Skip to content
Snippets Groups Projects
BPE-Algorithm-correction.ipynb 14.4 KiB
Newer Older
Thomas Gerald's avatar
Thomas Gerald committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f4bdb240-9099-411b-a859-daaf3269c900",
   "metadata": {},
   "source": [
    "## Implémentation de l'algorithme BPE\n",
    "L'objectif de ce premier TP est de mettre en place l'algorithme de tokenization BPE. Pour rappel le principe consiste à rassembler  les mots ou ``tokens'' apparaissant le plus de fois successivement.\n",
    "\n",
    "Par exemple si l'on considère le corpus contenant les mots de la table suivante (avec le nombre d’occurrences de chaque mot) :\n",
    "\n",
    "| mots | occurence |\n",
    "|------|-----------|\n",
    "| manger | 2 |\n",
    "| voter | 3 |\n",
    "| lent | 1 |\n",
    "| lentement | 2 |\n",
    "\n",
    "Et que les \"tokens\" initiaux sont les lettres de l'alphabet alors, c'est le sufixe \"er\" qui sera ajouté à la liste des sous-mots (tokens) dans un premier temps.\n",
    "\n",
    "Les étapes pour réaliser l'algorithme BPE sont les suivantes :\n",
    "1. Télécharger un corpus de textes (ici une page wikipedia)\n",
    "2. Découper le texte en mots (en utilisant le caractère \"espace\") et compter le nombre d’occurrences de chaque mot\n",
    "3. Initialiser le dictionnaire de mots avec les tokens initiaux (les lettres de l’alphabet)\n",
    "4. Faire tourner l'algorithme BPE (apprendre le vocabulaire)\n",
    "5. Tester la décomposition en tokens sur des phrases choisies (on applique les règles de fusion)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ee88b07e-4de8-436e-9dc7-f405c69c9042",
   "metadata": {},
   "source": [
    "### Étape 1: Télécharger un corpus"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "5352d48f-27ca-41ad-9265-0e128578a5ec",
   "metadata": {},
   "outputs": [],
   "source": [
    "import urllib.request\n",
    "import re\n",
    "import numpy as np\n",
    "import collections\n",
    "import json\n",
    "url_request  = 'https://fr.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext&redirects=1&titles=Gr%C3%A8ce_antique'\n",
    "raw_page = urllib.request.urlopen(url_request)\n",
    "json_page = json.load(raw_page)\n",
    "\n",
    "with open('wikitest.json', 'w') as f:\n",
    "    json.dump(json_page, f)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f8b6b7a2-74b4-4ba2-aa4b-93885a286fb2",
   "metadata": {},
   "source": [
    "### Étape 2 : Découper le texte en mots\n",
    "\n",
    "Pour découper le texte en mot nous utiliserons la regex suivante ```r'(\\b[^\\s]+\\b)'```. Pour compter les mots nous utiliserons l'objet Counter de python. \n",
    "1. Stocker dans **count_words** chaque mot ainsi que le nombre d’occurrences\n",
    "2. En regardant la documentation donnez les 10 mots les plus fréquents (vous les stockerez dans most_commons_words)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6d7341ff-61bf-4a5a-9d0d-4ae8fd8797ce",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['de', 'la', 'et', 'des', 'les', 'à', 'le', 'en', 'qui', 'dans']"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from collections import Counter\n",
    "\n",
    "corpus = list(json_page['query']['pages'].values())[0]['extract']\n",
    "word_regex = re.compile(r'(\\b[^\\s]+\\b)')\n",
    "words = word_regex.findall(corpus)\n",
    "\n",
    "count_words = collections.Counter(words)\n",
    "most_commons_words = [k for k, v in count_words.most_common(10)]\n",
    "\n",
    "most_commons_words"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7a7a38b8-97f5-4851-b642-f7b40c023491",
   "metadata": {},
   "source": [
    "### Étape 3 : Initialiser le dictionnaire de mots avec les tokens initiaux (les lettre de l'aplhabet)\n",
    "\n",
    "Créer le vocabulaire initial dans la variable vocab. Combien de tokens initiaux avez-vous ?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "901f7ea5-9d71-4f8c-95bf-32b098c3241c",
   "metadata": {},
   "outputs": [],
   "source": [
    "vocab = list({char for word in count_words.keys() for char in word })\n",
    "vocab.sort()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "efd79ab8-b1b1-4802-ac80-39b12cb5917f",
   "metadata": {},
   "source": [
    "### Étape 4 : Apprendre le tokenizer\n",
    "Pour apprendre le tokenizer nous avons besoins de plusieurs fonctions:\n",
    "1. Une fonction pour calculer la fréquence de chacune des pairs de ``tokens''\n",
    "2. Une fonction pour fusionner un paire\n",
    "\n",
    "Plusieurs variables sont nécessaires:\n",
    "1. **vocab** contenant le vocabulaire courant\n",
    "2. **merge_rules** contenant toutes les règles de fusion (un dictionnaire contenant comme clef un couple de tokens à fusionner et le résultat de la fusion des tokens). Par exemple : {('e', 's'), 'es', ('en', 't') :'ent'}\n",
    "3. **splits** Un dictionnaire contenant le découpage courant du corpus avec pour clef le mot et comme valeur la liste des \"tokens\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "8357b6bd-9414-4263-9bf5-ef249614cb04",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'La': ['L', 'a'],\n",
       " 'Grèce': ['G', 'r', 'è', 'c', 'e'],\n",
       " 'antique': ['a', 'n', 't', 'i', 'q', 'u', 'e'],\n",
       " 'est': ['e', 's', 't'],\n",
       " 'une': ['u', 'n', 'e']}"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# En première étape splits contient les mots décomposer en caractères\n",
    "splits = {word: [c for c in word] for word in count_words.keys()}\n",
    "{k: splits[k] for k  in list(splits.keys())[:5]}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "722df20d-fae1-41f1-96bc-fecb6b10a0ca",
   "metadata": {},
   "source": [
    "#### Calculer la fréquences des pairs de tokens\n",
    "Créer un fonction **compute_pair_freqs** qui étant donné les mots décomposés en tokens (dictionnaire splits) et la fréquence des mots retourne la fréquence de chaque couple de tokens (attention seulement les sous-mots successifs). "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "cb995e01-74f4-432f-9ddb-5c676afc32c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "def compute_pair_freqs(splits, word_freqs):\n",
    "    pair_freqs = {}\n",
    "    for word, freq in word_freqs.items():\n",
    "        split = splits[word]\n",
    "        if len(split) == 1:\n",
    "            continue\n",
    "        for i in range(len(split) - 1):\n",
    "            pair = (split[i], split[i + 1])\n",
    "            if(pair not in pair_freqs):\n",
    "                pair_freqs[pair] = 0\n",
    "            pair_freqs[pair] += freq\n",
    "    return pair_freqs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d806c606-8cd3-43ff-8e14-aea74f9d4172",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{('L', 'a'): 188,\n",
       " ('G', 'r'): 266,\n",
       " ('r', 'è'): 279,\n",
       " ('è', 'c'): 316,\n",
       " ('c', 'e'): 1342}"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pair_freqs = compute_pair_freqs(splits, count_words)\n",
    "{k: pair_freqs[k] for k  in list(pair_freqs.keys())[:5]}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "72e05d19-df89-4b0b-a2ad-ba5af727b1e5",
   "metadata": {},
   "source": [
    "#### Retrouver la paire la plus fréquente et fusionner  une pair \n",
    "1. Créer une fonction **most_frequent(pair_freqs)** retournant la paire de token la plus fréquente.\n",
    "2. Créer une fonction **merge_pair()** qui étant donnée une paire, l'objet splits retourne la nouvelle séparation en token des données (splits))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c608944a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "9b60759e-0bb4-4969-bc86-ee39fd3dc7bb",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(('e', 's'), 6895)"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def most_frequent(pair_freqs):\n",
    "    return max(pair_freqs.items(), key=lambda x: x[1])\n",
    "most_frequent(pair_freqs)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "dd44467a-326b-499c-9995-8661fd102bec",
   "metadata": {},
   "outputs": [],
   "source": [
    "def merge_pair(a, b, splits):\n",
    "    for word in splits.keys():\n",
    "        split = splits[word]\n",
    "        if len(split) == 1:\n",
    "            continue\n",
    "        i = 0\n",
    "        while i < len(split) - 1:\n",
    "            if split[i] == a and split[i + 1] == b:\n",
    "                split = split[:i] + [a + b] + split[i + 2 :]\n",
    "            else:\n",
    "                i += 1\n",
    "        splits[word] = split\n",
    "    return splits"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "462376c4-6abc-4d4c-8bb6-a7e4d5bb96bb",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['g', 'r', 'e', 'c', 'q', 'u', 'es']\n"
     ]
    }
   ],
   "source": [
    "new_splits = merge_pair(*most_frequent(pair_freqs)[0], splits)\n",
    "print(new_splits['grecques'])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1a9cdfeb-ade8-4ac6-9cd5-9049090ca142",
   "metadata": {},
   "source": [
    "#### Appliquer l'algorithme jusqu'a obtenir la taille du vocabulaire souhaitée\n",
    "Créer un objet BPE qui prend en argument un corpus, un nombre de mots et applique l'algorithme BPE. L'algorithme stocke dans l'attribut vocab le vcocabulaire final et dans merge_rule les règles de fusion."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "c0367f37-9b40-4ae7-8ec6-ca7ab86ae687",
   "metadata": {},
   "outputs": [],
   "source": [
    "class BPE:\n",
    "    def __init__(self, corpus, vocabulary_size=500):\n",
    "        super().__init__()\n",
    "        self.word_regex = re.compile(r'(\\b[^\\s]+\\b)')\n",
    "        words = self.word_regex.findall(corpus)\n",
    "\n",
    "        # counting words\n",
    "        count_words = collections.Counter(words)\n",
    "        # create initial vocab\n",
    "        self.vocab = list({char for word in count_words.keys() for char in word })\n",
    "        self.vocab.sort()\n",
    "        # create the initial split\n",
    "        splits = {word: [c for c in word] for word in count_words.keys()}\n",
    "        # initialise merge_rules\n",
    "        self.merge_rules = {}\n",
    "        while len(self.vocab) < vocabulary_size:\n",
    "            pair_freqs = compute_pair_freqs(splits, count_words)\n",
    "            # I considered the format (('e', 's'), 6848) for best_pair\n",
    "            best_pair = most_frequent(pair_freqs)\n",
    " \n",
    "            splits = merge_pair(*best_pair[0], splits)\n",
    "\n",
    "            self.merge_rules[best_pair[0]] = best_pair[0][0] + best_pair[0][1]\n",
    "            self.vocab.append(''.join(best_pair[0]))\n",
    "\n",
    "    def tokenize(self, text):\n",
    "        words = self.word_regex.findall(text)\n",
    "        splits = [[l for l in word] for word in words]\n",
    "        for pair, merge in self.merge_rules.items():\n",
    "            for idx, split in enumerate(splits):\n",
    "                i = 0\n",
    "                while i < len(split) - 1:\n",
    "                    if split[i] == pair[0] and split[i + 1] == pair[1]:\n",
    "                        split = split[:i] + [merge] + split[i + 2 :]\n",
    "                    else:\n",
    "                        i += 1\n",
    "                splits[idx] = split\n",
    "    \n",
    "        return sum(splits, [])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "c282a2a1-f23c-4b22-b858-35a0049250c1",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "my_bpe = BPE(corpus)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "b225b59b-6103-4b3f-b776-ea2b71714d64",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['culture', 'grecques', 'dévelop', 'p', 'ée', 'en', 'Grèce']"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "texte = '''culture grecques développée en Grèce '''\n",
    "my_bpe.tokenize(texte)[:12]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a6f478a3-5f52-43c4-9b48-0e912304985a",
   "metadata": {},
   "source": [
    "#### Testez en modifiant les paramètres ou le corpus\n",
    "Tester l'algorithme avec différents hyper-paramètres ou données"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "id": "e33bdef2-8392-44f8-a846-81249fd60ac9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{('e', 's'): 'es',\n",
       " ('n', 't'): 'nt',\n",
       " ('q', 'u'): 'qu',\n",
       " ('r', 'e'): 're',\n",
       " ('o', 'n'): 'on',\n",
       " ('d', 'e'): 'de',\n",
       " ('l', 'e'): 'le',\n",
       " ('l', 'a'): 'la',\n",
       " ('t', 'i'): 'ti',\n",
       " ('i', 's'): 'is',\n",
       " ('e', 'nt'): 'ent',\n",
       " ('e', 'n'): 'en'}"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "{k: my_bpe.merge_rules[k] for k  in list(my_bpe.merge_rules.keys())[:12]}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7513567a-5237-4dad-9500-bf2cded9b8a2",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2ccb41e3",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}