predisplaypenalty pre-

displaysize pretolerance prevdepth prevgraf protrusionboundary radical raise

read relax relpenalty right righthyphenmin rightskip romannumeral script-

font scriptscriptfont scriptscriptstyle scriptspace scriptstyle scrollmode

setbox setlanguage sfcode shipout show showbox showboxbreadth showboxdepth

showlists showstream showthe skewchar skip skipdef spacefactor spaceskip span

special splitbotmark splitfirstmark splitmaxdepth splittopskip string tab-

skip textfont textstyle the thickmuskip thinmuskip time toks toksdef toler-

ance topmark topskip tpack tracingcommands tracinglostchars tracingmacros

tracingonline tracingoutput tracingpages tracingparagraphs tracingrestores

tracingstats uccode uchyph underline unhbox unhcopy unkern unpenalty unskip

unvbox unvcopy uppercase vadjust valign vbadness vbox vcenter vfil vfill vfil-

The TEX related libraries208

neg vfuzz voffset vpack vrule vsize vskip vsplit vss vtop wd widowpenalty word-

boundary write xdef xleaders xspaceskip year

core directlua

etex botmarks clubpenalties currentgrouplevel currentgrouptype currentifbranch

currentiflevel currentiftype detokenize dimexpr displaywidowpenalties

eTeXVersion eTeXminorversion eTeXrevision eTeXversion everyeof firstmarks

fontchardp fontcharht fontcharic fontcharwd glueexpr glueshrink glueshrinko-

rder gluestretch gluestretchorder gluetomu ifcsname ifdefined iffontchar in-

teractionmode interlinepenalties lastlinefit lastnodetype marks muexpr mu-

toglue numexpr pagediscards parshapedimen parshapeindent parshapelength par-

tokencontext partokenname predisplaydirection protected readline savinghy-

phcodes savingvdiscards scantokens showgroups showifs showtokens splitbot-

marks splitdiscards splitfirstmarks topmarks tracingassigns tracinggroups

tracingifs tracingnesting tracingscantokens unexpanded unless widowpenal-

ties

luatex Uchar Udelcode Udelcodenum Udelimiter Udelimiterover Udelimiterunder Uhex-

tensible Umathaccent Umathaxis Umathbinbinspacing Umathbinclosespacing

Umathbininnerspacing Umathbinopenspacing Umathbinopspacing Umathbi-

nordspacing Umathbinpunctspacing Umathbinrelspacing Umathchar Umath-

charclass Umathchardef Umathcharfam Umathcharnum Umathcharnumdef Umath-

charslot Umathclosebinspacing Umathcloseclosespacing Umathcloseinnerspac-

ing Umathcloseopenspacing Umathcloseopspacing Umathcloseordspacing Umath-

closepunctspacing Umathcloserelspacing Umathcode Umathcodenum Umathcon-

nectoroverlapmin Umathfractiondelsize Umathfractiondenomdown Umathfrac-

tiondenomvgap Umathfractionnumup Umathfractionnumvgap Umathfractionrule

Umathinnerbinspacing Umathinnerclosespacing Umathinnerinnerspacing Umath-

inneropenspacing Umathinneropspacing Umathinnerordspacing Umathinner-

punctspacing Umathinnerrelspacing Umathlimitabovebgap Umathlimitabovek-

ern Umathlimitabovevgap Umathlimitbelowbgap Umathlimitbelowkern Umathlim-

itbelowvgap Umathnolimitsubfactor Umathnolimitsupfactor Umathopbinspac-

ing Umathopclosespacing Umathopenbinspacing Umathopenclosespacing Umath-

openinnerspacing Umathopenopenspacing Umathopenopspacing Umathopenordspac-

ing Umathopenpunctspacing Umathopenrelspacing Umathoperatorsize Umathopin-

nerspacing Umathopopenspacing Umathopopspacing Umathopordspacing Umath-

oppunctspacing Umathoprelspacing Umathordbinspacing Umathordclosespacing

Umathordinnerspacing Umathordopenspacing Umathordopspacing Umathor-

dordspacing Umathordpunctspacing Umathordrelspacing Umathoverbarkern Umath-

overbarrule Umathoverbarvgap Umathoverdelimiterbgap Umathoverdelimiter-

vgap Umathpunctbinspacing Umathpunctclosespacing Umathpunctinnerspacing

Umathpunctopenspacing Umathpunctopspacing Umathpunctordspacing Umathpunct-

punctspacing Umathpunctrelspacing Umathquad Umathradicaldegreeafter Umath-

radicaldegreebefore Umathradicaldegreeraise Umathradicalkern Umathradical-

rule Umathradicalvgap Umathrelbinspacing Umathrelclosespacing Umathrelin-

nerspacing Umathrelopenspacing Umathrelopspacing Umathrelordspacing Umath-

relpunctspacing Umathrelrelspacing Umathskewedfractionhgap Umathskewed-

fractionvgap Umathspaceafterscript Umathstackdenomdown Umathstacknumup

209The TEX related libraries

Umathstackvgap Umathsubshiftdown Umathsubshiftdrop Umathsubsupshiftdown

Umathsubsupvgap Umathsubtopmax Umathsupbottommin Umathsupshiftdrop Umath-

supshiftup Umathsupsubbottommax Umathunderbarkern Umathunderbarrule Umath-

underbarvgap Umathunderdelimiterbgap Umathunderdelimitervgap Unosubscript

Unosuperscript Uoverdelimiter Uradical Uroot Uskewed Uskewedwithdelims Us-

tack Ustartdisplaymath Ustartmath Ustopdisplaymath Ustopmath Usubscript

Usuperscript Uunderdelimiter Uvextensible adjustspacing alignmark aligntab

attribute attributedef automaticdiscretionary automatichyphenmode auto-

matichyphenpenalty begincsname bodydir bodydirection boxdir boxdirection

breakafterdirmode catcodetable clearmarks compoundhyphenmode copyfont

crampeddisplaystyle crampedscriptscriptstyle crampedscriptstyle cramped-

textstyle csstring discretionaryligaturemode draftmode dviextension dv-

ifeedback dvivariable eTeXglueshrinkorder eTeXgluestretchorder efcode end-

localcontrol etoksapp etokspre exceptionpenalty expanded expandglyphsin-

font explicitdiscretionary explicithyphenpenalty fixupboxesmode fontid

formatname gleaders glyphdimensionsmode gtoksapp gtokspre hjcode hyphen-

ationbounds hyphenationmin hyphenpenaltymode ifabsdim ifabsnum ifcondition

ifincsname ifprimitive ignoreligaturesinfont immediateassigned immediate-

assignment initcatcodetable insertht lastnamedcs lastsavedboxresourceindex

lastsavedimageresourceindex lastsavedimageresourcepages lastxpos lastypos

latelua lateluafunction leftghost leftmarginkern letcharcode letterspace-

font linedir linedirection localbrokenpenalty localinterlinepenalty lo-

calleftbox localrightbox lpcode luabytecode luabytecodecall luacopyinputn-

odes luadef luaescapestring luafunction luafunctioncall luatexbanner lua-

texrevision luatexversion mathdefaultsmode mathdelimitersmode mathdir math-

direction mathdisplayskipmode matheqdirmode matheqnogapstep mathflattenmode

mathitalicsmode mathnolimitsmode mathoption mathpenaltiesmode mathrulesfam

mathrulesmode mathrulethicknessmode mathscriptboxmode mathscriptcharmode

mathscriptsmode mathstyle mathsurroundmode mathsurroundskip nohrule nokerns

noligs normaldeviate nospaces novrule outputbox outputmode pagebottomoffset

pagedir pagedirection pageheight pageleftoffset pagerightoffset pagetopoff-

set pagewidth pardir pardirection pdfextension pdffeedback pdfvariable pos-

texhyphenchar posthyphenchar prebinoppenalty predisplaygapfactor preexhy-

phenchar prehyphenchar prerelpenalty primitive protrudechars pxdimen quitv-

mode randomseed rightghost rightmarginkern rpcode saveboxresource savecat-

codetable saveimageresource savepos scantextokens setfontid setrandomseed

shapemode suppressfontnotfounderror suppressifcsnameerror suppresslonger-

ror suppressmathparerror suppressoutererror suppressprimitiveerror synctex

tagcode textdir textdirection toksapp tokspre tracingfonts uniformdeviate

useboxresource useimageresource variablefam xtoksapp xtokspre

Note that luatex does not contain directlua, as that is considered to be a core primitive, along

with all the TEX82 primitives, so it is part of the list that is returned from 'core'.

Running tex.extraprimitives will give you the complete list of primitives -ini startup. It is

exactly equivalent to tex.extraprimitives("etex","luatex").

The TEX related libraries210

10.3.16.3 primitives

<table> t = tex.primitives()

This function returns a list of all primitives that LuaTEX knows about.

10.3.17 Core functionality interfaces

10.3.17.1 badness

<number> b = tex.badness(<number> t, <number> s)

This helper function is useful during linebreak calculations. t and s are scaled values; the

function returns the badness for when total t is supposed to be made from amounts that sum to

s. The returned number is a reasonable approximation of 100(𝑡/𝑠)3;

10.3.17.2 tex.resetparagraph

This function resets the parameters that TEX normally resets when a new paragraph is seen.

10.3.17.3 linebreak

local <node> nodelist, <table> info =

tex.linebreak(<node> listhead, <table> parameters)

The understood parameters are as follows:

NAME TYPE EXPLANATION

pardir string

pretolerance number

tracingparagraphs number

tolerance number

looseness number

hyphenpenalty number

exhyphenpenalty number

pdfadjustspacing number

adjdemerits number

pdfprotrudechars number

linepenalty number

lastlinefit number

doublehyphendemerits number

finalhyphendemerits number

hangafter number

interlinepenalty number or table if a table, then it is an array like \interlinepenal-

ties

clubpenalty number or table if a table, then it is an array like \clubpenalties

211The TEX related libraries

widowpenalty number or table if a table, then it is an array like \widowpenalties

brokenpenalty number

emergencystretch number in scaled points

hangindent number in scaled points

hsize number in scaled points

leftskip glue_spec node

rightskip glue_spec node

parshape table

Note that there is no interface for \displaywidowpenalties, you have to pass the right choice

for widowpenalties yourself.

It is your own job to make sure that listhead is a proper paragraph list: this function does

not add any nodes to it. To be exact, if you want to replace the core line breaking, you may

have to do the following (when you are not actually working in the pre_linebreak_filter or

linebreak_filter callbacks, or when the original list starting at listhead was generated in

horizontal mode):

‣ add an ‘indent box’ and perhaps a local_par node at the start (only if you need them)

‣ replace any found final glue by an infinite penalty (or add such a penalty, if the last node is

not a glue)

‣ add a glue node for the \parfillskip after that penalty node

‣ make sure all the prev pointers are OK

The result is a node list, it still needs to be vpacked if you want to assign it to a \vbox. The

returned info table contains four values that are all numbers:

NAME EXPLANATION

prevdepth depth of the last line in the broken paragraph

prevgraf number of lines in the broken paragraph

looseness the actual looseness value in the broken paragraph

demerits the total demerits of the chosen solution

Note there are a few things you cannot interface using this function: You cannot influence font

expansion other than via pdfadjustspacing, because the settings for that take place elsewhere.

The same is true for hbadness and hfuzz etc. All these are in the hpack routine, and that fetches

its own variables via globals.

10.3.17.4 shipout

tex.shipout(<number> n)

Ships out box number n to the output file, and clears the box register.

10.3.17.5 getpagestate

This helper reports the current page state: empty, box_there or inserts_only as integer value.

The TEX related libraries212

10.3.17.6 getlocallevel

This integer reports the current level of the local loop. It’s only useful for debugging and the

(relative state) numbers can change with the implementation.

10.3.18 Randomizers

For practical reasons LuaTEX has its own random number generator. The original Lua random

function is available as tex.lua_math_random. You can initialize with a new seed with init_rand

(lua_math_randomseed is equivalent to this one.

There are three generators: normal_rand (no argument is used), uniform_rand (takes a number

that will get rounded before being used) and uniformdeviate which behaves like the primitive

and expects a scaled integer, so

tex.print(tex.uniformdeviate(65536)/65536)

will give a random number between zero and one.

10.3.19 Functions related to synctex

The next helpers only make sense when you implement your own synctex logic. Keep in mind

that the library used in editors assumes a certain logic and is geared for plain and LATEX, so after

a decade users expect a certain behaviour.

NAME EXPLANATION

set_synctex_mode 0 is the default and used normal synctex logic, 1 uses the values set by

the next helpers while 2 also sets these for glyph nodes; 3 sets glyphs

and glue and 4 sets only glyphs

set_synctex_tag set the current tag (file) value (obeys save stack)

set_synctex_line set the current line value (obeys save stack)

set_synctex_no_files disable synctex file logging

get_synctex_mode returns the current mode (for values see above)

get_synctex_tag get the currently set value of tag (file)

get_synctex_line get the currently set value of line

force_synctex_tag overload the tag (file) value (0 resets)

force_synctex_line overload the line value (0 resets)

The last one is somewhat special. Due to the way files are registered in SyncTEX we need to

explicitly disable that feature if we provide our own alternative if we want to avoid that overhead.

Passing a value of 1 disables registering.

10.4 The texconfig table

This is a table that is created empty. A startup Lua script could fill this table with a number of

settings that are read out by the executable after loading and executing the startup file.

213The TEX related libraries

KEY TYPE DEFAULT EXPLANATION

kpse_init boolean true false totally disables kpathsea initialisation, and

enables interpretation of the following numeric

key–value pairs. (only ever unset this if you im-

plement all file find callbacks!)

shell_escape string 'f' Use 'y' or 't' or '1' to enable \write 18 uncon-

ditionally, 'p' to enable the commands that are

listed in shell_escape_commands

shell_escape_commands string Comma-separated list of command names thatmay

be executed by \write 18 even if shell_escape

is set to 'p'. Do not use spaces around commas,

separate any required command arguments by us-

ing a space, and use the ascii double quote (") for

any needed argument or path quoting

string_vacancies number 75000 cf. web2c docs

pool_free number 5000 cf. web2c docs

max_strings number 15000 cf. web2c docs

strings_free number 100 cf. web2c docs

nest_size number 50 cf. web2c docs

max_in_open number 15 cf. web2c docs

param_size number 60 cf. web2c docs

save_size number 4000 cf. web2c docs

stack_size number 300 cf. web2c docs

dvi_buf_size number 16384 cf. web2c docs

error_line number 79 cf. web2c docs

half_error_line number 50 cf. web2c docs

max_print_line number 79 cf. web2c docs

hash_extra number 0 cf. web2c docs

pk_dpi number 72 cf. web2c docs

trace_file_names boolean true false disables TEX’s normal file open-close feed-

back (the assumption is that callbacks will take

care of that)

file_line_error boolean false do file:line style error messages

halt_on_error boolean false abort run on the first encountered error

formatname string if no format name was given on the command line,

this key will be tested first instead of simply quit-

ting

jobname string if no input file name was given on the command

line, this key will be tested first instead of simply

giving up

level_chr number character to put in front of traced macros (see

next value)

level_max number when larger than zero the input nesting level will

be shownwhen \tracingmacros is set; levels above

this value will be clipped with the level shown up

front

The TEX related libraries214

Note: the numeric values that match web2c parameters are only used if kpse_init is explicitly

set to false. In all other cases, the normal values from texmf.cnf are used.

You can kick in your own nesting level visualizer, for instance:

callback.register("input_level_string",function(n)

if tex.tracingmacros > 0 and tex.count.tracingstacklevels > 0 then

if tex.tracingmacros > 1 then

return "! " .. string.rep(">",n) .. " "

end

end)

Or, in sync with other engines (not checked):

\directlua {

callback.register("input_level_string", function(n)

if tex.tracingmacros > 0 then

local l = tex.count.tracingstacklevels

if l > 0 then

return string.rep("~",l) .. string.rep(".",n-l)

end

end

end)

}

10.5 The texio library

This library takes care of the low-level I/O interface: writing to the log file and/or console.

10.5.1 write

texio.write(<string> target, <string> s, ...)

texio.write(<string> s, ...)

Without the target argument, writes all given strings to the same location(s) TEX writes mes-

sages to at this moment. If \batchmode is in effect, it writes only to the log, otherwise it writes

to the log and the terminal. The optional target can be one of three possibilities: term, log or

term and log.

Note: If several strings are given, and if the first of these strings is or might be one of the targets

above, the target must be specified explicitly to prevent Lua from interpreting the first string

as the target.

10.5.2 write_nl

texio.write_nl(<string> target, <string> s, ...)

texio.write_nl(<string> s, ...)

215The TEX related libraries

This function behaves like texio.write, but make sure that the given strings will appear at the

beginning of a new line. You can pass a single empty string if you only want to move to the next

line.

10.5.3 setescape

You can disable ^^ escaping of control characters by passing a value of zero.

10.5.4 closeinput

This function that should be used with care. It acts as \endinput but at the Lua end. You can

use it to (sort of) force a jump back to TEX. Normally a Lua will just collect prints and at the end

bump an input level and flush these prints. This function can help you stay at the current level

but you need to know what you’re doing (or more precise: what TEX is doing with input).

10.6 The token library

10.6.1 The scanner

The token library provides means to intercept the input and deal with it at the Lua level. The

library provides a basic scanner infrastructure that can be used to write macros that accept

a wide range of arguments. This interface is on purpose kept general and as performance is

quite ok. One can build additional parsers without too much overhead. It’s up to macro package

writers to see how they can benefit from this as the main principle behind LuaTEX is to provide

a minimal set of tools and no solutions. The scanner functions are probably the most intriguing.

FUNCTION ARGUMENT RESULT

scan_keyword string returns true if the given keyword is gobbled; as with the

regular TEX keyword scanner this is case insensitive (and

ascii based)

scan_keywordcs string returns true if the given keyword is gobbled; this variant

is case sensitive and also suitable for utf8

scan_int returns an integer

scan_real returns a number from e.g. 1, 1.1, .1 with optional col-

lapsed signs

scan_float returns a number from e.g. 1, 1.1, .1, 1.1E10, , .1e-10

with optional collapsed signs

scan_dimen infinity, mu-units returns a number representing a dimension and or two

numbers being the filler and order

scan_glue mu-units returns a glue spec node

scan_toks definer, expand returns a table of tokens tokens

scan_code bitset returns a character if its category is in the given bitset

(representing catcodes)

scan_string returns a string given between {}, as \macro or as se-

quence of characters with catcode 11 or 12

The TEX related libraries216

scan_argument boolean this one is simular to scanstring but also accepts a \cs

scan_word returns a sequence of characters with catcode 11 or 12 as

string

scan_csname returns foo after scanning \foo

scan_list picks up a box specification and returns a [h|v]list node

The scanners can be considered stable apart from the one scanning for a token. The scan_code

function takes an optional number, the keyword function a normal Lua string. The infinity

boolean signals that we also permit fill as dimension and the mu-units flags the scanner that

we expect math units. When scanning tokens we can indicate that we are defining a macro, in

which case the result will also provide information about what arguments are expected and in

the result this is separated from the meaning by a separator token. The expand flag determines

if the list will be expanded.

The scan_argument function expands the given argument. When a braced argument is scanned,

expansion can be prohibited by passing false (default is true). In case of a control sequence

passing false will result in a one-level expansion (the meaning of the macro).

The string scanner scans for something between curly braces and expands on the way, or when

it sees a control sequence it will return its meaning. Otherwise it will scan characters with

catcode letter or other. So, given the following definition:

\def\bar{bar}

\def\foo{foo-\bar}

we get:

NAME RESULT

\directlua{token.scan_string()}{foo} foo full expansion

\directlua{token.scan_string()}foo foo letters and others

\directlua{token.scan_string()}\foo foo-bar meaning

The \foo case only gives themeaning, but one can pass an already expanded definition (\edef’d).

In the case of the braced variant one can of course use the \detokenize and \unexpanded prim-

itives since there we do expand.

The scan_word scanner can be used to implement for instance a number scanner:

function token.scan_number(base)

return tonumber(token.scan_word(),base)

end

This scanner accepts any valid Lua number so it is a way to pick up floats in the input.

You can use the Lua interface as follows:

\directlua {

function mymacro(n)

...

end

}

217The TEX related libraries

\def\mymacro#1{%

\directlua {

mymacro(\number\dimexpr#1)

}%

}

\mymacro{12pt}

\mymacro{\dimen0}

You can also do this:

\directlua {

function mymacro()

local d = token.scan_dimen()

...

end

}

\def\mymacro{%

\directlua {

mymacro()

}%

}

\mymacro 12pt

\mymacro \dimen0

It is quite clear from looking at the code what the first method needs as argument(s). For the

second method you need to look at the Lua code to see what gets picked up. Instead of passing

from TEX to Lua we let Lua fetch from the input stream.

In the first case the input is tokenized and then turned into a string, then it is passed to Lua

where it gets interpreted. In the second case only a function call gets interpreted but then the

input is picked up by explicitly calling the scanner functions. These return proper Lua variables

so no further conversion has to be done. This is more efficient but in practice (given what TEX

has to do) this effect should not be overestimated. For numbers and dimensions it saves a bit

but for passing strings conversion to and from tokens has to be done anyway (although we can

probably speed up the process in later versions if needed).

10.6.2 Picking up one token

The scanners look for a sequence. When you want to pick up one token from the input you use

get_next. This creates a token with the (low level) properties as discussed next. This token

is just the next one. If you want to enforce expansion first you can use scan_token. Internally

tokens are characterized by a number that packs a lot of information. In order to access the bits

of information a token is wrapped in a userdata object.

The expand function will trigger expansion of the next token in the input. This can be quite

unpredictable but when you call it you probably know enough about TEX not to be too worried

about that. It basically is a call to the internal expand related function.

The TEX related libraries218

10.6.3 Creating tokens

The creator function can be used as follows:

local t = token.create("relax")

This gives back a token object that has the properties of the \relax primitive. The possible

properties of tokens are:

NAME EXPLANATION

command a number representing the internal command number

cmdname the type of the command (for instance the catcode in case of a character or the

classifier that determines the internal treatment

csname the associated control sequence (if applicable)

id the unique id of the token

tok the full token number as stored in TEX

active a boolean indicating the active state of the token

expandable a boolean indicating if the token (macro) is expandable

protected a boolean indicating if the token (macro) is protected

mode a number either representing a character or another entity

index a number running from 0x0000 upto 0xFFFF indicating a TEX register index

Alternatively you can use a getter get_<fieldname> to access a property of a token.

The numbers that represent a catcode are the same as in TEX itself, so using this information

assumes that you know a bit about TEX’s internals. The other numbers and names are used

consistently but are not frozen. So, when you use them for comparing you can best query a

known primitive or character first to see the values.

You can ask for a list of commands:

local t = token.commands()

The id of a token class can be queried as follows:

local id = token.command_id("math_shift")

If you really know what you’re doing you can create character tokens by not passing a string but

a number:

local letter_x = token.create(string.byte("x"))

local other_x = token.create(string.byte("x"),12)

Passing weird numbers can give side effects so don’t expect too much help with that. As said,

you need to know what you’re doing. The best way to explore the way these internals work is

to just look at how primitives or macros or \chardef’d commands are tokenized. Just create a

known one and inspect its fields. A variant that ignores the current catcode table is:

local whatever = token.new(123,12)

You can test if a control sequence is defined with is_defined, which accepts a string and returns

a boolean:

219The TEX related libraries

local okay = token.is_defined("foo")

When a second argument to is_defined is true the check is for an undefined control sequence

(only), otherwise any undefined command gives true.

The largest character possible is returned by biggest_char, just in case you need to know that

boundary condition.

10.6.4 Macros

The set_macro function can get upto 4 arguments:

set_macro("csname","content")

set_macro("csname","content","global")

set_macro("csname")

You can pass a catcodetable identifier as first argument:

set_macro(catcodetable,"csname","content")

set_macro(catcodetable,"csname","content","global")

set_macro(catcodetable,"csname")

The results are like:

\def\csname{content}

\gdef\csname{content}

\def\csname{}

The get_macro function can be used to get the content of a macro while the get_meaning func-

tion gives the meaning including the argument specification (as usual in TEX separated by ->).

The set_char function can be used to do a \chardef at the Lua end, where invalid assignments

are silently ignored:

set_char("csname",number)

set_char("csname",number,"global")

A special one is the following:

set_lua("mycode",id)

set_lua("mycode",id,"global","protected")

This creates a token that refers to a Lua function with an entry in the table that you can access

with lua.get_functions_table. It is the companion to \luadef.

10.6.5 Pushing back

There is a (for now) experimental putter:

local t1 = token.get_next()

The TEX related libraries220

local t2 = token.get_next()

local t3 = token.get_next()

local t4 = token.get_next()

-- watch out, we flush in sequence

token.put_next { t1, t2 }

-- but this one gets pushed in front

token.put_next (t3, t4)

When we scan wxyz! we get yzwx! back. The argument is either a table with tokens or a list of

tokens. The token.expand function will trigger expansion but what happens really depends on

what you’re doing where.

10.6.6 Nota bene

When scanning for the next token you need to keep in mind that we’re not scanning like TEX

does: expanding, changing modes and doing things as it goes. When we scan with Lua we just

pick up tokens. Say that we have:

\bar

but \bar is undefined. Normally TEX will then issue an error message. However, when we have:

\def\foo{\bar}

We get no error, unless we expand \foo while \bar is still undefined. What happens is that as

soon as TEX sees an undefined macro it will create a hash entry and when later it gets defined

that entry will be reused. So, \bar really exists but can be in an undefined state.

bar : bar

foo : foo

myfirstbar :

This was entered as:

bar : \directlua{tex.print(token.scan_csname())}\bar

foo : \directlua{tex.print(token.scan_csname())}\foo

myfirstbar : \directlua{tex.print(token.scan_csname())}\myfirstbar

The reason that you see bar reported and not myfirstbar is that \bar was already used in a

previous paragraph.

If we now say:

\def\foo{}

we get:

bar : bar

foo : foo

myfirstbar :

221The TEX related libraries

And if we say

\def\foo{\bar}

we get:

bar : bar

foo : foo

myfirstbar :

When scanning from Lua we are not in a mode that defines (undefined) macros at all. There we

just get the real primitive undefined macro token.

720752 536941998

728169 536941998

727010 536941998

This was generated with:

\directlua{local t = token.get_next() tex.print(t.id.." "..t.tok)}\myfirstbar

\directlua{local t = token.get_next() tex.print(t.id.." "..t.tok)}\mysecondbar

\directlua{local t = token.get_next() tex.print(t.id.." "..t.tok)}\mythirdbar

So, we do get a unique token because after all we need some kind of Lua object that can be

used and garbage collected, but it is basically the same one, representing an undefined control

sequence.

10.7 The kpse library

This library provides two separate, but nearly identical interfaces to the kpathsea file search

functionality: there is a ‘normal’ procedural interface that shares its kpathsea instance with

LuaTEX itself, and an object oriented interface that is completely on its own.

10.7.1 set_program_name and new

The way the library looks up variables is driven by the texmf.cmf file where the currently set

program name acts as filter. You can check what file is used by with default_texmfcnf.

Before the search library can be used at all, its database has to be initialized. There are three

possibilities, two of which belong to the procedural interface.

First, when LuaTEX is used to typeset documents, this initialization happens automatically and

the kpathsea executable and program names are set to luatex (that is, unless explicitly prohib-

ited by the user’s startup script. See section 4.1 for more details).

Second, in TEXLua mode, the initialization has to be done explicitly via the kpse.set_pro-

gram_name function, which sets the kpathsea executable (and optionally program) name.

kpse.set_program_name(<string> name)

kpse.set_program_name(<string> name, <string> progname)

The TEX related libraries222

The second argument controls the use of the ‘dotted’ values in the texmf.cnf configuration file,

and defaults to the first argument.

Third, if you prefer the object oriented interface, you have to call a different function. It has the

same arguments, but it returns a userdata variable.

local kpathsea = kpse.new(<string> name)

local kpathsea = kpse.new(<string> name, <string> progname)

Apart from these two functions, the calling conventions of the interfaces are identical. De-

pending on the chosen interface, you either call kpse.find_file or kpathsea:find_file, with

identical arguments and return values.

10.7.2 record_input_file and record_output_file

These two function can be used to register used files. Because callbacks can load files themselves

you might need these helpers (if you use recording at all).

kpse.record_input_file(<string> name)

kpse.record_output_file(<string> name)

10.7.3 find_file

The most often used function in the library is find_file:

<string> f = kpse.find_file(<string> filename)

<string> f = kpse.find_file(<string> filename, <string> ftype)

<string> f = kpse.find_file(<string> filename, <boolean> mustexist)

<string> f = kpse.find_file(<string> filename, <string> ftype, <boolean> mustex-

ist)

<string> f = kpse.find_file(<string> filename, <string> ftype, <number> dpi)

Arguments:

filename

the name of the file you want to find, with or without extension.

ftype

maps to the -format argument of kpsewhich. The supported ftype values are the same as

the ones supported by the standalone kpsewhich program: MetaPost support, PostScript

header, TeX system documentation, TeX system sources, Troff fonts, afm, base,

bib, bitmap font, bst, cid maps, clua, cmap files, cnf, cweb, dvips config,

enc files, fmt, font feature files, gf, graphic/figure, ist, lig files, ls-R,

lua, map, mem, mf, mfpool, mft, misc fonts, mlbib, mlbst, mp, mppool, ocp,

ofm, opentype fonts, opl, other binary files, other text files, otp, ovf,

ovp, pdftex config, pk, subfont definition files, tex, texmfscripts, texpool,

tfm, truetype fonts, type1 fonts, type42 fonts, vf, web, web2c files

The default type is tex. Note: this is different from kpsewhich, which tries to deduce the file

type itself from looking at the supplied extension.

223The TEX related libraries

mustexist

is similar to kpsewhich’s -must-exist, and the default is false. If you specify true (or a

non-zero integer), then the kpse library will search the disk as well as the ls-R databases.

dpi

This is used for the size argument of the formats pk, gf, and bitmap font.

If --output-directory is specified and the value is a relative pathname, the file is searched

first here and if it fails it will be searched in the standard tree.

10.7.4 lookup

Amore powerful (but slower) generic method for finding files is also available. It returns a string

for each found file.

<string> f, ... = kpse.lookup(<string> filename, <table> options)

The options match commandline arguments from kpsewhich:

KEY TYPE EXPLANATION

debug number set debugging flags for this lookup

format string use specific file type (see list above)

dpi number use this resolution for this lookup; default 600

path string search in the given path

all boolean output all matches, not just the first

mustexist boolean search the disk as well as ls-R if necessary

mktexpk boolean disable/enable mktexpk generation for this lookup

mktextex boolean disable/enable mktextex generation for this lookup

mktexmf boolean disable/enable mktexmf generation for this lookup

mktextfm boolean disable/enable mktextfm generation for this lookup

subdir string or table only outputmatches whose directory part endswith the given string(s)

If --output-directory is specified and the value is a relative pathname, the file is searched

first here and then in the standard tree.

10.7.5 init_prog

Extra initialization for programs that need to generate bitmap fonts.

kpse.init_prog(<string> prefix, <number> base_dpi, <string> mfmode)

kpse.init_prog(<string> prefix, <number> base_dpi, <string> mfmode, <string>

fallback)

10.7.6 readable_file

Test if an (absolute) file name is a readable file.

<string> f = kpse.readable_file(<string> name)

The TEX related libraries224

The return value is the actual absolute filename you should use, because the disk name is not

always the same as the requested name, due to aliases and system-specific handling under e.g.

msdos. Returns nil if the file does not exist or is not readable.

10.7.7 expand_path

Like kpsewhich’s -expand-path:

<string> r = kpse.expand_path(<string> s)

10.7.8 expand_var

Like kpsewhich’s -expand-var:

<string> r = kpse.expand_var(<string> s)

10.7.9 expand_braces

Like kpsewhich’s -expand-braces:

<string> r = kpse.expand_braces(<string> s)

10.7.10 show_path

Like kpsewhich’s -show-path:

<string> r = kpse.show_path(<string> ftype)

10.7.11 var_value

Like kpsewhich’s -var-value:

<string> r = kpse.var_value(<string> s)

10.7.12 version

Returns the kpathsea version string.

<string> r = kpse.version()

225The graphic libraries

11 The graphic libraries

11.1 The img library

The img library can be used as an alternative to \pdfximage and \pdfrefximage, and the asso-

ciated ‘satellite’ commands like \pdfximagebbox. Image objects can also be used within virtual

fonts via the image command listed in section 6.3.

11.1.1 new

<image> var = img.new()

<image> var = img.new(<table> image_spec)

This function creates a userdata object of type ‘image’. The image_spec argument is optional.

If it is given, it must be a table, and that table must contain a filename key. A number of other

keys can also be useful, these are explained below.

You can either say

a = img.new()

followed by

a.filename = "foo.png"

or you can put the file name (and some or all of the other keys) into a table directly, like so:

a = img.new({filename='foo.pdf', page=1})

The generated <image> userdata object allows access to a set of user-specified values as well as

a set of values that are normally filled in and updated automatically by LuaTEX itself. Some of

those are derived from the actual image file, others are updated to reflect the pdf output status

of the object.

There is one required user-specified field: the file name (filename). It can optionally be aug-

mented by the requested image dimensions (width, depth, height), user-specified image attrib-

utes (attr), the requested pdf page identifier (page), the requested boundingbox (pagebox) for

pdf inclusion, the requested color space object (colorspace).

The function img.new does not access the actual image file, it just creates the <image> userdata

object and initializes some memory structures. The <image> object and its internal structures

are automatically garbage collected.

Once the image is scanned, all the values in the <image> except width, height and depth, be-

come frozen, and you cannot change them any more.

You can use pdf.setignoreunknownimages(1) (or at the TEX end the \pdfvariable ignore-

unknownimages) to get around a quit when no known image type is found (based on name or

preamble). Beware: this will not catch invalid images and we cannot guarantee side effects.

The graphic libraries226

A zero dimension image is still included when requested. No special flags are set. A proper

workflow will not rely in such a catch but make sure that images are valid.

11.1.2 fields

<table> keys = img.fields()

This function returns a list of all the possible image_spec keys, both user-supplied and automatic

ones.

FIELD NAME TYPE DESCRIPTION

attr string the image attributes for LuaTEX

bbox table table with 4 boundingbox dimensions llx, lly, urx and ury over-

ruling the pagebox entry

colordepth number the number of bits used by the color space

colorspace number the color space object number

depth number the image depth for LuaTEX

filename string the image file name

filepath string the full (expanded) file name of the image

height number the image height for LuaTEX

imagetype string one of pdf, png, jpg, jp2 or jbig2

index number the pdf image name suffix

objnum number the pdf image object number

page number the identifier for the requested image page

pagebox string the requested bounding box, one of none, media, crop, bleed,

trim, art

pages number the total number of available pages

rotation number the image rotation from included pdf file, in multiples of 90 deg.

stream string the raw stream data for an /Xobject /Form object

transform number the image transform, integer number 0..7

orientation number the (jpeg) image orientation, integer number 1..8 (0 for unset)

width number the image width for LuaTEX

xres number the horizontal natural image resolution (in dpi)

xsize number the natural image width

yres number the vertical natural image resolution (in dpi)

ysize number the natural image height

visiblefilename string when set, this name will find its way in the pdf file as PTEX specifi-

cation; when an empty string is assigned nothing is written to file;

otherwise the natural filename is taken

userpassword string the userpassword needed for opening a pdf file

ownerpassword string the ownerpassword needed for opening a pdf file

keepopen boolean keep the pdf file open

nobbox boolean don’t add a boundingbox specification for streams

nolength boolean don’t add length key nor compress for streams

nosize boolean don’t add size fields for streams

227The graphic libraries

A running (undefined) dimension in width, height, or depth is represented as nil in Lua, so

if you want to load an image at its ‘natural’ size, you do not have to specify any of those three

fields.

The stream parameter allows to fabricate an /XObject /Form object from a string giving the

stream contents, e.g., for a filled rectangle:

a.stream = "0 0 20 10 re f"

When writing the image, an /Xobject /Form object is created, like with embedded pdf file writ-

ing. The object is written out only once. The stream key requires that also the bbox table is

given. The stream key conflicts with the filename key. The transform key works as usual also

with stream.

The bbox key needs a table with four boundingbox values, e.g.:

a.bbox = { "30bp", 0, "225bp", "200bp" }

This replaces and overrules any given pagebox value; with given bbox the box dimensions coming

with an embedded pdf file are ignored. The xsize and ysize dimensions are set accordingly,

when the image is scaled. The bbox parameter is ignored for non-pdf images.

The transform allows to mirror and rotate the image in steps of 90 deg. The default value 0
gives an unmirrored, unrotated image. Values 1 − 3 give counterclockwise rotation by 90, 180,
or 270 degrees, whereas with values 4 − 7 the image is first mirrored and then rotated coun-
terclockwise by 90, 180, or 270 degrees. The transform operation gives the same visual result
as if you would externally preprocess the image by a graphics tool and then use it by LuaTEX.

If a pdf file to be embedded already contains a /Rotate specification, the rotation result is the

combination of the /Rotate rotation followed by the transform operation.

11.1.3 scan

<image> var = img.scan(<image> var)

<image> var = img.scan(<table> image_spec)

When you say img.scan(a) for a new image, the file is scanned, and variables such as xsize,

ysize, image type, number of pages, and the resolution are extracted. Each of the width,

height, depth fields are set up according to the image dimensions, if they were not given an

explicit value already. An image file will never be scanned more than once for a given image

variable. With all subsequent img.scan(a) calls only the dimensions are again set up (if they

have been changed by the user in the meantime).

For ease of use, you can do right-away a

<image> a = img.scan { filename = "foo.png" }

without a prior img.new.

Nothing is written yet at this point, so you can do a=img.scan, retrieve the available info like

image width and height, and then throw away a again by saying a=nil. In that case no image

object will be reserved in the PDF, and the used memory will be cleaned up automatically.

The graphic libraries228

11.1.4 copy

<image> var = img.copy(<image> var)

<image> var = img.copy(<table> image_spec)

If you say a = b, then both variables point to the same <image> object. if you want to write out

an image with different sizes, you can do b = img.copy(a).

Afterwards, a and b still reference the same actual image dictionary, but the dimensions for b

can now be changed from their initial values that were just copies from a.

11.1.5 write, immediatewrite, immediatewriteobject

<image> var = img.write(<image> var)

<image> var = img.write(<table> image_spec)

By img.write(a) a pdf object number is allocated, and a rule node of subtype image is generated

and put into the output list. By this the image a is placed into the page stream, and the image

file is written out into an image stream object after the shipping of the current page is finished.

Again you can do a terse call like

img.write { filename = "foo.png" }

The <image> variable is returned in case you want it for later processing. You can also write an

object.

By img.immediatewrite(a) a pdf object number is allocated, and the image file for image a is

written out immediately into the pdf file as an image stream object (like with \immediate\pdfx-

image). The object number of the image stream dictionary is then available by the objnum key.

No pdf_refximage whatsit node is generated. You will need an img.write(a) or img.node(a)

call to let the image appear on the page, or reference it by another trick; else you will have a

dangling image object in the pdf file.

<image> var = img.immediatewrite(<image> var)

<image> var = img.immediatewrite(<table> image_spec)

Also here you can do a terse call like

a = img.immediatewrite { filename = "foo.png" }

The <image> variable is returned and you will most likely need it.

The next function is kind of special as it copies an object from a (pdf) image file. This features

is experimental and might disappear.

<integer> objnum = img.immediatewriteobject(<image> var, <integer> objnum)

<integer> objnum = img.immediatewriteobject(<table> image_spec, <integer> ob-

jnum)

229The graphic libraries

11.1.6 node

<node> n = img.node(<image> var)

<node> n = img.node(<table> image_spec)

This function allocates a pdf object number and returns a whatsit node of subtype pdf_refxim-

age, filled with the image parameters width, height, depth, and objnum. Also here you can do

a terse call like:

n = img.node ({ filename = "foo.png" })

This example outputs an image:

node.write(img.node{filename="foo.png"})

11.1.7 types

<table> types = img.types()

This function returns a list with the supported image file type names, currently these are pdf,

png, jpg, jp2 (JPEG 2000), and jbig2.

11.1.8 boxes

<table> boxes = img.boxes()

This function returns a list with the supported pdf page box names, currently these are media,

crop, bleed, trim, and art, all in lowercase.

The pdf file is kept open after its properties are determined. After inclusion, which happens

when the page that references the image is flushed, the file is closed. This means that when

you have thousands of images on one page, your operating system might decide to abort the

run. When you include more than one page from a pdf file you can set the keepopen flag when

you allocate an image object, or pass the keepopen directive when you refer to the image with

\useimageresource. This only makes sense when you embed many pages. An \immediate

applied to \saveimageresource will also force a close after inclusion.

\immediate\useimageresource{foo.pdf}%

\saveimageresource \lastsavedimageresourceindex % closed

\useimageresource{foo.pdf}%

\saveimageresource \lastsavedimageresourceindex % kept open

\useimageresource{foo.pdf}%

\saveimageresource keepopen\lastsavedimageresourceindex % kept open

\directlua{img.write(img.scan{ file = "foo.pdf" })} % closed

\directlua{img.write(img.scan{ file = "foo.pdf", keepopen = true })} % kept open

The graphic libraries230

11.2 The mplib library

The MetaPost library interface registers itself in the table mplib. It is based on mplib version

2.02.

11.2.1 new

To create a new MetaPost instance, call

<mpinstance> mp = mplib.new({...})

This creates the mp instance object. The argument hash can have a number of different fields,

as follows:

NAME TYPE DESCRIPTION DEFAULT

error_line number error line width 79

print_line number line length in ps output 100

random_seed number the initial random seed variable

math_mode string the number system to use: scaled

scaled, double or decimal

interaction string the interaction mode: batch, errorstop

nonstop, scroll or errorstop

job_name string --jobname mpout

find_file function a function to find files only local files

The binary mode is no longer available in the LuaTEX version of mplib. It offers no real advantage

and brings a ton of extra libraries with platform specific properties that we can now avoid.

We might introduce a high resolution scaled variant at some point but only when it pays of

performance wise.

The find_file function should be of this form:

<string> found = finder (<string> name, <string> mode, <string> type)

with:

NAME THE REQUESTED FILE

mode the file mode: r or w

type the kind of file, one of: mp, tfm, map, pfb, enc

Return either the full path name of the found file, or nil if the file cannot be found.

Note that the new version of mplib no longer uses binary mem files, so the way to preload a set

of macros is simply to start off with an input command in the first execute call.

When you are processing a snippet of text starting with btex and ending with either etex or

verbatimtex, the MetaPost texscriptmode parameter controls how spaces and newlines get

honoured. The default value is 1. Possible values are:

NAME MEANING

0 no newlines

231The graphic libraries

1 newlines in verbatimtex

2 newlines in verbatimtex and etex

3 no leading and trailing strip in verbatimtex

4 no leading and trailing strip in verbatimtex and btex

That way the Lua handler (assigned to make_text) can do what it likes. An etex has to be

followed by a space or ; or be at the end of a line and preceded by a space or at the beginning

of a line.

11.2.2 statistics

You can request statistics with:

<table> stats = mp:statistics()

This function returns the vital statistics for an mplib instance. There are four fields, giving the

maximum number of used items in each of four allocated object classes:

FIELD TYPE EXPLANATION

main_memory number memory size

hash_size number hash size

param_size number simultaneous macro parameters

max_in_open number input file nesting levels

Note that in the new version of mplib, this is informational only. The objects are all allocated

dynamically, so there is no chance of running out of space unless the available system memory

is exhausted.

11.2.3 execute

You can ask the MetaPost interpreter to run a chunk of code by calling

<table> rettable = execute(mp,"metapost code")

for various bits of MetaPost language input. Be sure to check the rettable.status (see below)

because when a fatal MetaPost error occurs the mplib instance will become unusable thereafter.

Generally speaking, it is best to keep your chunks small, but beware that all chunks have to obey

proper syntax, like each of them is a small file. For instance, you cannot split a single statement

over multiple chunks.

In contrast with the normal stand alone mpost command, there is no implied ‘input’ at the start

of the first chunk.

11.2.4 finish

<table> rettable = finish(mp)

The graphic libraries232

If for some reason you want to stop using an mplib instance while processing is not yet actually

done, you can call finish. Eventually, used memory will be freed and open files will be closed

by the Lua garbage collector, but an explicit finish is the only way to capture the final part of

the output streams.

11.2.5 Result table

The return value of execute and finish is a table with a few possible keys (only status is always

guaranteed to be present).

FIELD TYPE EXPLANATION

log string output to the ‘log’ stream

term string output to the ‘term’ stream

error string output to the ‘error’ stream (only used for ‘out of memory’)

status number the return value: 0 = good, 1 = warning, 2 = errors, 3 = fatal error

fig table an array of generated figures (if any)

When status equals 3, you should stop using this mplib instance immediately, it is no longer

capable of processing input.

If it is present, each of the entries in the fig array is a userdata representing a figure object,

and each of those has a number of object methods you can call:

FIELD TYPE EXPLANATION

boundingbox function returns the bounding box, as an array of 4 values

postscript function returns a string that is the ps output of the fig. this function accepts

two optional integer arguments for specifying the values of prologues

(first argument) and procset (second argument)

svg function returns a string that is the svg output of the fig. This function accepts

an optional integer argument for specifying the value of prologues

objects function returns the actual array of graphic objects in this fig

copy_objects function returns a deep copy of the array of graphic objects in this fig

filename function the filename this fig’s PostScript output would have written to in

stand alone mode

width function the fontcharwd value

height function the fontcharht value

depth function the fontchardp value

italcorr function the fontcharit value

charcode function the (rounded) charcode value

Note: you can call fig:objects() only once for any one fig object!

When the boundingbox represents a ‘negated rectangle’, i.e. when the first set of coordinates is

larger than the second set, the picture is empty.

Graphical objects come in various types that each has a different list of accessible values. The

types are: fill, outline, text, start_clip, stop_clip, start_bounds, stop_bounds, special.

There is a helper function (mplib.fields(obj)) to get the list of accessible values for a particular

object, but you can just as easily use the tables given below.

233The graphic libraries

All graphical objects have a field type that gives the object type as a string value; it is not explicit

mentioned in the following tables. In the following, numbers are PostScript points represented

as a floating point number, unless stated otherwise. Field values that are of type table are

explained in the next section.

11.2.5.1 fill

FIELD TYPE EXPLANATION

path table the list of knots

htap table the list of knots for the reversed trajectory

pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)

miterlimit number miterlimit

prescript string the prescript text

postscript string the postscript text

The entries htap and pen are optional.

11.2.5.2 outline

FIELD TYPE EXPLANATION

path table the list of knots

pen table knots of the pen

color table the object’s color

linejoin number line join style (bare number)

miterlimit number miterlimit

linecap number line cap style (bare number)

dash table representation of a dash list

prescript string the prescript text

postscript string the postscript text

The entry dash is optional.

11.2.5.3 text

FIELD TYPE EXPLANATION

text string the text

font string font tfm name

dsize number font size

color table the object’s color

width number

height number

depth number

transform table a text transformation

The graphic libraries234

prescript string the prescript text

postscript string the postscript text

11.2.5.4 special

FIELD TYPE EXPLANATION

prescript string special text

11.2.5.5 start_bounds, start_clip

FIELD TYPE EXPLANATION

path table the list of knots

11.2.5.6 stop_bounds, stop_clip

Here are no fields available.

11.2.6 Subsidiary table formats

11.2.6.1 Paths and pens

Paths and pens (that are really just a special type of paths as far as mplib is concerned) are

represented by an array where each entry is a table that represents a knot.

FIELD TYPE EXPLANATION

left_type string when present: endpoint, but usually absent

right_type string like left_type

x_coord number X coordinate of this knot

y_coord number Y coordinate of this knot

left_x number X coordinate of the precontrol point of this knot

left_y number Y coordinate of the precontrol point of this knot

right_x number X coordinate of the postcontrol point of this knot

right_y number Y coordinate of the postcontrol point of this knot

There is one special case: pens that are (possibly transformed) ellipses have an extra stringB

Avalued key type with value elliptical besides the array part containing the knot list.

11.2.6.2 Colors

A color is an integer array with 0, 1, 3 or 4 values:

FIELD TYPE EXPLANATION

0 marking only no values

1 greyscale one value in the range (0, 1), ‘black’ is 0

235The graphic libraries

3 rgb three values in the range (0, 1), ‘black’ is 0, 0, 0
4 cmyk four values in the range (0, 1), ‘black’ is 0, 0, 0, 1

If the color model of the internal object was uninitialized, then it was initialized to the values

representing ‘black’ in the colorspace defaultcolormodel that was in effect at the time of the

shipout.

11.2.6.3 Transforms

Each transform is a six-item array.

INDEX TYPE EXPLANATION

1 number represents x

2 number represents y

3 number represents xx

4 number represents yx

5 number represents xy

6 number represents yy

Note that the translation (index 1 and 2) comes first. This differs from the ordering in PostScript,

where the translation comes last.

11.2.6.4 Dashes

Each dash is two-item hash, using the same model as PostScript for the representation of the

dashlist. dashes is an array of ‘on’ and ‘off’, values, and offset is the phase of the pattern.

FIELD TYPE EXPLANATION

dashes hash an array of on-off numbers

offset number the starting offset value

11.2.7 Pens and pen_info

There is helper function (pen_info(obj)) that returns a table containing a bunch of vital char-

acteristics of the used pen (all values are floats):

FIELD TYPE EXPLANATION

width number width of the pen

sx number 𝑥 scale
rx number 𝑥𝑦 multiplier
ry number 𝑦𝑥 multiplier
sy number 𝑦 scale
tx number 𝑥 offset
ty number 𝑦 offset

The graphic libraries236

11.2.8 Character size information

These functions find the size of a glyph in a defined font. The fontname is the same name as the

argument to infont; the char is a glyph id in the range 0 to 255; the returned w is in AFM units.

11.2.8.1 char_width

<number> w = char_width(mp,<string> fontname, <number> char)

11.2.8.2 char_height

<number> w = char_height(mp,<string> fontname, <number> char)

11.2.8.3 char_depth

<number> w = char_depth(mp,<string> fontname, <number> char)

11.2.8.4 get_[boolean|numeric|string|path]

When a script call brings you from the MetaPost run (temporarily) back to Lua you can access

variables, but only if they are known (so for instance anonymous capsules like loop variables are

not accessible).

<boolean> w = get_boolean(mp,<string> name)

<number> n = get_numeric(mp,<string> name)

<string> s = get_string (mp,<string> name)

<table> p = get_path (mp,<string> name)

The path is returned as a table with subtables that have six numbers: the coordinates of the

point, pre- and postcontrol. A cycle fields indicates if a path is cyclic.

237The fontloader

12 The fontloader

The fontloader library is sort of independent of the rest in the sense that it can load font into a

Lua table that then can be converted into a table suitable for TEX. The library is an adapted subset

of FontForge and as such gives a similar view on a font (which has advantages when you want

to debug). We will not discuss OpenType in detail here as the Microsoft website offers enough

information about it. The tables returned by the loader are not that far from the standard. We

have no plans to extend the loader (it may even become an external module at some time).

12.1 Getting quick information on a font

When you want to locate font by name you need some basic information that is hidden in the

font files. For that reason we provide an efficient helper that gets the basic information without

loading all of the font. Normally this helper is used to create a font (name) database.

<table> info =

fontloader.info(<string> filename)

This function returns either nil, or a table, or an array of small tables (in the case of a TrueType

collection). The returned table(s) will contain some fairly interesting information items from the

font(s) defined by the file:

KEY TYPE EXPLANATION

fontname string the PostScript name of the font

fullname string the formal name of the font

familyname string the family name this font belongs to

weight string a string indicating the color value of the font

version string the internal font version

italicangle float the slant angle

units_per_em number 1000 for PostScript-based fonts, usually 2048 for TrueType

pfminfo table (see section 12.6.6)

Getting information through this function is (sometimes much) more efficient than loading the

font properly, and is therefore handy when you want to create a dictionary of available fonts

based on a directory contents.

12.2 Loading an OPENTYPE or TRUETYPE file

If you want to use an OpenType font, you have to get the metric information from somewhere.

Using the fontloader library, the simplest way to get that information is thus:

function load_font (filename)

local metrics = nil

local font = fontloader.open(filename)

if font then

The fontloader238

metrics = fontloader.to_table(font)

fontloader.close(font)

end

return metrics

end

myfont = load_font('/opt/tex/texmf/fonts/data/arial.ttf')

The main function call is

<userdata> f, <table> w = fontloader.open(<string> filename)

<userdata> f, <table> w = fontloader.open(<string> filename, <string> fontname)

The first return value is a userdata representation of the font. The second return value is a table

containing any warnings and errors reported by fontloader while opening the font. In normal

typesetting, you would probably ignore the second argument, but it can be useful for debugging

purposes.

For TrueType collections (when filename ends in ’ttc’) and dfont collections, you have to use a

second string argument to specify which font you want from the collection. Use the fontname

strings that are returned by fontloader.info for that.

To turn the font into a table, fontloader.to_table is used on the font returned by font-

loader.open.

<table> f = fontloader.to_table(<userdata> font)

This table cannot be used directly by LuaTEX and should be turned into another one as described

in chapter 6. Do not forget to store the fontname value in the psname field of the metrics table to

be returned to LuaTEX, otherwise the font inclusion backend will not be able to find the correct

font in the collection.

See section 12.5 for details on the userdata object returned by fontloader.open and the layout

of the metrics table returned by fontloader.to_table.

The font file is parsed and partially interpreted by the font loading routines from FontForge. The

file format can be OpenType, TrueType, TrueType Collection, cff, or Type1.

There are a few advantages to this approach compared to reading the actual font file ourselves:

‣ The font is automatically re-encoded, so that the metrics table for TrueType and OpenType

fonts is using Unicode for the character indices.

‣ Many features are pre-processed into a format that is easier to handle than just the bare

tables would be.

‣ PostScript-based OpenType fonts do not store the character height and depth in the font file,

so the character boundingbox has to be calculated in some way.

A loaded font is discarded with:

fontloader.close(<userdata> font)

239The fontloader

12.3 Applying a ‘feature file’

You can apply a ‘feature file’ to a loaded font:

<table> errors = fontloader.apply_featurefile(<userdata> font, <string> file-

name)

A ‘feature file’ is a textual representation of the features in an OpenType font. See

http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html

and

http://fontforge.sourceforge.net/featurefile.html

for a more detailed description of feature files.

If the function fails, the return value is a table containing any errors reported by fontloader while

applying the feature file. On success, nil is returned.

12.4 Applying an ‘AFM file’

You can apply an ‘afm file’ to a loaded font:

<table> errors = fontloader.apply_afmfile(<userdata> font, <string> filename)

An afm file is a textual representation of (some of) the meta information in a Type1 font. See

ftp://ftp.math.utah.edu/u/ma/hohn/linux/postscript/5004.AFM_Spec.pdf

for more information about afm files.

Note: If you fontloader.open a Type1 file named font.pfb, the library will automatically search

for and apply font.afm if it exists in the same directory as the file font.pfb. In that case, there

is no need for an explicit call to apply_afmfile().

If the function fails, the return value is a table containing any errors reported by fontloader while

applying the AFM file. On success, nil is returned.

12.5 Fontloader font tables

As mentioned earlier, the return value of fontloader.open is a userdata object. One way to

have access to the actual metrics is to call fontloader.to_table on this object, returning the

table structure that is explained in the following sections. In the following sections we will not

explain each field in detail. Most fields are self descriptive and for the more technical aspects

you need to consult the relevant font references.

It turns out that the result from fontloader.to_table sometimes needs very large amounts of

memory (depending on the font’s complexity and size) so it is possible to access the userdata

object directly.

The fontloader240

‣ All top-level keys that would be returned by to_table() can also be accessed directly.

‣ The top-level key ‘glyphs’ returns a virtual array that allows indices from f.glyphmin to

(f.glyphmax).

‣ The items in that virtual array (the actual glyphs) are themselves also userdata objects, and

each has accessors for all of the keys explained in the section ‘Glyph items’ below.

‣ The top-level key ‘subfonts’ returns an actual array of userdata objects, one for each of the

subfonts (or nil, if there are no subfonts).

A short example may be helpful. This code generates a printout of all the glyph names in the

font PunkNova.kern.otf:

local f = fontloader.open('PunkNova.kern.otf')

print (f.fontname)

local i = 0

if f.glyphcnt > 0 then

for i=f.glyphmin,f.glyphmax do

local g = f.glyphs[i]

if g then

print(g.name)

end

i = i + 1

end

end

fontloader.close(f)

In this case, the LuaTEX memory requirement stays below 100MB on the test computer, while

the internal structure generated by to_table() needs more than 2GB of memory (the font itself

is 6.9MB in disk size).

Only the top-level font, the subfont table entries, and the glyphs are virtual objects, everything

else still produces normal Lua values and tables.

If you want to know the valid fields in a font or glyph structure, call the fields function on an

object of a particular type (either glyph or font):

<table> fields = fontloader.fields(<userdata> font)

<table> fields = fontloader.fields(<userdata> font_glyph)

For instance:

local fields = fontloader.fields(f)

local fields = fontloader.fields(f.glyphs[0])

12.6 Table types

12.6.1 The main table

The top-level keys in the returned table are (the explanations in this part of the documentation

are not yet finished):

241The fontloader

KEY TYPE explanation

table_version number indicates the metrics version (currently 0.3)

fontname string PostScript font name

fullname string official (human-oriented) font name

familyname string family name

weight string weight indicator

copyright string copyright information

filename string the file name

version string font version

italicangle float slant angle

units_per_em number 1000 for PostScript-based fonts, usually 2048 for

TrueType

ascent number height of ascender in units_per_em

descent number depth of descender in units_per_em

upos float

uwidth float

uniqueid number

glyphs array

glyphcnt number number of included glyphs

glyphmax number maximum used index the glyphs array

glyphmin number minimum used index the glyphs array

notdef_loc number location of the .notdef glyph or -1when not present

hasvmetrics number

onlybitmaps number

serifcheck number

isserif number

issans number

encodingchanged number

strokedfont number

use_typo_metrics number

weight_width_slope_only number

head_optimized_for_cleartype number

uni_interp enum unset, none, adobe, greek, japanese, trad_chi-

nese, simp_chinese, korean, ams

origname string the file name, as supplied by the user

map table

private table

xuid string

pfminfo table

names table

cidinfo table

subfonts array

commments string

fontlog string

cvt_names string

anchor_classes table

The fontloader242

ttf_tables table

ttf_tab_saved table

kerns table

vkerns table

texdata table

lookups table

gpos table

gsub table

mm table

chosenname string

macstyle number

fondname string

fontstyle_id number

fontstyle_name table

strokewidth float

mark_classes table

creationtime number

modificationtime number

os2_version number

math table

validation_state table

horiz_base table

vert_base table

extrema_bound number

truetype boolean signals a TrueType font

12.6.2 glyphs

The glyphs is an array containing the per-character information (quite a few of these are only

present if non-zero).

KEY TYPE EXPLANATION

name string the glyph name

unicode number unicode code point, or -1

boundingbox array array of four numbers, see note below

width number only for horizontal fonts

vwidth number only for vertical fonts

tsidebearing number only for vertical ttf/otf fonts, and only if non-zero

lsidebearing number only if non-zero and not equal to boundingbox[1]

class string one of "none", "base", "ligature", "mark", "component" (if not

present, the glyph class is ‘automatic’)

kerns array only for horizontal fonts, if set

vkerns array only for vertical fonts, if set

dependents array linear array of glyph name strings, only if nonempty

lookups table only if nonempty

ligatures table only if nonempty

243The fontloader

anchors table only if set

comment string only if set

tex_height number only if set

tex_depth number only if set

italic_correction number only if set

top_accent number only if set

is_extended_shape number only if this character is part of a math extension list

altuni table alternate Unicode items

vert_variants table

horiz_variants table

mathkern table

On boundingbox: The boundingbox information for TrueType fonts and TrueType-based otf

fonts is read directly from the font file. PostScript-based fonts do not have this information,

so the boundingbox of traditional PostScript fonts is generated by interpreting the actual bezier

curves to find the exact boundingbox. This can be a slow process, so the boundingboxes of

PostScript-based otf fonts (and raw cff fonts) are calculated using an approximation of the glyph

shape based on the actual glyph points only, instead of taking the whole curve into account. This

means that glyphs that have missing points at extrema will have a too-tight boundingbox, but

the processing is so much faster that in our opinion the tradeoff is worth it.

The kerns and vkerns are linear arrays of small hashes:

KEY TYPE EXPLANATION

char string

off number

lookup string

The lookups is a hash, based on lookup subtable names, with the value of each key inside that

a linear array of small hashes:

KEY TYPE EXPLANATION

type enum position, pair, substitution, alternate, multiple, ligature, lcaret,

kerning, vkerning, anchors, contextpos, contextsub, chainpos, chain-

sub, reversesub, max, kernback, vkernback

specification table extra data

For the first seven values of type, there can be additional sub-information, stored in the sub-table

specification:

VALUE TYPE EXPLANATION

position table a table of the offset_specs type

pair table one string: paired, and an array of one or two offset_specs tables:

offsets

substitution table one string: variant

alternate table one string: components

multiple table one string: components

The fontloader244

ligature table two strings: components, char

lcaret array linear array of numbers

Tables for offset_specs contain up to four number-valued fields: x (a horizontal offset), y (a

vertical offset), h (an advance width correction) and v (an advance height correction).

The ligatures is a linear array of small hashes:

KEY TYPE EXPLANATION

lig table uses the same substructure as a single item in the lookups table ex-

plained above

char string

components array linear array of named components

ccnt number

The anchor table is indexed by a string signifying the anchor type, which is one of:

KEY TYPE EXPLANATION

mark table placement mark

basechar table mark for attaching combining items to a base char

baselig table mark for attaching combining items to a ligature

basemark table generic mark for attaching combining items to connect to

centry table cursive entry point

cexit table cursive exit point

The content of these is a short array of defined anchors, with the entry keys being the anchor

names. For all except baselig, the value is a single table with this definition:

KEY TYPE EXPLANATION

x number x location

y number y location

ttf_pt_index number truetype point index, only if given

For baselig, the value is a small array of such anchor sets sets, one for each constituent item

of the ligature.

For clarification, an anchor table could for example look like this :

['anchor'] = {

['basemark'] = {

['Anchor-7'] = { ['x']=170, ['y']=1080 }

},

['mark'] ={

['Anchor-1'] = { ['x']=160, ['y']=810 },

['Anchor-4'] = { ['x']=160, ['y']=800 }

},

['baselig'] = {

[1] = { ['Anchor-2'] = { ['x']=160, ['y']=650 } },

[2] = { ['Anchor-2'] = { ['x']=460, ['y']=640 } }

245The fontloader

}

}

Note: The baselig table can be sparse!

12.6.3 map

The top-level map is a list of encoding mappings. Each of those is a table itself.

KEY TYPE EXPLANATION

enccount number

encmax number

backmax number

remap table

map array non-linear array of mappings

backmap array non-linear array of backward mappings

enc table

The remap table is very small:

KEY TYPE EXPLANATION

firstenc number

lastenc number

infont number

The enc table is a bit more verbose:

KEY TYPE EXPLANATION

enc_name string

char_cnt number

char_max number

unicode array of Unicode position numbers

psnames array of PostScript glyph names

builtin number

hidden number

only_1byte number

has_1byte number

has_2byte number

is_unicodebmp number only if non-zero

is_unicodefull number only if non-zero

is_custom number only if non-zero

is_original number only if non-zero

is_compact number only if non-zero

is_japanese number only if non-zero

is_korean number only if non-zero

is_tradchinese number only if non-zero [name?]

is_simplechinese number only if non-zero

The fontloader246

low_page number

high_page number

iconv_name string

iso_2022_escape string

12.6.4 private

This is the font’s private PostScript dictionary, if any. Keys and values are both strings.

12.6.5 cidinfo

KEY TYPE EXPLANATION

registry string

ordering string

supplement number

version number

12.6.6 pfminfo

The pfminfo table contains most of the OS/2 information:

KEY TYPE EXPLANATION

pfmset number

winascent_add number

windescent_add number

hheadascent_add number

hheaddescent_add number

typoascent_add number

typodescent_add number

subsuper_set number

panose_set number

hheadset number

vheadset number

pfmfamily number

weight number

width number

avgwidth number

firstchar number

lastchar number

fstype number

linegap number

vlinegap number

hhead_ascent number

hhead_descent number

os2_typoascent number

247The fontloader

os2_typodescent number

os2_typolinegap number

os2_winascent number

os2_windescent number

os2_subxsize number

os2_subysize number

os2_subxoff number

os2_subyoff number

os2_supxsize number

os2_supysize number

os2_supxoff number

os2_supyoff number

os2_strikeysize number

os2_strikeypos number

os2_family_class number

os2_xheight number

os2_capheight number

os2_defaultchar number

os2_breakchar number

os2_vendor string

codepages table A two-number array of encoded code pages

unicoderages table A four-number array of encoded unicode ranges

panose table

The panose subtable has exactly 10 string keys:

KEY TYPE EXPLANATION

familytype string Values as in the OpenType font specification: Any, No Fit, Text and

Display, Script, Decorative, Pictorial

serifstyle string See the OpenType font specification for values

weight string idem

proportion string idem

contrast string idem

strokevariation string idem

armstyle string idem

letterform string idem

midline string idem

xheight string idem

12.6.7 names

Each item has two top-level keys:

KEY TYPE EXPLANATION

lang string language for this entry

names table

The fontloader248

The names keys are the actual TrueType name strings. The possible keys are: copyright, fam-

ily, subfamily, uniqueid, fullname, version, postscriptname, trademark, manufacturer, de-

signer, descriptor, venderurl, designerurl, license, licenseurl, idontknow, preffamily-

name, prefmodifiers, compatfull, sampletext, cidfindfontname, wwsfamily and wwssubfam-

ily.

12.6.8 anchor_classes

The anchor_classes classes:

KEY TYPE EXPLANATION

name string a descriptive id of this anchor class

lookup string

type string one of mark, mkmk, curs, mklg

12.6.9 gpos

The gpos table has one array entry for each lookup. (The gpos_ prefix is somewhat redundant.)

KEY TYPE EXPLANATION

type string one of gpos_single, gpos_pair, gpos_cursive, gpos_mark2base,

gpos_mark2ligature, gpos_mark2mark, gpos_context,

gpos_contextchain

flags table

name string

features array

subtables array

The flags table has a true value for each of the lookup flags that is actually set:

KEY TYPE EXPLANATION

r2l boolean

ignorebaseglyphs boolean

ignoreligatures boolean

ignorecombiningmarks boolean

mark_class string

The features subtable items of gpos have:

KEY TYPE EXPLANATION

tag string

scripts table

The scripts table within features has:

249The fontloader

KEY TYPE EXPLANATION

script string

langs array of strings

The subtables table has:

KEY TYPE EXPLANATION

name string

suffix string (only if used)

anchor_classes number (only if used)

vertical_kerning number (only if used)

kernclass table (only if used)

The kernclass with subtables table has:

KEY TYPE EXPLANATION

firsts array of strings

seconds array of strings

lookup string or array associated lookup(s)

offsets array of numbers

Note: the kernclass (as far as we can see) always has one entry so it could be one level deep

instead. Also the seconds start at [2] which is close to the fontforge internals so we keep that

too.

12.6.10 gsub

This has identical layout to the gpos table, except for the type:

KEY TYPE EXPLANATION

type string one of gsub_single, gsub_multiple, gsub_alternate, gsub_ligature,

gsub_context, gsub_contextchain, gsub_reversecontextchain

12.6.11 ttf_tables and ttf_tab_saved

KEY TYPE EXPLANATION

tag string

len number

maxlen number

data number

12.6.12 mm

KEY TYPE EXPLANATION

axes table array of axis names

The fontloader250

instance_count number

positions table array of instance positions (#axes * instances)

defweights table array of default weights for instances

cdv string

ndv string

axismaps table

The axismaps:

KEY TYPE EXPLANATION

blends table an array of blend points

designs table an array of design values

min number

def number

max number

12.6.13 mark_classes

The keys in this table are mark class names, and the values are a space-separated string of glyph

names in this class.

12.6.14 math

The math table has the variables that are also discussed in the chapter about math: Script-

PercentScaleDown, ScriptScriptPercentScaleDown, DelimitedSubFormulaMinHeight, Dis-

playOperatorMinHeight, MathLeading, AxisHeight, AccentBaseHeight, FlattenedAccent-

BaseHeight, SubscriptShiftDown, SubscriptTopMax, SubscriptBaselineDropMin, Super-

scriptShiftUp, SuperscriptShiftUpCramped, SuperscriptBottomMin, SuperscriptBase-

lineDropMax, SubSuperscriptGapMin, SuperscriptBottomMaxWithSubscript, SpaceAfter-

Script, UpperLimitGapMin, UpperLimitBaselineRiseMin, LowerLimitGapMin, LowerLimit-

BaselineDropMin, StackTopShiftUp, StackTopDisplayStyleShiftUp, StackBottomShiftDown,

StackBottomDisplayStyleShiftDown, StackGapMin, StackDisplayStyleGapMin, Stretch-

StackTopShiftUp, StretchStackBottomShiftDown, StretchStackGapAboveMin, Stretch-

StackGapBelowMin, FractionNumeratorShiftUp, FractionNumeratorDisplayStyleShiftUp,

FractionDenominatorShiftDown, FractionDenominatorDisplayStyleShiftDown, Fraction-

NumeratorGapMin, FractionNumeratorDisplayStyleGapMin FractionRuleThickness, Frac-

tionDenominatorGapMin, FractionDenominatorDisplayStyleGapMin, SkewedFractionHor-

izontalGap, SkewedFractionVerticalGap, OverbarVerticalGap, OverbarRuleThickness,

OverbarExtraAscender, UnderbarVerticalGap, UnderbarRuleThickness, UnderbarExtraDe-

scender, RadicalVerticalGap, RadicalDisplayStyleVerticalGap, RadicalRuleThickness,

RadicalExtraAscender, RadicalKernBeforeDegree, RadicalKernAfterDegree, RadicalDe-

greeBottomRaisePercent, MinConnectorOverlap, FractionDelimiterSize and FractionDe-

limiterDisplayStyleSize.

251The fontloader

12.6.15 validation_state

This is just a bonus table with keys: bad_ps_fontname, bad_glyph_table, bad_cff_ta-

ble, bad_metrics_table, bad_cmap_table, bad_bitmaps_table, bad_gx_table, bad_ot_table,

bad_os2_version and bad_sfnt_header.

12.6.16 horiz_base and vert_base

KEY TYPE EXPLANATION

tags table an array of script list tags

scripts table

The scripts subtable:

KEY TYPE EXPLANATION

baseline table

default_baseline number

lang table

The lang subtable:

KEY TYPE EXPLANATION

tag string a script tag

ascent number

descent number

features table

The features points to an array of tables with the same layout except that in those nested tables,

the tag represents a language.

12.6.17 altuni

An array of alternate Unicode values. Inside that array are hashes with:

KEY TYPE EXPLANATION

unicode number this glyph is also used for this unicode

variant number the alternative is driven by this unicode selector

12.6.18 vert_variants and horiz_variants

KEY TYPE EXPLANATION

variants string

italic_correction number

parts table

The parts table is an array of smaller tables:

The fontloader252

KEY TYPE EXPLANATION

component string

extender number

start number

end number

advance number

12.6.19 mathkern

KEY TYPE EXPLANATION

top_right table

bottom_right table

top_left table

bottom_left table

Each of the subtables is an array of small hashes with two keys:

KEY TYPE EXPLANATION

height number

kern number

12.6.20 kerns

Substructure is identical to the per-glyph subtable.

12.6.21 vkerns

Substructure is identical to the per-glyph subtable.

12.6.22 texdata

KEY TYPE EXPLANATION

type string unset, text, math, mathext

params array 22 font numeric parameters

12.6.23 lookups

Top-level lookups is quite different from the ones at character level. The keys in this hash are

strings, the values the actual lookups, represented as dictionary tables.

KEY TYPE EXPLANATION

type string

format enum one of glyphs, class, coverage, reversecoverage

253The fontloader

tag string

current_class array

before_class array

after_class array

rules array an array of rule items

Rule items have one common item and one specialized item:

KEY TYPE EXPLANATION

lookups array a linear array of lookup names

glyphs array only if the parent’s format is glyphs

class array only if the parent’s format is class

coverage array only if the parent’s format is coverage

reversecoverage array only if the parent’s format is reversecoverage

A glyph table is:

KEY TYPE EXPLANATION

names string

back string

fore string

A class table is:

KEY TYPE EXPLANATION

current array of numbers

before array of numbers

after array of numbers

for coverage:

KEY TYPE EXPLANATION

current array of strings

before array of strings

after array of strings

and for reverse coverage:

KEY TYPE EXPLANATION

current array of strings

before array of strings

after array of strings

replacements string

The fontloader254

255The HarfBuzz libraries

13 The HarfBuzz libraries

13.1 The luaharfbuzz library

At the moment the documentation of the library is a raw "html-to-pdf" rendering of the in-

dex.html file under luaharfbuzz/docs folder of the source code. The example is almost the

verbatim copy of the file under luaharfbuzz/examples.

Module harfbuzz

Lua bindings to Harfbuzz.

Info:
Copyright: 2016
License: MIT
Author: Deepak Jois <deepak.jois@gmail.com>

Functions
version () Wraps hb_version

shape (font, buffer[, options]) Wraps hb_shape.

Class Blob
Blob.new (data) Wraps hb_blob_create.

Blob.new_from_file (filename) Wraps hb_blob_create_from_file.

Blob:get_length () Wraps hb_blob_get_length.

Blob:get_data () Wraps hb_blob_get_data.

Class Face
Face.new_from_blob (blob[, font_index=0]) Wraps hb_face_create.

Face.new (file[, font_index=0]) Create a new Face from a file.

Face:collect_unicodes () Wraps hb_face_collect_unicodes.

Face:get_glyph_count () Wraps hb_face_get_glyph_count.

Face:get_table (tag) Wraps hb_face_reference_table.

Face:get_table_tags () Wraps hb_face_get_table_tags.

Face:get_upem () Wraps hb_face_get_upem.

Face:ot_color_has_palettes () Wraps hb_ot_color_has_palettes.

Face:ot_color_palette_get_count () Wraps hb_ot_color_palette_get_count.

Face:ot_color_palette_get_colors () Wraps hb_ot_color_palette_get_colors.

Face:ot_color_has_layers () Wraps hb_ot_color_has_layers.

Face:ot_color_glyph_get_layers () Wraps hb_ot_color_glyph_get_layers.

Face:ot_color_has_png () Wraps hb_ot_color_has_png.

Face:ot_layout_get_script_tags () Wraps hb_ot_layout_table_get_script_tags.

Face:ot_layout_get_language_tags () Wraps hb_ot_layout_script_get_language_tags.

Face:ot_layout_get_feature_tags () Wraps hb_ot_layout_language_get_feature_tags.

Face:ot_layout_find_script () Wraps hb_ot_layout_table_find_script.

Face:ot_layout_find_language () Wraps hb_ot_layout_script_find_language.

Face:ot_layout_find_feature () Wraps hb_ot_layout_language_find_feature.

Class Font
Font.new (face) Wraps hb_font_create, and sets up some defaults for scale and shaping functions.

Font:get_scale () Wraps hb_font_get_scale.

Font:set_scale (x_scale, y_scale) Wraps hb_font_set_scale.

Font:get_h_extents () Wraps hb_font_get_h_extents.

Font:get_v_extents () Wraps hb_font_get_v_extents.

Font:get_glyph_extents (glyph) Wraps hb_font_get_glyph_extents.

The HarfBuzz libraries256

Font:get_glyph_name (glyph) Wraps hb_font_get_glyph_name.

Font:get_glyph_from_name (name) Wraps hb_font_get_glyph_from_name.

Font:get_glyph_h_advance (glyph) Wraps hb_font_get_glyph_h_advance.

Font:get_glyph_v_advance (glyph) Wraps hb_font_get_glyph_v_advance.

Font:get_nominal_glyph (codepoint.) Wraps hb_font_get_nominal_glyph.

Font:ot_color_glyph_get_png () Wraps hb_ot_color_glyph_get_png.

Class Buffer
Buffer.new () Wraps hb_buffer_create.

Buffer:add_utf8 (text[, item_offset=0[, item_length=-1]]) Wraps hb_buffer_add_utf8.

Buffer:add_codepoints (text[, item_offset=0[, item_length=-1]]) Wraps hb_buffer_add_codepoints.

Buffer:set_direction (dir) Wraps hb_buffer_set_direction.

Buffer:get_direction () Wraps hb_buffer_get_direction.

Buffer:set_script (script) Wraps hb_buffer_set_script.

Buffer:get_script () Wraps hb_buffer_get_script.

Buffer:set_language (lang) Wraps hb_buffer_set_language.

Buffer:get_language () Wraps hb_buffer_get_language.

Buffer:reverse () Wraps hb_buffer_reverse.

Buffer:get_length () Wraps hb_buffer_get_length.

Buffer:get_cluster_level () Wraps hb_buffer_get_cluster_level.

Buffer:set_cluster_level (level) Wraps hb_buffer_set_cluster_level.

Buffer:guess_segment_properties () Wraps
hb_buffer_guess_segment_properties.

Buffer:get_glyphs () Helper method to get shaped glyph data.

Cluster Levels

Buffer.CLUSTER_LEVEL_MONOTONE_GRAPHEMES Wraps
HB_BUFFER_CLUSTER_LEVEL_MONOTONE_GRAPHEMES.

Buffer.CLUSTER_LEVEL_MONOTONE_CHARACTERS Wraps
HB_BUFFER_CLUSTER_LEVEL_MONOTONE_CHARACTERS.

Buffer.CLUSTER_LEVEL_CHARACTERS Wraps HB_BUFFER_CLUSTER_LEVEL_CHARACTERS.

Buffer.CLUSTER_LEVEL_DEFAULT Wraps HB_BUFFER_CLUSTER_LEVEL_DEFAULT.

Buffer.GLYPH_FLAG_UNSAFE_TO_BREAK Wraps HB_GLYPH_FLAG_UNSAFE_TO_BREAK.

Buffer.GLYPH_FLAG_DEFINED Wraps HB_GLYPH_FLAG_DEFINED.

Class Feature
Feature.new (feature_string) Wraps hb_feature_from_string

Feature:__tostring () Wraps hb_feature_to_string.

Class Tag
Tag.new (string) Wraps hb_tag_from_string.

Tag:__to_string () Wraps hb_tag_to_string.

Tag:__eq () Enables equality comparisions with == between two tags.

Class Script
Script.new (script) Wraps hb_script_from_string.

Script.from_iso15924_tag (tag) Wraps hb_script_from_iso15924_tag

257The HarfBuzz libraries

Script:to_iso15924_tag () Wraps hb_script_to_iso15924_tag.

Script:__to_string () Enable nice output with tostring(…)

Script:__eq () Enables equality comparisions with == between two scripts.

Predefined Script Codes
Script.COMMON Wraps HB_SCRIPT_COMMON.

Script.INHERITED Wraps HB_SCRIPT_INHERITED.

Script.UNKNOWN Wraps HB_SCRIPT_UNKNOWN.

Script.INVALID Wraps HB_SCRIPT_INVALID.

Class Direction
Direction.new (dir) Wraps hb_direction_from_string.

Direction:__to_string () Wraps hb_direction_to_string.

Direction:__eq () Enables equality comparisions with == between two directions.

Direction:is_valid () Wraps HB_DIRECTION_IS_VALID.

Direction:is_horizontal () Wraps HB_DIRECTION_IS_HORIZONTAL.

Direction:is_vertical () Wraps HB_DIRECTION_IS_VERTICAL.

Direction:is_forward () Wraps HB_DIRECTION_IS_FORWARD.

Direction:is_backward () Wraps HB_DIRECTION_IS_BACKWARD.

Predefined directions
Direction.LTR Wraps HB_DIRECTION_LTR.

Direction.RTL Wraps HB_DIRECTION_RTL.

Direction.TTB Wraps HB_DIRECTION_TTB.

Direction.BTT Wraps HB_DIRECTION_LTR.

Class Language
Language.new (lang) Wraps hb_language_from_string.

Language:__to_string () Wraps hb_language_to_string.

Language:__eq () Enables equality comparisions with == between two languages.

Predefined languages
Language.INVALID Wraps HB_LANGUAGE_INVALID.

Unicode functions
unicode.script (char) Wraps hb_unicode_script

Predefined Name IDs
ot.NAME_ID_COPYRIGHT Wraps HB_OT_NAME_ID_COPYRIGHT

ot.NAME_ID_FONT_FAMILY Wraps HB_OT_NAME_ID_FONT_FAMILY

ot.NAME_ID_FONT_SUBFAMILY Wraps HB_OT_NAME_ID_FONT_SUBFAMILY

ot.NAME_ID_UNIQUE_ID Wraps HB_OT_NAME_ID_UNIQUE_ID

ot.NAME_ID_FULL_NAME Wraps HB_OT_NAME_ID_FULL_NAME

ot.NAME_ID_VERSION_STRING Wraps HB_OT_NAME_ID_VERSION_STRING

ot.NAME_ID_POSTSCRIPT_NAME Wraps HB_OT_NAME_ID_POSTSCRIPT_NAME

ot.NAME_ID_TRADEMARK Wraps HB_OT_NAME_ID_TRADEMARK

ot.NAME_ID_MANUFACTURER Wraps HB_OT_NAME_ID_MANUFACTURER

The HarfBuzz libraries258

ot.NAME_ID_DESIGNER Wraps HB_OT_NAME_ID_DESIGNER

ot.NAME_ID_DESCRIPTION Wraps HB_OT_NAME_ID_DESCRIPTION

ot.NAME_ID_VENDOR_URL Wraps HB_OT_NAME_ID_VENDOR_URL

ot.NAME_ID_DESIGNER_URL Wraps HB_OT_NAME_ID_DESIGNER_URL

ot.NAME_ID_LICENSE Wraps HB_OT_NAME_ID_LICENSE

ot.NAME_ID_LICENSE_URL Wraps HB_OT_NAME_ID_LICENSE_URL

ot.NAME_ID_TYPOGRAPHIC_FAMILY Wraps HB_OT_NAME_ID_TYPOGRAPHIC_FAMILY

ot.NAME_ID_TYPOGRAPHIC_SUBFAMILY Wraps HB_OT_NAME_ID_TYPOGRAPHIC_SUBFAMILY

ot.NAME_ID_MAC_FULL_NAME Wraps HB_OT_NAME_ID_MAC_FULL_NAME

ot.NAME_ID_SAMPLE_TEXT Wraps HB_OT_NAME_ID_SAMPLE_TEXT

ot.NAME_ID_CID_FINDFONT_NAME Wraps HB_OT_NAME_ID_CID_FINDFONT_NAME

ot.NAME_ID_WWS_FAMILY Wraps HB_OT_NAME_ID_WWS_FAMILY

ot.NAME_ID_WWS_SUBFAMILY Wraps HB_OT_NAME_ID_WWS_SUBFAMILY

ot.NAME_ID_LIGHT_BACKGROUND Wraps HB_OT_NAME_ID_LIGHT_BACKGROUND

ot.NAME_ID_DARK_BACKGROUND Wraps HB_OT_NAME_ID_DARK_BACKGROUND

ot.NAME_ID_VARIATIONS_PS_PREFIX Wraps HB_OT_NAME_ID_VARIATIONS_PS_PREFIX

ot.NAME_ID_INVALID Wraps HB_OT_NAME_ID_INVALID

ot.LAYOUT_NO_SCRIPT_INDEX Wraps HB_OT_LAYOUT_NO_SCRIPT_INDEX

ot.LAYOUT_NO_FEATURE_INDEX Wraps HB_OT_LAYOUT_NO_FEATURE_INDEX

ot.LAYOUT_DEFAULT_LANGUAGE_INDEX Wraps HB_OT_LAYOUT_DEFAULT_LANGUAGE_INDEX

ot.LAYOUT_NO_VARIATIONS_INDEX Wraps HB_OT_LAYOUT_NO_VARIATIONS_INDEX

Functions

version ()

Wraps hb_version

shape (font, buffer[, options])

Wraps hb_shape.

Parameters:

font: Font to use for shaping
buffer: Buffer to shape
options:

table containing one or more supported options:
direction: A Direction object representing the object.
script: A Script object representing the script.
language: A Language object representing the language.
features: features to enable, specified as either of the following.

comma-separated list of features. See feature string syntax reference
table of Feature objects

(optional)

Class Blob
Lua wrapper for hb_blob_t type

Blob.new (data)

Wraps hb_blob_create. Initializes a new hb_blob_t.

259The HarfBuzz libraries

Parameters:

data: lua string containing binary or character data.

Blob.new_from_file (filename)

Wraps hb_blob_create_from_file. Initializes a new hb_blob_t.

Parameters:

filename: lua string.

Blob:get_length ()

Wraps hb_blob_get_length.

Blob:get_data ()

Wraps hb_blob_get_data.

Class Face
Lua wrapper for hb_face_t type

Face.new_from_blob (blob[, font_index=0])

Wraps hb_face_create. Initializes a new hb_face_t from a Blob object.

Parameters:

blob: Blob to read the font from.
font_index: index of font to read. (default 0)

Face.new (file[, font_index=0])

Create a new Face from a file. Makes a call to Face:new_from_blob after creating a Blob from the file
contents.

Parameters:

file: path to font file.
font_index: index of font to read. (default 0)

Face:collect_unicodes ()

Wraps hb_face_collect_unicodes.

Returns:

table of codepoints supported by the face.

Face:get_glyph_count ()

Wraps hb_face_get_glyph_count.

Face:get_table (tag)

Wraps hb_face_reference_table.

Parameters:

tag: Tag object of the table.

Returns:

Blob object for the face table of tag.

The HarfBuzz libraries260

Face:get_table_tags ()

Wraps hb_face_get_table_tags.

Returns:

table of Tags representing face table tags.

Face:get_upem ()

Wraps hb_face_get_upem.

Face:ot_color_has_palettes ()

Wraps hb_ot_color_has_palettes.

Face:ot_color_palette_get_count ()

Wraps hb_ot_color_palette_get_count.

Face:ot_color_palette_get_colors ()

Wraps hb_ot_color_palette_get_colors.

Face:ot_color_has_layers ()

Wraps hb_ot_color_has_layers.

Face:ot_color_glyph_get_layers ()

Wraps hb_ot_color_glyph_get_layers.

Face:ot_color_has_png ()

Wraps hb_ot_color_has_png.

Face:ot_layout_get_script_tags ()

Wraps hb_ot_layout_table_get_script_tags.

Face:ot_layout_get_language_tags ()

Wraps hb_ot_layout_script_get_language_tags.

Face:ot_layout_get_feature_tags ()

Wraps hb_ot_layout_language_get_feature_tags.

Face:ot_layout_find_script ()

Wraps hb_ot_layout_table_find_script.

Face:ot_layout_find_language ()

Wraps hb_ot_layout_script_find_language.

Face:ot_layout_find_feature ()

Wraps hb_ot_layout_language_find_feature.

261The HarfBuzz libraries

Class Font
Lua wrapper for hb_font_t type

Font.new (face)

Wraps hb_font_create, and sets up some defaults for scale and shaping functions. Initializes a new hb_font_t
from a Face object. Sets the default scale to the face’s upem value, and sets the font shaping functions by calling
hb_ot_font_set_funcs on it.

Parameters:

face: Face object.

Font:get_scale ()

Wraps hb_font_get_scale.

Returns:

two values for the x-scale and y-scale of the font.

Font:set_scale (x_scale, y_scale)

Wraps hb_font_set_scale.

Parameters:

x_scale: desired x-scale of font.
y_scale: desired y-scale of font.

Font:get_h_extents ()

Wraps hb_font_get_h_extents.

Returns:

font extents table for horizontal direction, contains the following or nil if HarfBuzz fails to load font extents:
ascender: typographic ascender.
descender: typographic descender.
line_gap: line spacing gap.

Font:get_v_extents ()

Wraps hb_font_get_v_extents.

Returns:

font extents table for vertical direction, similar to Font:get_h_extents, or nil if HarfBuzz fails to load font
extents:

Font:get_glyph_extents (glyph)

Wraps hb_font_get_glyph_extents.

Parameters:

glyph: index inside the font.

Returns:

extents table contains the following or nil if HarfBuzz fails to load glyph extents:
x_bearing: left side of glyph from origin.
y_bearing: top side of glyph from origin.
width: distance from left to right side.
height: distance from top to bottom side.

The HarfBuzz libraries262

Font:get_glyph_name (glyph)

Wraps hb_font_get_glyph_name.

Parameters:

glyph: index inside the font.

Returns:

name of the glyph or nil.

Font:get_glyph_from_name (name)

Wraps hb_font_get_glyph_from_name.

Parameters:

name: of the glyph.

Returns:

glyph index inside the font or nil.

Font:get_glyph_h_advance (glyph)

Wraps hb_font_get_glyph_h_advance.

Parameters:

glyph: index inside the font.

Returns:

advance glyph advance of the glyph in horizontal direction.

Font:get_glyph_v_advance (glyph)

Wraps hb_font_get_glyph_v_advance.

Parameters:

glyph: index inside the font.

Returns:

advance glyph advance of the glyph in vertical direction.

Font:get_nominal_glyph (codepoint.)

Wraps hb_font_get_nominal_glyph.

Parameters:

codepoint.:

Returns:

glyph index or nil if codepoint is not supported by the font.

Font:ot_color_glyph_get_png ()

Wraps hb_ot_color_glyph_get_png.

Class Buffer
Lua wrapper for hb_buffer_t type.

263The HarfBuzz libraries

Buffer.new ()

Wraps hb_buffer_create.

Buffer:add_utf8 (text[, item_offset=0[, item_length=-1]])

Wraps hb_buffer_add_utf8.

Parameters:

text: UTF8 encoded string.
item_offset: 0-indexed offset in text, from where to start adding. (default 0)
item_length: length to add from item_offset. -1 adds till end of text. (default -1)

Buffer:add_codepoints (text[, item_offset=0[, item_length=-1]])

Wraps hb_buffer_add_codepoints.

Parameters:

text: table with codepoints as lua numbers.
item_offset: 0-indexed offset in text, from where to start adding. (default 0)
item_length: length to add from item_offset. -1 adds till end of text. (default -1)

Buffer:set_direction (dir)

Wraps hb_buffer_set_direction.

Parameters:

dir: A Direction object.

Buffer:get_direction ()

Wraps hb_buffer_get_direction.

Returns:

A Direction object.

Buffer:set_script (script)

Wraps hb_buffer_set_script.

Parameters:

script: A Script object.

Buffer:get_script ()

Wraps hb_buffer_get_script.

Returns:

A Script object.

Buffer:set_language (lang)

Wraps hb_buffer_set_language.

Parameters:

lang: A Language object

Buffer:get_language ()

The HarfBuzz libraries264

Wraps hb_buffer_get_language.

Returns:

A Language object

Buffer:reverse ()

Wraps hb_buffer_reverse.

Buffer:get_length ()

Wraps hb_buffer_get_length.

Buffer:get_cluster_level ()

Wraps hb_buffer_get_cluster_level.

Returns:

see Cluster Levels

Buffer:set_cluster_level (level)

Wraps hb_buffer_set_cluster_level.

Parameters:

level: see Cluster Levels

Buffer:guess_segment_properties ()

Wraps hb_buffer_guess_segment_properties.

Buffer:get_glyphs ()

Helper method to get shaped glyph data. Calls hb_buffer_get_glyph_infos,
hb_buffer_get_glyph_positions and hb_glyph_info_get_glyph_flags, and assembles the
data into a Lua table.

Returns:

table containing data for each glyph, in a nested table. Each nested table contains the following:
x_advance: horizontal advance.
y_advance: vertical advance.
x_offset: horizontal displacement.
y_offset: vertical displacement.
cluster: glyph cluster index within input.
codepoint: glyph index inside the font (this field name is a bit misleading, but that’s what Harfbuzz uses).
flags: glyph flags

Cluster Levels
See Harfbuzz docs for more details about what each of these levels mean.

Buffer.CLUSTER_LEVEL_MONOTONE_GRAPHEMES

Wraps HB_BUFFER_CLUSTER_LEVEL_MONOTONE_GRAPHEMES.

Buffer.CLUSTER_LEVEL_MONOTONE_CHARACTERS

Wraps HB_BUFFER_CLUSTER_LEVEL_MONOTONE_CHARACTERS.

265The HarfBuzz libraries

Buffer.CLUSTER_LEVEL_CHARACTERS

Wraps HB_BUFFER_CLUSTER_LEVEL_CHARACTERS.

Buffer.CLUSTER_LEVEL_DEFAULT

Wraps HB_BUFFER_CLUSTER_LEVEL_DEFAULT.

Buffer.GLYPH_FLAG_UNSAFE_TO_BREAK

Wraps HB_GLYPH_FLAG_UNSAFE_TO_BREAK.

Buffer.GLYPH_FLAG_DEFINED

Wraps HB_GLYPH_FLAG_DEFINED.

Class Feature
Lua wrapper for hb_feature_t type

Feature.new (feature_string)

Wraps hb_feature_from_string

Parameters:

feature_string: See feature string syntax reference

Feature:__tostring ()

Wraps hb_feature_to_string. Enables nice output with tostring(…).

Class Tag
Lua wrapper for hb_tag_t type.

Tag.new (string)

Wraps hb_tag_from_string.

Parameters:

string: to be converted to a Tag object.

Returns:

a Tag object.

Tag:__to_string ()

Wraps hb_tag_to_string. Enable nice output with tostring(…).

Returns:

Returns a string representation for the tag object.

Tag:__eq ()

Enables equality comparisions with == between two tags.

Returns:

true or false depending on whether the two tags are equal.

The HarfBuzz libraries266

Class Script
Lua wrapper for hb_script_t type.

Script.new (script)

Wraps hb_script_from_string.

Parameters:

script: 4-letter script code according to the ISO 15924 standard.

Returns:

a Script object.

Script.from_iso15924_tag (tag)

Wraps hb_script_from_iso15924_tag

Parameters:

tag: a Tag object representing a ISO 15924 script.

Script:to_iso15924_tag ()

Wraps hb_script_to_iso15924_tag.

Returns:

a Tag object representing the script.

Script:__to_string ()

Enable nice output with tostring(…)

Returns:

Returns a 4-letter ISO 15924 script code for the script object.

Script:__eq ()

Enables equality comparisions with == between two scripts.

Returns:

true or false depending on whether the two scripts are equal.

Predefined Script Codes
Predefined directions that correspond to their original definitions in Harfbuzz.

Script.COMMON

Wraps HB_SCRIPT_COMMON.

Script.INHERITED

Wraps HB_SCRIPT_INHERITED.

Script.UNKNOWN

Wraps HB_SCRIPT_UNKNOWN.

Script.INVALID

267The HarfBuzz libraries

Wraps HB_SCRIPT_INVALID.

Class Direction
Lua wrapper for hb_direction_t type.

Direction.new (dir)

Wraps hb_direction_from_string.

Parameters:

dir: can be one of ltr, rtl, ttb, btt or invalid.

Returns:

a Direction object.

Direction:__to_string ()

Wraps hb_direction_to_string. Enable nice output with tostring(…).

Returns:

Returns a string representation for direction.

Direction:__eq ()

Enables equality comparisions with == between two directions.

Returns:

true or false depending on whether the two tags are equal.

Direction:is_valid ()

Wraps HB_DIRECTION_IS_VALID.

Returns:

a boolean value

Direction:is_horizontal ()

Wraps HB_DIRECTION_IS_HORIZONTAL.

Returns:

a boolean value

Direction:is_vertical ()

Wraps HB_DIRECTION_IS_VERTICAL.

Returns:

a boolean value

Direction:is_forward ()

Wraps HB_DIRECTION_IS_FORWARD.

Returns:

a boolean value

Direction:is_backward ()

The HarfBuzz libraries268

Wraps HB_DIRECTION_IS_BACKWARD.

Returns:

a boolean value

Predefined directions
Predefined directions that correspond to their original definitions in Harfbuzz.

Direction.LTR

Wraps HB_DIRECTION_LTR.

Direction.RTL

Wraps HB_DIRECTION_RTL.

Direction.TTB

Wraps HB_DIRECTION_TTB.

Direction.BTT

Wraps HB_DIRECTION_LTR.

Class Language
Lua wrapper for hb_language_t type.

Language.new (lang)

Wraps hb_language_from_string.

Parameters:

lang: three-letter language tag to be converted to a Language object.

Returns:

a Language object.

Language:__to_string ()

Wraps hb_language_to_string. Enable nice output with tostring(…).

Returns:

Returns a string representation for the language object.

Language:__eq ()

Enables equality comparisions with == between two languages.

Returns:

true or false depending on whether the two languages are equal.

Predefined languages
Predefined languages that correspond to their original definitions in Harfbuzz.

Language.INVALID

Wraps HB_LANGUAGE_INVALID.

269The HarfBuzz libraries

Unicode functions

unicode.script (char)

Wraps hb_unicode_script

Parameters:

char: Unicode codepoint

Returns:

a Script object.

Predefined Name IDs
Predefined OpenType 'name' table name identifier.

ot.NAME_ID_COPYRIGHT

Wraps HB_OT_NAME_ID_COPYRIGHT

ot.NAME_ID_FONT_FAMILY

Wraps HB_OT_NAME_ID_FONT_FAMILY

ot.NAME_ID_FONT_SUBFAMILY

Wraps HB_OT_NAME_ID_FONT_SUBFAMILY

ot.NAME_ID_UNIQUE_ID

Wraps HB_OT_NAME_ID_UNIQUE_ID

ot.NAME_ID_FULL_NAME

Wraps HB_OT_NAME_ID_FULL_NAME

ot.NAME_ID_VERSION_STRING

Wraps HB_OT_NAME_ID_VERSION_STRING

ot.NAME_ID_POSTSCRIPT_NAME

Wraps HB_OT_NAME_ID_POSTSCRIPT_NAME

ot.NAME_ID_TRADEMARK

Wraps HB_OT_NAME_ID_TRADEMARK

ot.NAME_ID_MANUFACTURER

Wraps HB_OT_NAME_ID_MANUFACTURER

ot.NAME_ID_DESIGNER

Wraps HB_OT_NAME_ID_DESIGNER

ot.NAME_ID_DESCRIPTION

Wraps HB_OT_NAME_ID_DESCRIPTION

The HarfBuzz libraries270

ot.NAME_ID_VENDOR_URL

Wraps HB_OT_NAME_ID_VENDOR_URL

ot.NAME_ID_DESIGNER_URL

Wraps HB_OT_NAME_ID_DESIGNER_URL

ot.NAME_ID_LICENSE

Wraps HB_OT_NAME_ID_LICENSE

ot.NAME_ID_LICENSE_URL

Wraps HB_OT_NAME_ID_LICENSE_URL

ot.NAME_ID_TYPOGRAPHIC_FAMILY

Wraps HB_OT_NAME_ID_TYPOGRAPHIC_FAMILY

ot.NAME_ID_TYPOGRAPHIC_SUBFAMILY

Wraps HB_OT_NAME_ID_TYPOGRAPHIC_SUBFAMILY

ot.NAME_ID_MAC_FULL_NAME

Wraps HB_OT_NAME_ID_MAC_FULL_NAME

ot.NAME_ID_SAMPLE_TEXT

Wraps HB_OT_NAME_ID_SAMPLE_TEXT

ot.NAME_ID_CID_FINDFONT_NAME

Wraps HB_OT_NAME_ID_CID_FINDFONT_NAME

ot.NAME_ID_WWS_FAMILY

Wraps HB_OT_NAME_ID_WWS_FAMILY

ot.NAME_ID_WWS_SUBFAMILY

Wraps HB_OT_NAME_ID_WWS_SUBFAMILY

ot.NAME_ID_LIGHT_BACKGROUND

Wraps HB_OT_NAME_ID_LIGHT_BACKGROUND

ot.NAME_ID_DARK_BACKGROUND

Wraps HB_OT_NAME_ID_DARK_BACKGROUND

ot.NAME_ID_VARIATIONS_PS_PREFIX

Wraps HB_OT_NAME_ID_VARIATIONS_PS_PREFIX

ot.NAME_ID_INVALID

Wraps HB_OT_NAME_ID_INVALID

271The HarfBuzz libraries

Last updated 2019-07-31 18:39:39

ot.LAYOUT_NO_SCRIPT_INDEX

Wraps HB_OT_LAYOUT_NO_SCRIPT_INDEX

ot.LAYOUT_NO_FEATURE_INDEX

Wraps HB_OT_LAYOUT_NO_FEATURE_INDEX

ot.LAYOUT_DEFAULT_LANGUAGE_INDEX

Wraps HB_OT_LAYOUT_DEFAULT_LANGUAGE_INDEX

ot.LAYOUT_NO_VARIATIONS_INDEX

Wraps HB_OT_LAYOUT_NO_VARIATIONS_INDEX

The HarfBuzz libraries272

273The HarfBuzz libraries

13.1.1 Example

The example is (a small modification of) the file core_types.lua and it requires the file harf-

buzz.lua; both are under luaharfbuzz folder of the source code. The fonts notonastaliq.ttf

and amiri-regular.ttf' are under luaharfbuzz/fonts.

The file harfbuzz.lua:

local hb = require("luaharfbuzz")

-- special tags

hb.Tag.NONE = hb.Tag.new()

-- special script codes (ISO 15924)

hb.Script.COMMON = hb.Script.new("Zyyy")

hb.Script.INHERITED = hb.Script.new("Zinh")

hb.Script.UNKNOWN = hb.Script.new("Zzzz")

hb.Script.INVALID = hb.Script.from_iso15924_tag(hb.Tag.NONE)

-- directions

hb.Direction.INVALID = hb.Direction.new("invalid")

hb.Direction.LTR = hb.Direction.new("ltr")

hb.Direction.RTL = hb.Direction.new("rtl")

hb.Direction.TTB = hb.Direction.new("ttb")

hb.Direction.BTT = hb.Direction.new("btt")

-- special languages

hb.Language.INVALID = hb.Language.new()

hb.shape = function(font, buf, options)

options = options or { }

-- Apply options to buffer if they are set.

if options.language then buf:set_language(options.language) end

if options.script then buf:set_script(options.script) end

if options.direction then buf:set_direction(options.direction) end

-- Guess segment properties, in case all steps above have failed

-- to set the right properties.

buf:guess_segment_properties()

local features = {}

-- Parse features

if type(options.features) == "string" then

for fs in string.gmatch(options.features, '([^,]+)') do

The HarfBuzz libraries274

local feature = hb.Feature.new(fs)

if feature then

table.insert(features, hb.Feature.new(fs))

else

error(string.format("Invalid feature string: '%s'", fs))

end

end

elseif type(options.features) == "table" then

features = options.features

elseif options.features then -- non-nil but not a string or table

error("Invalid features option")

end

return hb.shape_full(font,buf,features,options.shapers or {})

end

-- For backward compatibility

hb.Buffer.HB_BUFFER_CLUSTER_LEVEL_MONOTONE_GRAPHEMES = hb.Buffer.CLUSTER_LEVEL_MO-

NOTONE_GRAPHEMES

hb.Buffer.HB_BUFFER_CLUSTER_LEVEL_MONOTONE_CHARACTERS = hb.Buffer.CLUSTER_LEVEL_MO-

NOTONE_CHARACTERS

hb.Buffer.HB_BUFFER_CLUSTER_LEVEL_CHARACTERS = hb.Buffer.CLUSTER_LEVEL_CHAR-

ACTERS

hb.Buffer.HB_BUFFER_CLUSTER_LEVEL_DEFAULT = hb.Buffer.CLUSTER_LEVEL_DE-

FAULT

hb.Tag.HB_TAG_NONE = hb.Tag.NONE

hb.Script.HB_SCRIPT_COMMON = hb.Script.COMMON

hb.Script.HB_SCRIPT_INHERITED = hb.Script.INHERITED

hb.Script.HB_SCRIPT_UNKNOWN = hb.Script.UNKNOWN

hb.Script.HB_SCRIPT_INVALID = hb.Script.INVALID

hb.Language.HB_LANGUAGE_INVALID = hb.Language.INVALID

hb.Direction.HB_DIRECTION_INVALID = hb.Direction.INVALID

hb.Direction.HB_DIRECTION_LTR = hb.Direction.LTR

hb.Direction.HB_DIRECTION_RTL = hb.Direction.RTL

hb.Direction.HB_DIRECTION_TTB = hb.Direction.TTB

hb.Direction.HB_DIRECTION_BTT = hb.Direction.BTT

hb.Direction.HB_DIRECTION_IS_VALID = hb.Direction.is_valid

hb.Direction.HB_DIRECTION_IS_HORIZONTAL = hb.Direction.is_horizontal

hb.Direction.HB_DIRECTION_IS_VERTICAL = hb.Direction.is_vertical

hb.Direction.HB_DIRECTION_IS_FORWARD = hb.Direction.is_forward

hb.Direction.HB_DIRECTION_IS_BACKWARD = hb.Direction.is_backward

275The HarfBuzz libraries

hb.Buffer.get_glyph_infos_and_positions = hb.Buffer.get_glyphs

return hb

The example:

local harfbuzz = require('harfbuzz')

-- Harfbuzz API Version

print("Harfbuzz API version", harfbuzz.version())

-- Shapers available

print("Shapers:", harfbuzz.shapers())

-- harfbuzz.Face

local face = harfbuzz.Face.new('notonastaliq.ttf')

print('\nFace upem = '..face:get_upem())

-- harfbuzz.Font

local font = harfbuzz.Font.new(face)

local xs, xy = font:get_scale()

print("\nDefault font scale = X: "..xs..", Y: "..xy)

-- harfbuzz.Buffer

local text = "ی" -- U+06CC U+06C1

local buf = harfbuzz.Buffer.new()

buf:add_utf8(text)

-- harfbuzz.shape (Shapes text)

print("\nShaping '"..text.."' set with Noto Nastaliq Urdu")

harfbuzz.shape(font, buf, { language = harfbuzz.Language.new("urd"),

script = harfbuzz.Script.new("Arab"), direction = harfbuzz.Direction.RTL})

local glyphs = buf:get_glyphs()

print("No. of glyphs", #glyphs)

for k,v in pairs(glyphs) do

print(k)

for k1,v1 in pairs(v) do

print("",k1,v1)

end

end

local opts = { language = harfbuzz.Language.new("eng"),

script = harfbuzz.Script.new("Latn"), direction = harfbuzz.Direction.LTR }

local amiri_face = harfbuzz.Face.new('amiri-regular.ttf')

local amiri_font = harfbuzz.Font.new(amiri_face)

The HarfBuzz libraries276

-- shaping '123' w/o features

print("\nShaping '123' set with Amiri Regular and no features")

buf= harfbuzz.Buffer.new()

buf:add_utf8("123")

harfbuzz.shape(amiri_font, buf, opts)

glyphs = buf:get_glyphs()

for k,v in pairs(glyphs) do

print(k)

for k1,v1 in pairs(v) do

print("",k1,v1)

end

end

-- shaping '123' with '+numr' (numerators)

print("\nShaping '123' set with Amiri Regular with 'numr' feature turned on")

buf= harfbuzz.Buffer.new()

buf:add_utf8("123")

opts.features = "+numr"

harfbuzz.shape(amiri_font, buf, opts)

glyphs = buf:get_glyphs()

for k,v in pairs(glyphs) do

print(k)

for k1,v1 in pairs(v) do

print("",k1,v1)

end

end

The result:

Harfbuzz API version 2.6.4

Shapers: graphite2 ot fallback

Face upem = 2048

Default font scale = X: 2048, Y: 2048

Shaping 'ی' set with Noto Nastaliq Urdu

No. of glyphs 4

1

flags 1.0

cluster 2

codepoint 277

x_advance 472.0

y_advance 0.0

x_offset 0.0

y_offset 0.0

277The HarfBuzz libraries

2

cluster 0

codepoint 19

x_advance 0.0

y_advance 0.0

x_offset 310.0

y_offset -383.0

3

cluster 0

codepoint 985

x_advance 0.0

y_advance 0.0

x_offset 0.0

y_offset 0.0

4

cluster 0

codepoint 316

x_advance 731.0

y_advance 0.0

x_offset 0.0

y_offset -68.0

Shaping '123' set with Amiri Regular and no features

1

cluster 0

codepoint 20

x_advance 1090.0

y_advance 0.0

x_offset 0.0

y_offset 0.0

2

cluster 1

codepoint 21

x_advance 1090.0

y_advance 0.0

x_offset 0.0

y_offset 0.0

3

cluster 2

codepoint 22

x_advance 1090.0

y_advance 0.0

x_offset 0.0

y_offset 0.0

Shaping '123' set with Amiri Regular with 'numr' feature turned on

1

The HarfBuzz libraries278

cluster 0

codepoint 6673

x_advance 600.0

y_advance 0.0

x_offset 0.0

y_offset 0.0

2

cluster 1

codepoint 6674

x_advance 600.0

y_advance 0.0

x_offset 0.0

y_offset 0.0

3

cluster 2

codepoint 6675

x_advance 600.0

y_advance 0.0

x_offset 0.0

y_offset 0.0

279The backend libraries

14 The backend libraries

14.1 The pdf library

This library contains variables and functions that are related to the pdf backend. You can find

more details about the expected values to setters in section 3.2.

14.1.1 mapfile, mapline

pdf.mapfile(<string> map file)

pdf.mapline(<string> map line)

These two functions can be used to replace primitives \pdfmapfile and \pdfmapline inherited

from pdfTEX. They expect a string as only parameter and have no return value. The first char-

acter in a map line can be -, + or = which means as much as remove, add or replace this line.

They are not state setters but act immediately.

14.1.2 [set|get][catalog|info|names|trailer]

These functions complement the corresponding pdf backend token lists dealing with metadata.

The value types are strings and they are written to the pdf file directly after the token registers

set at the TEX end are written.

14.1.3 [set|get][pageattributes|pageresources|pagesattributes]

These functions complement the corresponding pdf backend token lists dealing with page re-

sources. The variables have no interaction with the corresponding pdf backend token register.

They are written to the pdf file directly after the token registers set at the TEX end are written.

14.1.4 [set|get][xformattributes|xformresources]

These functions complement the corresponding pdf backend token lists dealing with reuseable

boxes and images. The variables have no interaction with the corresponding pdf backend token

register. They are written to the pdf file directly after the token registers set at the TEX end are

written.

14.1.5 [set|get][major|minor]version

You can set both the major and minor version of the output. The major version is normally 1 but

when set to 2 some data will not be written to the file in order to comply with the standard. What

minor version you set depends on what pdf features you use. This is out of control of LuaTEX.

One can set the major version number to 2 but we cannot guarantee that the engine adapts

itself correctly, because there is no public and free specification that we know of. Also, user

The backend libraries280

constructed annotations are not checked and just passed to the file. On the other hand, the pdf

that the engine generated is rather simple and not that version depending.

14.1.6 getcreationdate

This function returns a string with the date in the format that ends up in the pdf file, in this case

it’s: .

14.1.7 [set|get]inclusionerrorlevel and

[set|get]ignoreunknownimages

These variable control how error in included image are treated. They are modeled after the

pdfTEX equivalents.

14.1.8 [set|get]suppressoptionalinfo, [set|get]trailerid,

[set|get]omitcidset, [set|get]omitinfo and

[set|get]omitmediabox

The optional info bitset (a number) determines what kind of info gets flushed. By default we

flush all. See section 3.2.2 for more details.

You can set your own trailer id. This has to be string containing valid pdf array content with

checksums.

The cidset, charset and info flags (numbers) disables inclusion of a so called CIDSet and CharSet

entries, which can be handy when aiming at some of the many pdf substandards.

When it is omitted, one should provide the MediaBox via the page attribute options, because it

is a mandate field. No checking is done.

14.1.9 [set|get][obj|]compresslevel and [set|get]recompress

These functions set the level stream compression. When object compression is enabled multiple

objects will be packed in a compressed stream which saves space. The minimum values are 0,

the maxima are 9.

When recompression is to 1 compressed objects will be decompressed and when compresslevel

is larger than zero they will then be recompressed. This is mostly a debugging feature and

should not be relied upon.

14.1.10 [set|get]gentounicode

This flag enables tounicode generation (like in pdfTEX). Normally the values are provided by the

font loader.

14.1.11 [set|get]decimaldigits

These two functions set the accuracy of floats written to the pdffile. You can set any value but

the backend will not go below 3 and above 6.

281The backend libraries

14.1.12 [set|get]pkresolution

These setter takes two arguments: the resolution and an optional zero or one that indicates if

this is a fixed one. The getter returns these two values.

14.1.13 getlast[obj|link|annot] and getretval

These status variables are similar to the ones traditionally used in the backend interface at the

TEX end.

14.1.14 getmaxobjnum and getobjtype, getfontname, getfontobjnum,

getfontsize, getxformname

These introspective helpers are mostly used when you construct pdf objects yourself and need

for instance information about a (to be) embedded font.

14.1.15 [set|get]origin

This one is used to set the horizonal and/or vertical offset, a traditional backend property.

pdf.setorigin() -- sets both to 0pt

pdf.setorigin(tex.sp("1in")) -- sets both to 1in

pdf.setorigin(tex.sp("1in"),tex.sp("1in"))

The counterpart of this function returns two values.

14.1.16 [set|get]imageresolution

These two functions relate to the imageresolution that is used when the image itself doesn’t

provide a non-zero x or y resolution.

14.1.17 [set|get][link|dest|thread|xform]margin

These functions can be used to set and retrieve the margins that are added to the natural bound-

ing boxes of the respective objects.

14.1.18 get[pos|hpos|vpos]

These functions get current location on the output page, measured from its lower left corner.

The values return scaled points as units.

local h, v = pdf.getpos()

14.1.19 [has|get]matrix

The current matrix transformation is available via the getmatrix command, which returns 6

values: sx, rx, ry, sy, tx, and ty. The hasmatrix function returns truewhen a matrix is applied.

The backend libraries282

if pdf.hasmatrix() then

local sx, rx, ry, sy, tx, ty = pdf.getmatrix()

-- do something useful or not

end

14.1.20 print

You can print a string to the pdf document from within a \latelua call. This function is not to

be used inside \directlua unless you know exactly what you are doing.

pdf.print(<string> s)

pdf.print(<string> type, <string> s)

The optional parameter can be used to mimic the behavior of pdf literals: the type is direct or

page.

14.1.21 immediateobj

This function creates a pdf object and immediately writes it to the pdf file. It is modelled after

pdfTEX’s \immediate \pdfobj primitives. All function variants return the object number of the

newly generated object.

<number> n =

pdf.immediateobj(<string> objtext)

<number> n =

pdf.immediateobj("file", <string> filename)

<number> n =

pdf.immediateobj("stream", <string> streamtext, <string> attrtext)

<number> n =

pdf.immediateobj("streamfile", <string> filename, <string> attrtext)

The first version puts the objtext raw into an object. Only the object wrapper is automatically

generated, but any internal structure (like << >> dictionary markers) needs to be provided by

the user. The second version with keyword file as first argument puts the contents of the

file with name filename raw into the object. The third version with keyword stream creates a

stream object and puts the streamtext raw into the stream. The stream length is automatically

calculated. The optional attrtext goes into the dictionary of that object. The fourth version

with keyword streamfile does the same as the third one, it just reads the stream data raw from

a file.

An optional first argument can be given to make the function use a previously reserved pdf

object.

<number> n =

pdf.immediateobj(<integer> n, <string> objtext)

<number> n =

pdf.immediateobj(<integer> n, "file", <string> filename)

<number> n =

283The backend libraries

pdf.immediateobj(<integer> n, "stream", <string> streamtext, <string> attr-

text)

<number> n =

pdf.immediateobj(<integer> n, "streamfile", <string> filename, <string> at-

trtext)

14.1.22 obj

This function creates a pdf object, which is written to the pdf file only when referenced, e.g., by

refobj().

All function variants return the object number of the newly generated object, and there are two

separate calling modes. The first mode is modelled after pdfTEX’s \pdfobj primitive.

<number> n =

pdf.obj(<string> objtext)

<number> n =

pdf.obj("file", <string> filename)

<number> n =

pdf.obj("stream", <string> streamtext, <string> attrtext)

<number> n =

pdf.obj("streamfile", <string> filename, <string> attrtext)

An optional first argument can be given to make the function use a previously reserved pdf

object.

<number> n =

pdf.obj(<integer> n, <string> objtext)

<number> n =

pdf.obj(<integer> n, "file", <string> filename)

<number> n =

pdf.obj(<integer> n, "stream", <string> streamtext, <string> attrtext)

<number> n =

pdf.obj(<integer> n, "streamfile", <string> filename, <string> attrtext)

The second mode accepts a single argument table with key–value pairs.

<number> n = pdf.obj {

type = <string>,

immediate = <boolean>,

objnum = <number>,

attr = <string>,

compresslevel = <number>,

objcompression = <boolean>,

file = <string>,

string = <string>,

nolength = <boolean>,

}

The backend libraries284

The type field can have the values raw and stream, this field is required, the others are op-

tional (within constraints). When nolength is set, there will be no /Length entry added to the

dictionary.

Note: this mode makes obj look more flexible than it actually is: the constraints from the sep-

arate parameter version still apply, so for example you can’t have both string and file at the

same time.

14.1.23 refobj

This function, the Lua version of the \pdfrefobj primitive, references an object by its object

number, so that the object will be written to the pdf file.

pdf.refobj(<integer> n)

This function works in both the \directlua and \latelua environment. Inside \directlua a

new whatsit node ‘pdf_refobj’ is created, which will be marked for flushing during page output

and the object is then written directly after the page, when also the resources objects are written

to the pdf file. Inside \latelua the object will be marked for flushing.

This function has no return values.

14.1.24 reserveobj

This function creates an empty pdf object and returns its number.

<number> n = pdf.reserveobj()

<number> n = pdf.reserveobj("annot")

14.1.25 getpageref

The object number of a page can be fetched with this function. This can be a forward reference

so when you ask for a future page, you do get a number back.

<number> n = pdf.getpageref(123)

14.1.26 registerannot

This function adds an object number to the /Annots array for the current page without doing

anything else. This function can only be used from within \latelua.

pdf.registerannot (<number> objnum)

14.1.27 newcolorstack

This function allocates a new color stack and returns it’s id. The arguments are the same as for

the similar backend extension primitive.

285The backend libraries

pdf.newcolorstack("0 g","page",true) -- page|direct|origin

14.1.28 setfontattributes

This function will force some additional code into the font resource. It can for instance be used

to add a custom ToUnicode vector to a bitmap file.

pdf.setfontattributes(<number> font id, <string> pdf code)

14.2 The pdfe library

14.2.1 Introduction

The pdfe library replaces the epdf library and provides an interface to pdf files. It uses the

same code as is used for pdf image inclusion. The pplib library by Paweł Jackowski replaces

the poppler (derived from xpdf) library.

A pdf file is basically a tree of objects and one descends into the tree via dictionaries (key/value)

and arrays (index/value). There are a few topmost dictionaries that start at root that are accessed

more directly.

Although everything in pdf is basically an object we only wrap a few in so called userdata Lua

objects.

pdf Lua

null nil

boolean boolean

integer integer

float number

name string

string string

array array userdatum

dictionary dictionary userdatum

stream stream userdatum (with related dictionary)

reference reference userdatum

The regular getters return these Lua data types but one can also get more detailed information.

14.2.2 open, new, getstatus, close, unencrypt

A document is loaded from a file or string

<pdfe document> = pdfe.open(filename)

<pdfe document> = pdfe.new(somestring,somelength)

Such a document is closed with:

pdfe.close(<pdfe document>)

The backend libraries286

You can check if a document opened well by:

pdfe.getstatus(<pdfe document>)

The returned codes are:

VALUE EXPLANATION

-2 the document is (still) protected

-1 the document failed to open

0 the document is not encrypted

1 the document has been unencrypted

An encrypted document can be unencrypted by the next command where instead of either pass-

word you can give nil:

pdfe.unencrypt(<pdfe document>,userpassword,ownerpassword)

14.2.3 getsize, getversion, getnofobjects, getnofpages, getmemoryusage

A successfully opened document can provide some information:

bytes = getsize(<pdfe document>)

major, minor = getversion(<pdfe document>)

n = getnofobjects(<pdfe document>)

n = getnofpages(<pdfe document>)

bytes, waste = getmemoryusage(<pdfe document>)

14.2.4 get[catalog|trailer|info]

For accessing the document structure you start with the so called catalog, a dictionary:

<pdfe dictionary> = pdfe.getcatalog(<pdfe document>)

The other two root dictionaries are accessed with:

<pdfe dictionary> = pdfe.gettrailer(<pdfe document>)

<pdfe dictionary> = pdfe.getinfo(<pdfe document>)

14.2.5 getpage, getbox

A specific page can conveniently be reached with the next command, which returns a dictionary.

The first argument is to be a page dictionary.

<pdfe dictionary> = pdfe.getpage(<pdfe document>,pagenumber)

Another convenience command gives you the (bounding) box of a (normally page) which can be

inherited from the document itself. An example of a valid box name is MediaBox.

287The backend libraries

pages = pdfe.getbox(<pdfe dictionary>,boxname)

14.2.6 get[string|integer|number|boolean|name], type

Common values in dictionaries and arrays are strings, integers, floats, booleans and names

(which are also strings) and these are also normal Lua objects:

s = getstring (<pdfe array|dictionary>,index|key)

i = getinteger(<pdfe array|dictionary>,index|key)

n = getnumber (<pdfe array|dictionary>,index|key)

b = getboolean(<pdfe array|dictionary>,index|key)

n = getname (<pdfe array|dictionary>,index|key)

s = type (<pdfe array|dictionary|document|reference|stream)

The type returns a string describing the type of the object, i.e. "pdfe.array", "pdfe.dictionary",

"pdfe", "pdfe.reference", "pdfe.stream".

The getstring function has two extra variants:

s, h = getstring (<pdfe array|dictionary>,index|key,false)

s = getstring (<pdfe array|dictionary>,index|key,true)

The first call returns the original string plus a boolean indicating if the string is hex encoded.

The second call returns the unencoded string.

14.2.7 get[dictionary|array|stream]

Normally you will use an index in an array and key in a dictionary but dictionaries also accept

an index. The size of an array or dictionary is available with the usual # operator.

<pdfe dictionary> = getdictionary(<pdfe array|dictionary>,index|key)

<pdfe array> = getarray (<pdfe array|dictionary>,index|key)

<pdfe stream>,

<pdfe dictionary> = getstream (<pdfe array|dictionary>,index|key)

These commands return dictionaries, arrays and streams, which are dictionaries with a blob of

data attached.

Before we come to an alternative access mode, we mention that the objects provide access in a

different way too, for instance this is valid:

print(pdfe.open("foo.pdf").Catalog.Type)

At the topmost level there are Catalog, Info, Trailer and Pages, so this is also okay:

print(pdfe.open("foo.pdf").Pages[1])

14.2.8 [open|close|readfrom|readfromwhole]stream

Streams are sort of special. When your index or key hits a stream you get back a stream object

and dictionary object. The dictionary you can access in the usual way and for the stream there

are the following methods:

The backend libraries288

okay = openstream(<pdfe stream>,[decode])

closestream(<pdfe stream>)

str, n = readfromstream(<pdfe stream>)

str, n = readwholestream(<pdfe stream>,[decode])

You either read in chunks, or you ask for the whole. When reading in chunks, you need to open

and close the stream yourself. The n value indicates the length read. The decode parameter

controls if the stream data gets uncompressed.

As with dictionaries, you can access fields in a stream dictionary in the usual Lua way too. You

get the content when you ‘call’ the stream. You can pass a boolean that indicates if the stream

has to be decompressed.

14.2.9 getfrom[dictionary|array]

In addition to the interface described before, there is also a bit lower level interface available.

key, type, value, detail = getfromdictionary(<pdfe dictionary>,index)

type, value, detail = getfromarray(<pdfe array>,index)

TYPE MEANING VALUE DETAIL

0 none nil

1 null nil

2 boolean 1 or 0

3 integer integer

4 number float

5 name string

6 string string hex

7 array arrayobject size

8 dictionary dictionaryobject size

9 stream streamobject dictionary size

10 reference integer

A hex string is (in the pdf file) surrounded by <> while plain strings are bounded by <>.

14.2.10 [dictionary|array]totable

All entries in a dictionary or table can be fetched with the following commands where the return

values are a hashed or indexed table.

hash = dictionarytotable(<pdfe dictionary>)

list = arraytotable(<pdfe array>)

You can get a list of pages with:

{ { <pdfe dictionary>, size, objnum }, ... } = pagestotable(<pdfe document>)

14.2.11 getfromreference

Because you can have unresolved references, a reference object can be resolved with:

289The backend libraries

type, <pdfe dictionary|array|stream>, detail = getfromreference(<pdfe refer-

ence>)

So, as second value you get back a new pdfe userdata object that you can query.

14.3 Memory streams

The pdfe.new that takes three arguments:

VALUE EXPLANATION

stream this is a (in low level Lua speak) light userdata object, i.e. a pointer to a sequence of

bytes

length this is the length of the stream in bytes (the stream can have embedded zeros)

name optional, this is a unique identifier that is used for hashing the stream, so that multiple

doesn’t use more memory

The third argument is optional. When it is not given the function will return an pdfe document

object as with a regular file, otherwise it will return a filename that can be used elsewhere (e.g.

in the image library) to reference the stream as pseudo file.

Instead of a light userdata stream (which is actually fragile but handy when you come from a

library) you can also pass a Lua string, in which case the given length is (at most) the string

length.

The function returns an pdfe object and a string. The string can be used in the img library

instead of a filename. You need to prevent garbage collection of the object when you use it as

image (for instance by storing it somewhere).

Both the memory stream and it’s use in the image library is experimental and can change. In

case you wonder where this can be used: when you use the swiglib library for graphicmagick,

it can return such a userdata object. This permits conversion in memory and passing the result

directly to the backend. This might save some runtime in one-pass workflows. This feature is

currently not meant for production and we might come up with a better implementation.

14.4 The pdfscanner library

The pdfscanner library allows interpretation of pdf content streams and /ToUnicode (cmap)

streams. You can get those streams from the pdfe library, as explained in an earlier section.

There is only a single top-level function in this library:

pdfscanner.scan (<pdfe stream>, <table> operatortable, <table> info)

pdfscanner.scan (<pdfe array>, <table> operatortable, <table> info)

pdfscanner.scan (<string>, <table> operatortable, <table> info)

The first argument should be a Lua string or a stream or array object coming from the pdfe

library. The second argument, operatortable, should be a Lua table where the keys are pdf

operator name strings and the values are Lua functions (defined by you) that are used to process

those operators. The functions are called whenever the scanner finds one of these pdf operators

The backend libraries290

in the content stream(s). The functions are called with two arguments: the scanner object itself,

and the info table that was passed are the third argument to pdfscanner.scan.

Internally, pdfscanner.scan loops over the pdf operators in the stream(s), collecting operands

on an internal stack until it finds a pdf operator. If that pdf operator’s name exists in opera-

tortable, then the associated function is executed. After the function has run (or when there is

no function to execute) the internal operand stack is cleared in preparation for the next operator,

and processing continues.

The scanner argument to the processing functions is needed because it offers various methods

to get the actual operands from the internal operand stack.

A simple example of processing a pdf’s document stream could look like this:

local operatortable = { }

operatortable.Do = function(scanner,info)

local resources = info.resources

if resources then

local val = scanner:pop()

local name = val[2]

local xobject = resources.XObject

print(info.space .. "Uses XObject " .. name)

local resources = xobject.Resources

if resources then

local newinfo = {

space = info.space .. " ",

resources = resources,

}

pdfscanner.scan(entry, operatortable, newinfo)

end

end

end

local function Analyze(filename)

local doc = pdfe.open(filename)

if doc then

local pages = doc.Pages

for i=1,#pages do

local page = pages[i]

local info = {

space = " " ,

resources = page.Resources,

}

print("Page " .. i)

-- pdfscanner.scan(page.Contents,operatortable,info)

pdfscanner.scan(page.Contents(),operatortable,info)

end

end

291The backend libraries

end

Analyze("foo.pdf")

This example iterates over all the actual content in the pdf, and prints out the found XObject

names. While the code demonstrates quite some of the pdfe functions, let’s focus on the type

pdfscanner specific code instead.

From the bottom up, the following line runs the scanner with the pdf page’s top-level content

given in the first argument.

The third argument, info, contains two entries: space is used to indent the printed output, and

resources is needed so that embedded XForms can find their own content.

The second argument, operatortable defines a processing function for a single pdf operator,

Do.

The function Do prints the name of the current XObject, and then starts a new scanner for that

object’s content stream, under the condition that the XObject is in fact a /Form. That nested

scanner is called with new info argument with an updated space value so that the indentation

of the output nicely nests, and with a new resources field to help the next iteration down to

properly process any other, embedded XObjects.

Of course, this is not a very useful example in practice, but for the purpose of demonstrating

pdfscanner, it is just long enough. It makes use of only one scanner method: scanner:pop().

That function pops the top operand of the internal stack, and returns a Lua table where the

object at index one is a string representing the type of the operand, and object two is its value.

The list of possible operand types and associated Lua value types is:

TYPES TYPE

integer <number>

real <number>

boolean <boolean>

name <string>

operator <string>

string <string>

array <table>

dict <table>

In case of integer or real, the value is always a Lua (floating point) number. In case of name,

the leading slash is always stripped.

In case of string, please bear in mind that pdf actually supports different types of strings (with

different encodings) in different parts of the pdf document, so you may need to reencode some

of the results; pdfscanner always outputs the byte stream without reencoding anything. pdfs-

canner does not differentiate between literal strings and hexadecimal strings (the hexadecimal

values are decoded), and it treats the stream data for inline images as a string that is the single

operand for EI.

In case of array, the table content is a list of pop return values and in case of dict, the table

keys are pdf name strings and the values are pop return values.

The backend libraries292

There are a few more methods defined that you can ask scanner:

METHOD EXPLANATION

pop see above

popnumber return only the value of a real or integer

popname return only the value of a name

popstring return only the value of a string

poparray return only the value of a array

popdictionary return only the value of a dict

popboolean return only the value of a boolean

done abort further processing of this scan() call

The pop* are convenience functions, and come in handy when you know the type of the operands

beforehand (which you usually do, in pdf). For example, the Do function could have used local

name = scanner:popname() instead, because the single operand to the Do operator is always a

pdf name object.

The done function allows you to abort processing of a stream once you have learned everything

you want to learn. This comes in handy while parsing /ToUnicode, because there usually is

trailing garbage that you are not interested in. Without done, processing only ends at the end

of the stream, possibly wasting cpu cycles.

We keep the older names popNumber, popName, popString, popArray, popDict and popBool

around.

293Topics

Topics

a

Aleph 43, 51

adjust 130

attributes 22, 156, 194

b

backend 36, 44, 279

banner 19

boundary 134

boxes 17, 22, 197

reuse 198

split 198

bytecodes 187

c

callbacks 169

building pages 175

closing files 173

contributions 174, 177

data files 171

dump 180

editing 182

errors 181, 182

files 182

font files 170, 171

fonts 184, 185

format file 170

hyphenation 179

image content 184

image files 172

input buffer 174

inserts 175

job run 181

jobname 174

kerning 180

ligature building 179

linebreaks 176, 177

math 180

opening files 172

output 179

output buffer 174

output file 170

pdf file 183

packing 177, 178

pages 181

reader 172

readers 173

rules 179

synctex 183

wrapping up 183

catcodes 27

characters 69

codes 196

command line 59

conditions 33

configuration 212

convert commands 193

csnames 56

d

direct nodes 159

directions 51, 134

discretionaries 79, 83, 130

e

𝜀-TEX 40

engines 39

errors 28, 29, 204

escaping 25

exceptions 77

expansion 32

f

files

binary 56

finding 222

map 279

names 37

recording 222

writing 37

fontloader

tables 239

fonts 29, 87

current 100

define 99

defining 205

Topics294

extend 99

id 99, 100

information 237

iterate 100

library 97

loading 237

real 92

tables 87

tfm 97

used 317

vf 98

virtual 92, 94, 96, 98

format 20, 56

g

glue 131

glyphs 69, 132

graphics 225

h

hash 205

helpers 203

history 39

hyperlinks 57

hyphenation 35, 69, 75, 77

discretionaries 79

exceptions 77

how it works 79

patterns 77

i

io 214

images 225

immediate 228

injection 228

library 225

MetaPost 230

mplib 230

object 228

types 229

initialization 59, 206

bitmaps 223

insertions 129

k

kerning 81

kerns 132

suppress 29

l

Lua 17

byte code 59

extensions 62

interpreter 59

libraries 62, 67

modules 67

languages 35, 69

library 83

last items 194

leaders 35

libraries

kpse 221

lua 187

status 188

tex 190

texconfig 212

texio 214

token 215

ligatures 81

suppress 29

linebreaks 83, 210

lists 128, 200

m

MetaPost 230

mplib 230

macros 219

main loop 75

map files 279

marks 31, 129

math 28, 37, 103

accents 119

codes 123

cramped 106

delimiters 120, 122

extensibles 120

fences 118

flattening 125

fractions 122

italics 116

kerning 116

last line 123

295Topics

limits 115

nodes 130, 135

parameters 108, 109, 198

penalties 117

radicals 119

scripts 116, 120, 124

spacing 106, 113, 114, 115

stacks 106

styles 105, 106, 124

text 124

tracing 125

Unicode 103

memory 55

n

nesting 200, 212

newline 57

nodes 17, 21, 127

adjust 130

attributes 156

boundary 134

direct 159

direction 134

discretionaries 130

functions 145

glue 131

glyph 132

insertions 129

kerns 132

lists 128

marks 129

math 130, 135

paragraphs 134, 135

penalty 132

properties 164

rules 128

text 127

o

Omega 51

OpenType 237

output 34, 36

p

pdf 279

analyze 285

annotations 281, 284

backend 44

catalog 279

color stack 284

compression 280

date 67, 280

fonts 285

info 279

margins 281

matrix 281

memory streams 289

objects 281, 282, 283, 284, 285

options 280

page attributes 279

page resources 279

pages 284

positioning 281

positions 281

precision 280

print to 282

resolution 281

scanner 289

trailer 279, 280

pdfe 285

unicode 280

version 279

xform attributes 279

xform resources 279

pdfTEX 40

pages 198, 211

paragraphs 83, 134, 135

reset 210

parameters

internal 190

math 198

patterns 77

penalty 132

primitives 29, 206

printing 201

properties 164

protrusion 135

r

registers 194, 197

bytecodes 187

rules 35, 128

Topics296

s

shipout 211

space 57

spaces

suppress 30

splitting 34

synctex 212

t

TEX 39

TrueType 237

Type1 239

testing 67

text

math 124

tokens 215

scanning 30

tracing 36

u

Unicode 20, 21

math 103

v

version 19, 187

w

web2c 44

297Primitives

Primitives

This register contains the primitives that are mentioned in the manual. There are of course

many more primitives. The LuaTEX primitives are typeset in bold. The primitives from pdfTEX

are not supported that way but mentioned anyway.

\abovedisplayskip 115

\abovewithdelims 122

\accent 33, 75, 76

\addafterocplist 43

\addbeforeocplist 43

\adjustspacing 41, 91

\alignmark 31

\aligntab 31

\atop 106, 108

\atopwithdelims 106

\attribute 194

\attributedef 194

\automaticdiscretionary 75

\automatichyphenmode 73

\automatichyphenpenalty 77

\batchmode 214

\begincsname 31

\begingroup 106

\belowdisplayskip 115

\bodydir 43

\bodydirection 54

\boundary 35, 134

\box 21

\boxdir 43

\breakafterdirmode 53

\catcode 19, 20, 56, 196

\catcodetable 27, 201

\char 18, 20, 76, 77, 132

\chardef 20, 77, 218, 219

\clearmarks 31

\clearocplists 43

\clubpenalties 210

\copy 21

\copyfont 41

\count 21, 22, 62, 194

\countdef 21, 194

\crampedscriptstyle 107

\csname 28, 31

\csstring 31

\DefaultInputMode 43

\DefaultInputTranslation 43

\DefaultOutputMode 43

\DefaultOutputTranslation 43

\def 47

\delcode 56, 103, 196, 197

\delimiter 103

\detokenize 216

\dimen 21, 62, 194

\dimendef 21, 194

\directlua 17

\directlua 19, 23, 24, 25, 187, 201, 206,

282, 284

\discretionary 18, 77, 78, 80, 130

\displaystyle 113

\displaywidowpenalties 211

\dp 21

\draftmode 36, 42

\edef 26, 32, 47, 216

\efcode 20, 41, 91

\endcsname 28

\endgroup 106

\endinput 215

\endlinechar 30, 39, 201, 202, 203

\errhelp 204

\errmessage 204

\etoksapp 30

\etokspre 30

\everyeof 30

\everyjob 60

\exceptionpenalty 78

\exhyphenchar 76, 77

\exhyphenpenalty 77, 80, 130

\expandafter 32

\expanded 32, 41

Primitives298

\expandglyphsinfont 41, 88, 89

\explicitdiscretionary 75

\explicithyphenpenalty 77

\externalocp 43

\firstvalidlanguage 70

\fontid 29

\formatname 20, 206

\gleaders 35

\glet 32

\global 56

\glyphdimensionsmode 36

\gtoksapp 30

\gtokspre 30

\halign 176

\hangindent 54

\hbox 18, 21, 34, 116, 176, 177, 197

\hjcode 20, 56, 70, 78

\hoffset 43

\hpack 34

\hrule 18

\hsize 74

\hskip 18, 131

\ht 21

\hyphenation 77, 80

\hyphenationbounds 72

\hyphenationmin 35, 70

\hyphenchar 76, 80, 87

\hyphenpenalty 77, 80, 130

\InputMode 43

\InputTranslation 43

\if 31

\ifabsdim 41

\ifabsnum 41

\ifcondition 33

\ifcsname 28

\ifincsname 41

\ifprimitive 41

\ifx 28

\ignoreligaturesinfont 41

\immediate 228, 229, 282

\immediateassigned 32

\immediateassignment 32

\initcatcodetable 27

\input 170

\insert 21, 129

\insertht 42

\interlinepenalties 210

\jobname 20, 60, 61, 174

\kern 18, 132

\knaccode 40

\knbccode 40

\knbscode 40

\language 76, 78, 80, 84

\lastnamedcs 31

\lastnodetype 127

\lastsavedboxresourceindex 35, 42

\lastsavedimageresourceindex 35, 42

\lastsavedimageresourcepages 35, 42

\lastxpos 41

\lastypos 41

\latelua 25, 140, 187, 282, 284

\lateluafunction 25

\lccode 20, 56, 196

\leaders 35

\left 118

\leftghost 70, 76

\lefthyphenmin 35, 70

\leftmarginkern 41

\letcharcode 31

\letterspacefont 41

\linedir 53

\localbrokenpenalty 134

\localinterlinepenalty 134

\localleftbox 134, 176

\localrightbox 134, 176

\long 28

\lowercase 78

\lpcode 20, 41, 90

\luabytecode 26

\luabytecodecall 26

\luacopyinputnodes 202

\luadef 25, 219

\luaescapestring 25

\luafunction 25

\luafunctioncall 25, 26

299Primitives

\luatexbanner 19

\luatexrevision 19, 20

\luatexversion 19, 20

\mag 39

\mark 129

\marks 21, 148

\mathaccent 103

\mathchar 103, 124

\mathchardef 103, 124

\mathchoice 105

\mathcode 56, 103, 196

\mathdefaultsmode 125

\mathdelimitersmode 118

\mathdir 43

\mathdir 54

\mathdir 201

\mathdirection 54

\mathdisplayskipmode 115

\matheqdirmode 115

\matheqnogapstep 118

\mathflattenmode 125

\mathitalicsmode 116, 118

\mathnolimitsmode 115, 116

\mathoption 126

\mathpenaltiesmode 117

\mathscriptboxmode 116

\mathscriptcharmode 116

\mathscriptsmode 117

\mathstyle 105, 106, 201

\mathsurround 113, 131

\mathsurroundmode 113

\mathsurroundskip 113

\maxdepth 178

\medmuskip 115

\middle 201

\muskip 21, 114, 115, 194

\muskipdef 21

\newlinechar 39

\noboundary 35, 76, 81, 134

\noDefaultInputMode 43

\noDefaultInputTranslation 43

\noDefaultOutputMode 43

\noDefaultOutputTranslation 43

\noexpand 32

\nohrule 35

\noInputMode 43

\noInputTranslation 43

\nokerns 29

\noligs 29

\noOutputMode 43

\noOutputTranslation 43

\nospaces 30

\novrule 35

\nullfont 28

\number 29, 204

\OutputMode 43

\OutputTranslation 43

\ocp 43

\ocplist 43

\ocptracelevel 43

\omathcode 43

\openin 170

\openout 37, 44, 170

\outer 28

\output 179, 189

\outputbox 34

\outputmode 36, 42

\over 106, 108, 201

\overline 107

\overwithdelims 106

\pagebottomoffset 43

\pagedir 43

\pagedir 54

\pagedirection 54

\pageheight 41, 43

\pagerightoffset 43

\pagewidth 41, 43

\par 22, 28, 175

\pardir 43

\pardir 54

\pardirection 54

\parfillskip 176, 211

\parindent 190

\parshape 54

\patterns 77, 79, 80

\pdfadjustinterwordglue 40

\pdfappendkern 40

\pdfcopyfont 41

Primitives300

\pdfdraftmode 42

\pdfeachlinedepth 41

\pdfeachlineheight 41

\pdfelapsedtime 40

\pdfescapehex 40

\pdfescapename 40

\pdfescapestring 40

\pdfextension 40, 45

\pdffeedback 40, 42, 45

\pdffiledump 40

\pdffilemoddate 40

\pdffilesize 40

\pdffirstlineheight 41

\pdffontattr 88

\pdffontexpand 41

\pdfforcepagebox 40

\pdfignoreddimen 41

\pdfimageaddfilename 42

\pdfinsertht 42

\pdflastlinedepth 41

\pdflastmatch 40

\pdflastxform 42

\pdflastximage 42

\pdflastximagepages 42

\pdfliteral 25

\pdfmapfile 279

\pdfmapline 279

\pdfmatch 40

\pdfmdfivesum 41

\pdfmovechars 41

\pdfnoligatures 41

\pdfnormaldeviate 41

\pdfobj 282, 283

\pdfoptionalwaysusepdfpagebox 41

\pdfoptionpdfinclusionerrorlevel 41

\pdfoutput 42

\pdfpageheight 41

\pdfpagewidth 41

\pdfprependkern 40

\pdfpxdimen 42

\pdfrandomseed 41

\pdfrefobj 284

\pdfrefxform 42

\pdfrefximage 42, 225

\pdfresettimer 41

\pdfsetrandomseed 41

\pdfshellescape 41

\pdfsnaprefpoint 40

\pdfsnapy 40

\pdfsnapycomp 40

\pdfstrcmp 41

\pdftexbanner 41

\pdftexrevision 41

\pdftexversion 41

\pdftracingfonts 42

\pdfunescapehex 41

\pdfuniformdeviate 41

\pdfvariable 40, 45, 225

\pdfxform 41, 42

\pdfxformattr 41

\pdfxformresources 41

\pdfximage 42, 225, 228

\penalty 132

\popocplist 43

\postexhyphenchar 75, 80

\posthyphenchar 80

\preexhyphenchar 75, 80

\prehyphenchar 80

\primitive 41

\protrudechars 41, 91

\protrusionboundary 35, 134

\pushocplist 43

\pxdimen 42

\quitvmode 41

\radical 103

\read 170

\relax 77, 202, 206, 218

\removeafterocplist 43

\removebeforeocplist 43

\right 118

\rightghost 70, 76

\righthyphenmin 35, 70

\rightmarginkern 41

\romannumeral 105, 204

\rpcode 20, 41, 90

\rule 128

\saveboxresource 35, 42

\savecatcodetable 27, 28

\saveimageresource 35, 42, 229

301Primitives

\savepos 41

\savinghyphcodes 70, 71, 78, 85

\scantextokens 30

\scantokens 24, 30

\scriptfont 109

\scriptscriptfont 109

\scriptscriptstyle 120

\scriptspace 113

\scriptstyle 107

\setbox 21

\setfontid 29

\setlanguage 70, 76, 80

\sfcode 20, 56, 196

\shapemode 54

\shbscode 40

\shipout 181

\skewchar 87, 119

\skip 21, 194

\skipdef 21, 194

\spaceskip 30

\special 95, 140

\stbscode 40

\string 31

\suppressfontnotfounderror 28

\suppressifcsnameerror 28

\suppresslongerror 28

\suppressmathparerror 28

\suppressoutererror 28

\suppressprimitiveerror 29

\tagcode 41

\textdir 43, 53

\textdir 54, 134

\textdir 201

\textdir(ection) 18

\textdirection 54

\textfont 109, 124

\textstyle 105

\the 20, 22, 29, 190, 193, 194, 201

\thickmuskip 115

\thinmuskip 115

\toks 21, 193, 194, 201

\toksapp 30

\toksdef 21, 194

\tokspre 30

\tpack 34

\tracingassigns 40, 56

\tracingcommands 77, 190

\tracingfonts 37, 42

\tracingnesting 205

\tracingonline 36

\tracingoutput 181

\tracingrestores 40, 56

\Uchar 21

\Udelcode 104, 197

\Udelcodenum 104

\Udelimiter 104

\Udelimiterover 104, 120

\Udelimiterunder 104, 120

\Uhextensible 121

\Umathaccent 104, 119

\Umathaxis 108

\Umathbinbinspacing 114

\Umathbinclosespacing 114

\Umathbininnerspacing 114

\Umathbinopenspacing 114

\Umathbinopspacing 114

\Umathbinordspacing 114

\Umathbinpunctspacing 114

\Umathbinrelspacing 114

\Umathchar 104, 124

\Umathchardef 103, 124

\Umathcharnum 104

\Umathcharnumdef 103, 104

\Umathclosebinspacing 114

\Umathcloseclosespacing 114

\Umathcloseinnerspacing 114

\Umathcloseopenspacing 114

\Umathcloseopspacing 114

\Umathcloseordspacing 114

\Umathclosepunctspacing 114

\Umathcloserelspacing 114

\Umathcode 104

\Umathcodenum 104

\Umathconnectoroverlapmin 109, 113

\Umathfractiondelsize 108

\Umathfractiondenomdown 108

\Umathfractiondenomvgap 108

\Umathfractionnumup 108

\Umathfractionnumvgap 108

\Umathfractionrule 108

Primitives302

\Umathinnerbinspacing 114

\Umathinnerclosespacing 114

\Umathinnerinnerspacing 114

\Umathinneropenspacing 114

\Umathinneropspacing 114

\Umathinnerordspacing 114

\Umathinnerpunctspacing 114

\Umathinnerrelspacing 114

\Umathlimitabovebgap 108

\Umathlimitabovekern 108, 112

\Umathlimitabovevgap 108

\Umathlimitbelowbgap 108

\Umathlimitbelowkern 108, 112

\Umathlimitbelowvgap 108

\Umathnolimitsubfactor 115

\Umathnolimitsupfactor 115

\Umathopbinspacing 114

\Umathopclosespacing 114

\Umathopenbinspacing 114

\Umathopenclosespacing 114

\Umathopeninnerspacing 114

\Umathopenopenspacing 114

\Umathopenopspacing 114

\Umathopenordspacing 114

\Umathopenpunctspacing 114

\Umathopenrelspacing 114

\Umathoperatorsize 104, 108, 113

\Umathopinnerspacing 114

\Umathopopenspacing 114

\Umathopopspacing 114

\Umathopordspacing 114

\Umathoppunctspacing 114

\Umathoprelspacing 114

\Umathordbinspacing 114

\Umathordclosespacing 114

\Umathordinnerspacing 114

\Umathordopenspacing 114

\Umathordopspacing 114

\Umathordordspacing 114

\Umathordpunctspacing 114

\Umathordrelspacing 114

\Umathoverbarkern 108

\Umathoverbarrule 108

\Umathoverbarvgap 108

\Umathoverdelimiterbgap 108, 121

\Umathoverdelimitervgap 108, 121

\Umathpunctbinspacing 114

\Umathpunctclosespacing 114

\Umathpunctinnerspacing 114

\Umathpunctopenspacing 114

\Umathpunctopspacing 114

\Umathpunctordspacing 114

\Umathpunctpunctspacing 114

\Umathpunctrelspacing 114

\Umathquad 108, 112

\Umathradicaldegreeafter 108, 112, 120

\Umathradicaldegreebefore 108, 112, 120

\Umathradicaldegreeraise 108, 112, 113,

120

\Umathradicalkern 108

\Umathradicalrule 108, 112

\Umathradicalvgap 108, 112

\Umathrelbinspacing 114

\Umathrelclosespacing 114

\Umathrelinnerspacing 114

\Umathrelopenspacing 114

\Umathrelopspacing 114

\Umathrelordspacing 114

\Umathrelpunctspacing 114

\Umathrelrelspacing 114

\Umathskewedfractionhgap 122

\Umathskewedfractionvgap 122

\Umathspaceafterscript 109, 112, 113

\Umathstackdenomdown 108

\Umathstacknumup 108

\Umathstackvgap 108

\Umathsubshiftdown 109, 117

\Umathsubshiftdrop 109

\Umathsubsupshiftdown 109, 117

\Umathsubsupvgap 109

\Umathsubtopmax 109

\Umathsupbottommin 109

\Umathsupshiftdrop 109

\Umathsupshiftup 109, 117

\Umathsupsubbottommax 109

\Umathunderbarkern 108

\Umathunderbarrule 108

\Umathunderbarvgap 108

\Umathunderdelimiterbgap 109, 121

\Umathunderdelimitervgap 109, 121

\Umath* 108

\Umiddle 122

303Primitives

\Unosubscript 124

\Unosuperscript 124

\Uoverdelimiter 104, 120, 121

\Uradical 104, 119

\Uright 122

\Uroot 104, 119, 138

\Ustack 106

\Ustartdisplaymath 124

\Ustartmath 124

\Ustopdisplaymath 124

\Ustopmath 124

\Usubscript 124

\Usuperscript 124

\Uunderdelimiter 104, 120, 121

\uccode 20, 56, 196

\uchyph 70, 133

\unexpanded 216

\unhbox 21

\unhcopy 21

\unvbox 21

\unvcopy 21

\uppercase 31, 78

\useboxresource 35, 42, 198

\useimageresource 35, 42, 229

\vadjust 130, 175, 200

\valign 176

\variablefam 104

\vbox 18, 21, 34, 176, 197, 211

\vcenter 176

\voffset 43

\vpack 34

\vrule 18

\vskip 18, 131

\vsplit 21, 34, 176, 198

\vtop 18, 34, 176, 197

\wd 21

\widowpenalties 211

\wordboundary 35, 71, 134

\write 25, 60, 170, 174

\xtoksapp 30

\xtokspre 30

\- 75, 77, 130

Primitives304

305Callbacks

Callbacks

b

buildpage_filter 175

build_page_insert 175

c

call_edit 182

contribute_filter 174

d

define_font 87, 94, 184

f

find_data_file 171

find_enc_file 171

find_font_file 170, 171

find_format_file 170

find_image_file 172

find_map_file 171

find_opentype_file 171

find_output_file 170

find_pk_file 171

find_read_file 170, 172

find_truetype_file 171

find_type1_file 171, 172

find_vf_file 171

find_write_file 170

finish_pdffile 183

finish_pdfpage 183

finish_synctex 183

g

glyph_info 185

glyph_not_found 185

h

hpack_filter 176, 177, 178

hyphenate 179

k

kerning 180, 243

l

ligaturing 179, 180

linebreak_filter 177, 211

m

mlist_to_hlist 117, 150, 180

o

open_read_file 172

p

page_order_index 183

post_linebreak_filter 177

pre_dump 180

pre_linebreak_filter 176, 211

process_input_buffer 174

process_jobname 174

process_output_buffer 174

process_pdf_image_content 184

process_rule 179

s

show_error_hook 181

show_error_message 182

show_lua_error_hook 182

start_file 182

start_page_number 181

start_run 181

stop_file 182

stop_page_number 181

stop_run 181

v

vpack_filter 176, 178

w

wrapup_run 183

Callbacks306

307Nodes

Nodes

This register contains the nodes that are known to LuaTEX. The primary nodes are in bold,

whatsits that are determined by their subtype are normal. The names prefixed by pdf_ are

backend specific.

a

accent 137

adjust 72, 130

attr 157

attribute_list 156, 157

b

boundary 35, 72, 134

c

choice 137

close 139

color_stack 127

d

delim 136

delta 203

dir 18, 72, 127, 134

disc 18, 21, 130

f

fence 138

fraction 119, 138

g

glue 18, 21, 72, 127, 131

glue_spec 131, 190, 193, 194, 195

glyph 18, 21, 69, 70, 75, 132, 152

h

hlist 18, 21, 22, 23, 72, 128, 153

i

ins 72, 129

k

kern 18, 21, 72, 132

l

late_lua 140

local_par 134, 211

m

marginkern 135

mark 129, 248

math 130, 252

math_char 135

math_text_char 135

n

noad 137

o

open 139

p

pdf_action 127, 142

pdf_annot 141

pdf_colorstack 143

pdf_dest 142

pdf_end_link 142

pdf_end_thread 143

pdf_late_literal 141

pdf_literal 127, 141

pdf_refobj 141

pdf_restore 144

pdf_save 144

pdf_setmatrix 144

pdf_start_link 141

pdf_start_thread 143

pdf_thread 143

pdf_window 127

penalty 72, 132

r

radical 138

rule 18, 72, 97, 128

Nodes308

s

save_pos 140

special 140

style 137

sub_box 135, 136

sub_mlist 135, 136

t

temp 128

u

unset 144, 242, 252

user_defined 139

v

vlist 18, 21, 72, 128, 153

w

whatsit 72, 146

write 139

309Libraries

Libraries

This register contains the functions available in libraries. Not all functions are documented, for

instance because they can be experimental or obsolete.

callback

find 169

list 169

register 169

fio

getposition 66

readbytes 66

readbytetable 66

readcardinaltable 66

readcardinal1 66

readcardinal2 66

readcardinal3 66

readcardinal4 66

readfixed2 66

readfixed4 66

readintegertable 66

readinteger1 66

readinteger2 66

readinteger3 66

readinteger4 66

read2dot14 66

setposition 66

skipposition 66

fontloader

apply_afmfile 239

apply_featurefile 239

close 237

fields 239

info 237

open 237

to_table 237

img

boxes 229

copy 228

fields 226

immediatewrite 228

immediatewriteobject 228

new 225

node 229

scan 227

types 229

write 228

kpse

default_texmfcnf 221

expand_braces 224

expand_path 224

expand_var 224

find_file 222

init_prog 223

lookup 223

new 221

readable_file 223

record_input_file 222

record_output_file 222

set_program_name 221

show_path 224

var_value 224

version 224

lang

clean 84

clear_hyphenation 84

clear_patterns 84

gethjcode 85

hyphenate 85

hyphenation 84

hyphenationmin 84

id 83

new 83

patterns 84

postexhyphenchar 84

posthyphenchar 84

preexhyphenchar 84

prehyphenchar 84

sethjcode 85

lua

bytecode 187

getbytecode 187

getcalllevel 188

getluaname 187

getstacktop 188

Libraries310

name 187

setbytecode 187

setluaname 187

version 187

mplib

char_depth 236

char_height 236

char_width 236

execute 231

fields 232

finish 231

get_boolean 236

get_numeric 236

get_path 236

get_string 236

new 230

pen_info 235

statistics 231

version 230

node

check_discretionaries 158, 161

check_discretionary 158, 161

copy 147, 161

copy_list 147, 161

count 151, 161

current_attr 147, 161

dimensions 149, 161

effective_glue 161

end_of_math 153, 161

family_font 158, 161

fields 127, 146, 161

find_attribute 157, 161

first_glyph 154, 161

flatten_discretionaries 158, 161

flush_list 146, 161

flush_node 146, 161

flush_properties_table 164

free 146, 161

getboth 161

getchar 161

getdisc 161

getfield 161

getfont 161

getglue 156, 161

getid 161

getleader 161

getlist 161

getnext 161

getprev 162

getproperty 162

getsubtype 162

getwhd 162

get_attribute 157, 161

get_properties_table 164

has_attribute 157, 162

has_field 146, 162

has_glyph 153, 162

hpack 148, 162

id 145, 162

insert_after 154, 162

insert_before 153, 162

is_char 151, 162

is_glyph 151, 162

is_node 145, 162

is_zero_glue 156, 162

kerning 154, 162

last_node 155, 162

length 151, 162

ligaturing 154, 162

mlist_to_hlist 150, 162

new 146, 162

next 147, 162

prepend_prevdepth 149

prev 147, 162

protect_glyph 155, 162

protect_glyphs 155, 162

protrusion_skippable 155, 162

rangedimensions 149, 162

remove 153, 162

setfield 163

setglue 155, 163

setproperty 163

set_attribute 157, 162

set_properties_mode 164

slide 158, 163

subtype 145, 163

subtypes 127, 163

tail 150, 163

todirect 159

tonode 159

tostring 159, 163

traverse 151, 163

311Libraries

traverse_char 152, 163

traverse_glyph 152, 163

traverse_id 152, 163

traverse_list 153

type 145, 163

types 145, 163

unprotect_glyph 155, 163

unprotect_glyphs 155, 163

unset_attribute 158, 163

usedlist 163

uses_font 163

values 127

vpack 148, 163

whatsits 145, 164

write 155, 164

node.direct

check_discretionaries 161

check_discretionary 161

copy 161

copy_list 161

count 161

current_attr 161

dimensions 161

effective_glue 161

end_of_math 161

find_attribute 161

first_glyph 161

flatten_discretionaries 161

flush_list 161

flush_node 161

free 161

getattributelist 161

getboth 161

getbox 161

getchar 161

getcomponents 161

getdata 162

getdepth 161

getdir 161

getdirection 161

getdisc 161

getfam 161

getfield 161

getfont 161

getglue 161

getheight 161

getid 161

getkern 161

getlang 161

getleader 161

getlist 161

getnext 161

getnucleus 162

getoffsets 162

getpenalty 162

getprev 162

getproperty 162

getshift 162

getsub 162

getsubtype 162

getsup 162

getwhd 162

getwidth 162

get_attribute 161

get_synctex_fields 161

has_attribute 162

has_field 162

has_glyph 162

hpack 162

insert_after 162

insert_before 162

is_char 162

is_direct 162

is_glyph 162

is_node 162

is_zero_glue 162

kerning 162

last_node 162

length 162

ligaturing 162

new 162

prepend_prevdepth 162

protect_glyph 162

protect_glyphs 162

protrusion_skippable 162

rangedimensions 162

remove 162

setattributelist 162

setboth 162

setbox 162

setchar 162

setcomponents 162

Libraries312

setdepth 162

setdir 163

setdirection 163

setdisc 163

setexpansion 163

setfam 163

setfield 163

setfont 163

setglue 163

setheight 163

setkern 163

setlang 163

setleader 163

setlink 163

setlist 163

setnext 163

setnucleus 163

setoffsets 163

setpenalty 163

setprev 163

setproperty 163

setshift 163

setsplit 163

setsub 163

setsubtype 163

setsup 163

setwhd 163

setwidth 163

set_attribute 162

set_synctex_fields 162

slide 163

tail 163

todirect 163

tonode 163

tostring 163

traverse 163

traverse_char 163

traverse_glyph 163

traverse_id 163

unprotect_glyph 163

unprotect_glyphs 163

unset_attribute 163

usedlist 163

uses_font 163

vpack 163

write 164

os

env 64

exec 64

gettimeofday 64

name 64

selfdir 64

setenv 64

spawn 64

times 64

tmpdir 64

type 64

uname 64

pdf

getcatalog 279

getcompresslevel 280

getcreationdate 280

getdecimaldigits 280

getdestmargin 281

getfontname 281

getfontobjnum 281

getfontsize 281

getgentounicode 280

gethpos 281

getignoreunknownimages 280

getimageresolution 281

getinclusionerrorlevel 280

getinfo 279

getlastannot 281

getlastlink 281

getlastobj 281

getlinkmargin 281

getmajorversion 279

getmarginmargin 281

getmatrix 281

getmaxobjnum 281

getminorversion 279

getnames 279

getobjcompresslevel 280

getobjtype 281

getomitcharset 280

getomitcidset 280

getomitinfo 280

getomitmediabox 280

getorigin 281

getpageattributes 279

313Libraries

getpageref 284

getpageresources 279

getpagesattributes 279

getpkresolution 281

getpos 281

getrecompress 280

getretval 281

getsuppressoptionalinfo 280

getthreadmargin 281

gettrailer 279

gettrailerid 280

getvpos 281

getxformattributes 279

getxformmargin 281

getxformname 281

getxformresources 279

hasmatrix 281

immediateobj 282

newcolorstack 284

obj 283

print 282

refobj 284

registerannot 284

reserveobj 284

setcatalog 279

setcompresslevel 280

setdecimaldigits 280

setdestmargin 281

setfontattributes 285

setgentounicode 280

setignoreunknownimages 280

setimageresolution 281

setinclusionerrorlevel 280

setinfo 279

setlastannot 281

setlastlink 281

setlastobj 281

setlinkmargin 281

setmajorversion 279

setmarginmargin 281

setminorversion 279

setnames 279

setobjcompresslevel 280

setomitcharset 280

setomitcidset 280

setomitinfo 280

setomitmediabox 280

setorigin 281

setpageattributes 279

setpageresources 279

setpagesattributes 279

setpkresolution 281

setrecompress 280

setsuppressoptionalinfo 280

setthreadmargin 281

settrailer 279

settrailerid 280

setxformattributes 279

setxformmargin 281

setxformresources 279

pdfe

arraytotable 288

close 285

closestream 287

dictionarytotable 288

getarray 287

getboolean 287

getbox 286

getcatalog 286

getdictionary 287

getfromarray 287, 288

getfromdictionary 287, 288

getfromreference 288

getfromstream 287

getinfo 286

getinteger 287

getmemoryusage 286

getname 287

getnofobjects 286

getnofpages 286

getnumber 287

getpage 286

getsize 286

getstatus 285

getstream 287

getstring 287

gettrailer 286

getversion 286

new 285, 289

open 285

openstream 287

readfromstream 287

Libraries314

readfromwholestream 287

type 287

unencrypt 285

pdfscanner

done 292

pop 292

poparray 292

popboolean 292

popdictionary 292

popname 292

popnumber 292

popstring 292

scan 289

sha2

digest256 66

digest384 66

digest512 66

sio

getposition 66

readbytes 66

readbytetable 66

readcardinaltable 66

readcardinal1 66

readcardinal2 66

readcardinal3 66

readcardinal4 66

readfixed2 66

readfixed4 66

readintegertable 66

readinteger1 66

readinteger2 66

readinteger3 66

readinteger4 66

read2dot14 66

setposition 66

skipposition 66

status

list 188

resetmessages 188

setexitcode 188

string

bytepairs 63

bytes 63

characterpairs 63

characters 63

explode 63

utfcharacter 64

utfcharacters 63

utflength 64

utfvalue 64

utfvalues 63

tex

attribute 194

badness 210

box 194, 197

catcode 196

count 194

cprint 203

definefont 205

delcode 196

dimen 194

enableprimitives 206

error 204

extraprimitives 206

finish 204

fontidentifier 204

fontname 204

forcehmode 205

force_synctex_line 212

force_synctex_tag 212

get 190

getattribute 194

getbox 194, 197

getboxresourcedimensions 198

getcatcode 196

getcount 194

getdelcode 196

getdelcodes 196

getdimen 194

getglue 194

getlccode 196

getlist 200

getlocallevel 212

getmark 194

getmath 198

getmathcode 196

getmathcodes 196

getmuglue 194

getmuskip 194

getnest 200

getpagestate 211

getsfcode 196

315Libraries

getskip 194

gettoks 194

getuccode 196

get_synctex_line 212

get_synctex_mode 212

get_synctex_tag 212

glue 194

hashtokens 205

init_rand 212

isattribute 194

isbox 194

iscount 194

isdimen 194

isglue 194

ismuglue 194

ismuskip 194

isskip 194

istoks 194

lccode 196

linebreak 210

lists 200

lua_math_random 212

lua_math_randomseed 212

mathcode 196

muglue 194

muskip 194

nest 200

normal_rand 212

number 204

primitives 210

print 201

ptr 200

resetparagraph 210

romannumeral 204

round 203

run 204

saveboxresource 198

scale 203

scantoks 194

set 190

setattribute 194

setbox 194, 197

setcatcode 196

setcount 194

setdelcode 196

setdelcodes 196

setdimen 194

setglue 194

setlccode 196

setlist 200

setmath 198

setmathcode 196

setmathcodes 196

setmuglue 194

setmuskip 194

setsfcode 196

setskip 194

settoks 194

setuccode 196

set_synctex_line 212

set_synctex_mode 212

set_synctex_no_files 212

set_synctex_tag 212

sfcode 196

shipout 211

show_context 204

skip 194

sp 204

splitbox 198

sprint 201

toks 194

tprint 202

triggerbuildpage 198

uccode 196

uniformdeviate 212

uniform_rand 212

useboxresource 198

write 203

texio

closeinput 215

setescape 215

write 214

write_nl 214

token

biggest_char 218

commands 218

command_id 218

create 218

expand 217

get_active 218

get_cmdname 218

get_command 218

Libraries316

get_csname 218

get_expandable 218

get_functions_table 219

get_id 218

get_index 218

get_macro 219

get_meaning 219

get_mode 218

get_next 217, 218, 219

get_protected 218

get_tok 218

is_defined 218

is_token 218

new 218

put_next 219

scan_argument 215

scan_code 215

scan_csname 215

scan_dimen 215

scan_float 215

scan_glue 215

scan_int 215

scan_keyword 215

scan_keywordcs 215

scan_list 215

scan_real 215

scan_string 215

scan_token 217

scan_toks 215

scan_word 215

set_char 219

set_lua 219

set_macro 219

317Statistics

Statistics

The following fonts are used in this document:

used filesize version filename

22 1.622.732 5.960 cambria.ttc

4 827.080 5.960 cambriai.ttf

11 163.452 1.802 LucidaBrightMathOT-Demi.otf

11 348.296 1.802 LucidaBrightMathOT.otf

4 73.284 1.801 LucidaBrightOT.otf

22 733.500 1.958 latinmodern-math.otf

1 64.684 2.004 lmmono10-regular.otf

1 64.160 2.004 lmmonoltcond10-regular.otf

4 111.536 2.004 lmroman10-regular.otf

22 525.008 1.106 texgyredejavu-math.otf

22 601.220 1.632 texgyrepagella-math.otf

4 144.472 2.004 texgyrepagella-regular.otf

1 693.876 2.340 DejaVuSans-Bold.ttf

1 741.536 2.340 DejaVuSans.ttf

4 318.392 2.340 DejaVuSansMono-Bold.ttf

1 245.948 2.340 DejaVuSansMono-Oblique.ttf

3 335.068 2.340 DejaVuSansMono.ttf

9 345.364 2.340 DejaVuSerif-Bold.ttf

1 336.884 2.340 DejaVuSerif-BoldItalic.ttf

1 343.388 2.340 DejaVuSerif-Italic.ttf

5 367.260 2.340 DejaVuSerif.ttf

154 9.007.140 21 files loaded

Statistics318

	Introduction
	1 Preamble
	2 Basic TEX enhancements
	2.1 Introduction
	2.1.1 Primitive behaviour
	2.1.2 Version information

	2.2 UNICODE text support
	2.2.1 Extended ranges
	2.2.2 Uchar
	2.2.3 Extended tables

	2.3 Attributes
	2.3.1 Nodes
	2.3.2 Attribute registers
	2.3.3 Box attributes

	2.4 LUA related primitives
	2.4.1 directlua
	2.4.2 latelua and lateluafunction
	2.4.3 luaescapestring
	2.4.4 luafunction, luafunctioncall and luadef
	2.4.5 luabytecode and luabytecodecall

	2.5 Catcode tables
	2.5.1 Catcodes
	2.5.2 catcodetable
	2.5.3 initcatcodetable
	2.5.4 savecatcodetable

	2.6 Suppressing errors
	2.6.1 suppressfontnotfounderror
	2.6.2 suppresslongerror
	2.6.3 suppressifcsnameerror
	2.6.4 suppressoutererror
	2.6.5 suppressmathparerror
	2.6.6 suppressprimitiveerror

	2.7 Fonts
	2.7.1 Font syntax
	2.7.2 fontid and setfontid
	2.7.3 noligs and nokerns
	2.7.4 nospaces

	2.8 Tokens, commands and strings
	2.8.1 scantextokens
	2.8.2 toksapp, tokspre, etoksapp, etokspre, gtoksapp, gtokspre, xtoksapp, xtokspre
	2.8.3 csstring, begincsname and lastnamedcs
	2.8.4 clearmarks
	2.8.5 alignmark and aligntab
	2.8.6 letcharcode
	2.8.7 glet
	2.8.8 expanded, immediateassignment and immediateassigned
	2.8.9 ifcondition

	2.9 Boxes, rules and leaders
	2.9.1 outputbox
	2.9.2 vpack, hpack and tpack
	2.9.3 vsplit
	2.9.4 Images and reused box objects
	2.9.5 nohrule and novrule
	2.9.6 gleaders

	2.10 Languages
	2.10.1 hyphenationmin
	2.10.2 boundary, noboundary, protrusionboundary and wordboundary
	2.10.3 glyphdimensionsmode

	2.11 Control and debugging
	2.11.1 Tracing
	2.11.2 outputmode
	2.11.3 draftmode

	2.12 Files
	2.12.1 File syntax
	2.12.2 Writing to file

	2.13 Math

	3 Modifications
	3.1 The merged engines
	3.1.1 The need for change
	3.1.2 Changes from TEX 3.1415926
	3.1.3 Changes from ETEX 2.2
	3.1.4 Changes from PDFTEX 1.40
	3.1.5 Changes from ALEPH RC4
	3.1.6 Changes from anywhere
	3.1.7 Changes from standard WEBC

	3.2 The backend primitives
	3.2.1 Less primitives
	3.2.2 pdfextension, pdfvariable and pdffeedback
	3.2.3 Defaults
	3.2.4 Backward compatibility

	3.3 Directions
	3.3.1 Four directions
	3.3.2 How it works
	3.3.3 Controlling glue with breakafterdirmode
	3.3.4 Controling parshapes with shapemode
	3.3.5 Symbols or numbers

	3.4 Implementation notes
	3.4.1 Memory allocation
	3.4.2 Sparse arrays
	3.4.3 Simple single-character csnames
	3.4.4 The compressed format file
	3.4.5 Binary file reading
	3.4.6 Tabs and spaces
	3.4.7 Hyperlinks

	4 Using LUATEX
	4.1 Initialization
	4.1.1 LUATEX as a LUA interpreter
	4.1.2 LUATEX as a LUA byte compiler
	4.1.3 Other commandline processing

	4.2 LUA behaviour
	4.2.1 The LUA version
	4.2.2 Integration in the TDS ecosystem
	4.2.3 Loading libraries
	4.2.4 Executing programs
	4.2.5 Multibyte string functions
	4.2.6 Extra os library functions
	4.2.7 Binary input from files with fio
	4.2.8 Binary input from strings with sio
	4.2.9 Hashes conform sha2
	4.2.10 Locales

	4.3 LUA modules
	4.4 Testing

	5 Languages, characters, fonts and glyphs
	5.1 Introduction
	5.2 Characters, glyphs and discretionaries
	5.3 The main control loop
	5.4 Loading patterns and exceptions
	5.5 Applying hyphenation
	5.6 Applying ligatures and kerning
	5.7 Breaking paragraphs into lines
	5.8 The lang library
	5.8.1 new and id
	5.8.2 hyphenation
	5.8.3 clear_hyphenation and clean
	5.8.4 patterns and clear_patterns
	5.8.5 hyphenationmin
	5.8.6 [pre|post][ex|]hyphenchar
	5.8.7 hyphenate
	5.8.8 [set|get]hjcode

	6 Font structure
	6.1 The font tables
	6.2 Real fonts
	6.3 Virtual fonts
	6.3.1 The structure
	6.3.2 Artificial fonts
	6.3.3 Example virtual font

	6.4 The vf library
	6.5 The font library
	6.5.1 Loading a TFM file
	6.5.2 Loading a VF file
	6.5.3 The fonts array
	6.5.4 Checking a font's status
	6.5.5 Defining a font directly
	6.5.6 Extending a font
	6.5.7 Projected next font id
	6.5.8 Font ids
	6.5.9 Iterating over all fonts
	6.5.10 glyphdimensionsmode
	6.5.11 discretionaryligaturemode

	7 Math
	7.1 Traditional alongside OPENTYPE
	7.2 Unicode math characters
	7.3 Math styles
	7.3.1 mathstyle
	7.3.2 Ustack
	7.3.3 Cramped math styles

	7.4 Math parameter settings
	7.4.1 Many new Umath* primitives
	7.4.2 Font-based math parameters

	7.5 Math spacing
	7.5.1 Inline surrounding space
	7.5.2 Pairwise spacing
	7.5.3 Skips around display math
	7.5.4 Nolimit correction
	7.5.5 Math italic mess
	7.5.6 Script and kerning
	7.5.7 Fixed scripts
	7.5.8 Penalties: mathpenaltiesmode
	7.5.9 Equation spacing: matheqnogapstep

	7.6 Math constructs
	7.6.1 Unscaled fences
	7.6.2 Accent handling
	7.6.3 Radical extensions
	7.6.4 Super- and subscripts
	7.6.5 Scripts on extensibles
	7.6.6 Fractions
	7.6.7 Delimiters: Uleft, Umiddle and Uright

	7.7 Extracting values
	7.7.1 Codes
	7.7.2 Last lines

	7.8 Math mode
	7.8.1 Verbose versions of single-character math commands
	7.8.2 Script commands Unosuperscript and Unosubscript
	7.8.3 Allowed math commands in non-math modes

	7.9 Goodies
	7.9.1 Flattening: mathflattenmode
	7.9.2 Less Tracing
	7.9.3 Math options with mathdefaultsmode
	7.9.4 Math options with mathoption

	8 Nodes
	8.1 LUA node representation
	8.2 Main text nodes
	8.2.1 hlist nodes
	8.2.2 vlist nodes
	8.2.3 rule nodes
	8.2.4 ins nodes
	8.2.5 mark nodes
	8.2.6 adjust nodes
	8.2.7 disc nodes
	8.2.8 math nodes
	8.2.9 glue nodes
	8.2.10 kern nodes
	8.2.11 penalty nodes
	8.2.12 glyph nodes
	8.2.13 boundary nodes
	8.2.14 local_par nodes
	8.2.15 dir nodes
	8.2.16 marginkern nodes

	8.3 Math noads
	8.3.1 Math kernel subnodes
	8.3.2 math_char and math_text_char subnodes
	8.3.3 sub_box and sub_mlist subnodes
	8.3.4 delim subnodes
	8.3.5 Math core nodes
	8.3.6 simple noad nodes
	8.3.7 accent nodes
	8.3.8 style nodes
	8.3.9 choice nodes
	8.3.10 radical nodes
	8.3.11 fraction nodes
	8.3.12 fence nodes

	8.4 Front-end whatsits
	8.4.1 open
	8.4.2 write
	8.4.3 close
	8.4.4 user_defined
	8.4.5 save_pos
	8.4.6 late_lua

	8.5 DVI backend whatsits
	8.5.1 special

	8.6 PDF backend whatsits
	8.6.1 pdf_literal and pdf_late_literal
	8.6.2 pdf_refobj
	8.6.3 pdf_annot
	8.6.4 pdf_start_link
	8.6.5 pdf_end_link
	8.6.6 pdf_dest
	8.6.7 pdf_action
	8.6.8 pdf_thread
	8.6.9 pdf_start_thread
	8.6.10 pdf_end_thread
	8.6.11 pdf_colorstack
	8.6.12 pdf_setmatrix
	8.6.13 pdf_save
	8.6.14 pdf_restore

	8.7 The node library
	8.7.1 Introduction
	8.7.2 is_node
	8.7.3 types and whatsits
	8.7.4 id
	8.7.5 type and subtype
	8.7.6 fields
	8.7.7 has_field
	8.7.8 new
	8.7.9 free, flush_node and flush_list
	8.7.10 copy and copy_list
	8.7.11 prev and next
	8.7.12 current_attr
	8.7.13 hpack
	8.7.14 vpack
	8.7.15 prepend_prevdepth
	8.7.16 dimensions and rangedimensions
	8.7.17 mlist_to_hlist
	8.7.18 slide
	8.7.19 tail
	8.7.20 length and type {count}
	8.7.21 is_char and is_glyph
	8.7.22 traverse
	8.7.23 traverse_id
	8.7.24 traverse_char and traverse_glyph
	8.7.25 traverse_list
	8.7.26 has_glyph
	8.7.27 end_of_math
	8.7.28 remove
	8.7.29 insert_before
	8.7.30 insert_after
	8.7.31 first_glyph
	8.7.32 ligaturing
	8.7.33 kerning
	8.7.34 unprotect_glyph[s]
	8.7.35 protect_glyph[s]
	8.7.36 last_node
	8.7.37 write
	8.7.38 protrusion_skippable

	8.8 Glue handling
	8.8.1 setglue
	8.8.2 getglue
	8.8.3 is_zero_glue

	8.9 Attribute handling
	8.9.1 Attributes
	8.9.2 attribute_list nodes
	8.9.3 attr nodes
	8.9.4 has_attribute
	8.9.5 get_attribute
	8.9.6 find_attribute
	8.9.7 set_attribute
	8.9.8 unset_attribute
	8.9.9 slide
	8.9.10 check_discretionary, check_discretionaries
	8.9.11 flatten_discretionaries
	8.9.12 family_font

	8.10 Two access models
	8.11 Properties

	9 LUA callbacks
	9.1 Registering callbacks
	9.2 File discovery callbacks
	9.2.1 find_read_file and find_write_file
	9.2.2 find_font_file
	9.2.3 find_output_file
	9.2.4 find_format_file
	9.2.5 find_vf_file
	9.2.6 find_map_file
	9.2.7 find_enc_file
	9.2.8 find_pk_file
	9.2.9 find_data_file
	9.2.10 find_opentype_file
	9.2.11 find_truetype_file and find_type1_file
	9.2.12 find_image_file

	9.3 File reading callbacks
	9.3.1 open_read_file
	9.3.2 General file readers

	9.4 Data processing callbacks
	9.4.1 process_input_buffer
	9.4.2 process_output_buffer
	9.4.3 process_jobname

	9.5 Node list processing callbacks
	9.5.1 contribute_filter
	9.5.2 buildpage_filter
	9.5.3 build_page_insert
	9.5.4 pre_linebreak_filter
	9.5.5 linebreak_filter
	9.5.6 append_to_vlist_filter
	9.5.7 post_linebreak_filter
	9.5.8 hpack_filter
	9.5.9 vpack_filter
	9.5.10 hpack_quality
	9.5.11 vpack_quality
	9.5.12 process_rule
	9.5.13 pre_output_filter
	9.5.14 hyphenate
	9.5.15 ligaturing
	9.5.16 kerning
	9.5.17 insert_local_par
	9.5.18 mlist_to_hlist

	9.6 Information reporting callbacks
	9.6.1 pre_dump
	9.6.2 start_run
	9.6.3 stop_run
	9.6.4 start_page_number
	9.6.5 stop_page_number
	9.6.6 show_error_hook
	9.6.7 show_error_message
	9.6.8 show_lua_error_hook
	9.6.9 start_file
	9.6.10 stop_file
	9.6.11 call_edit
	9.6.12 finish_synctex
	9.6.13 wrapup_run

	9.7 PDF related callbacks
	9.7.1 finish_pdffile
	9.7.2 finish_pdfpage
	9.7.3 page_order_index
	9.7.4 process_pdf_image_content

	9.8 Font-related callbacks
	9.8.1 define_font
	9.8.2 glyph_not_found and glyph_info

	10 The TEX related libraries
	10.1 The lua library
	10.1.1 Version information
	10.1.2 Bytecode registers
	10.1.3 Chunk name registers
	10.1.4 Introspection

	10.2 The status library
	10.3 The tex library
	10.3.1 Introduction
	10.3.2 Internal parameter values, set and get
	10.3.3 Convert commands
	10.3.4 Last item commands
	10.3.5 Accessing registers: set*, get* and is*
	10.3.6 Character code registers: [get|set]*code[s]
	10.3.7 Box registers: [get|set]box
	10.3.8 Reusing boxes: [use|save]boxresource and getboxresourcedimensions
	10.3.9 triggerbuildpage
	10.3.10 splitbox
	10.3.11 Accessing math parameters: [get|set]math
	10.3.12 Special list heads: [get|set]list
	10.3.13 Semantic nest levels: getnest and ptr
	10.3.14 Print functions
	10.3.15 Helper functions
	10.3.16 Functions for dealing with primitives
	10.3.17 Core functionality interfaces
	10.3.18 Randomizers
	10.3.19 Functions related to synctex

	10.4 The texconfig table
	10.5 The texio library
	10.5.1 write
	10.5.2 write_nl
	10.5.3 setescape
	10.5.4 closeinput

	10.6 The token library
	10.6.1 The scanner
	10.6.2 {Picking up one token}
	10.6.3 Creating tokens
	10.6.4 Macros
	10.6.5 Pushing back
	10.6.6 Nota bene

	10.7 The kpse library
	10.7.1 set_program_name and new
	10.7.2 record_input_file and record_output_file
	10.7.3 find_file
	10.7.4 lookup
	10.7.5 init_prog
	10.7.6 readable_file
	10.7.7 expand_path
	10.7.8 expand_var
	10.7.9 expand_braces
	10.7.10 show_path
	10.7.11 var_value
	10.7.12 version

	11 The graphic libraries
	11.1 The img library
	11.1.1 new
	11.1.2 fields
	11.1.3 scan
	11.1.4 copy
	11.1.5 write, immediatewrite, immediatewriteobject
	11.1.6 node
	11.1.7 types
	11.1.8 boxes

	11.2 The mplib library
	11.2.1 new
	11.2.2 statistics
	11.2.3 execute
	11.2.4 finish
	11.2.5 Result table
	11.2.6 Subsidiary table formats
	11.2.7 Pens and pen_info
	11.2.8 Character size information

	12 The fontloader
	12.1 Getting quick information on a font
	12.2 Loading an OPENTYPE or TRUETYPE file
	12.3 Applying a 'feature file'
	12.4 Applying an 'AFM file'
	12.5 Fontloader font tables
	12.6 Table types
	12.6.1 The main table
	12.6.2 glyphs
	12.6.3 map
	12.6.4 private
	12.6.5 cidinfo
	12.6.6 pfminfo
	12.6.7 names
	12.6.8 anchor_classes
	12.6.9 gpos
	12.6.10 gsub
	12.6.11 ttf_tables and ttf_tab_saved
	12.6.12 mm
	12.6.13 mark_classes
	12.6.14 math
	12.6.15 validation_state
	12.6.16 horiz_base and vert_base
	12.6.17 altuni
	12.6.18 vert_variants and horiz_variants
	12.6.19 mathkern
	12.6.20 kerns
	12.6.21 vkerns
	12.6.22 texdata
	12.6.23 lookups

	13 The HarfBuzz libraries
	13.1 The luaharfbuzz library
	13.1.1 Example

	14 The backend libraries
	14.1 The pdf library
	14.1.1 mapfile, mapline
	14.1.2 [set|get][catalog|info|names|trailer]
	14.1.3 [set|get][pageattributes|pageresources|pagesattributes]
	14.1.4 [set|get][xformattributes|xformresources]
	14.1.5 [set|get][major|minor]version
	14.1.6 getcreationdate
	14.1.7 [set|get]inclusionerrorlevel and [set|get]ignoreunknownimages
	14.1.8 [set|get]suppressoptionalinfo, [set|get]trailerid, [set|get]omitcidset, [set|get]omitinfo and [set|get]omitmediabox
	14.1.9 [set|get][obj|]compresslevel and [set|get]recompress
	14.1.10 [set|get]gentounicode
	14.1.11 [set|get]decimaldigits
	14.1.12 [set|get]pkresolution
	14.1.13 getlast[obj|link|annot] and getretval
	14.1.14 getmaxobjnum and getobjtype, getfontname, getfontobjnum, getfontsize, getxformname
	14.1.15 [set|get]origin
	14.1.16 [set|get]imageresolution
	14.1.17 [set|get][link|dest|thread|xform]margin
	14.1.18 get[pos|hpos|vpos]
	14.1.19 [has|get]matrix
	14.1.20 print
	14.1.21 immediateobj
	14.1.22 obj
	14.1.23 refobj
	14.1.24 reserveobj
	14.1.25 getpageref
	14.1.26 registerannot
	14.1.27 newcolorstack
	14.1.28 setfontattributes

	14.2 The pdfe library
	14.2.1 Introduction
	14.2.2 open, new, getstatus, close, unencrypt
	14.2.3 getsize, getversion, getnofobjects, getnofpages, getmemoryusage
	14.2.4 get[catalog|trailer|info]
	14.2.5 getpage, getbox
	14.2.6 get[string|integer|number|boolean|name], type
	14.2.7 get[dictionary|array|stream]
	14.2.8 [open|close|readfrom|readfromwhole]stream
	14.2.9 getfrom[dictionary|array]
	14.2.10 [dictionary|array]totable
	14.2.11 getfromreference

	14.3 Memory streams
	14.4 The pdfscanner library

	Topics
	Primitives
	Callbacks
	Nodes
	Libraries
	Statistics

