Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
{
"cells": [
{
"cell_type": "markdown",
"id": "f4bdb240-9099-411b-a859-daaf3269c900",
"metadata": {},
"source": [
"## Implémentation de l'algorithme BPE\n",
"L'objectif de ce premier TP est de mettre en place l'algorithme de tokenization BPE. Pour rappel le principe consiste à rassembler les mots ou ``tokens'' apparaissant le plus de fois successivement.\n",
"\n",
"Par exemple si l'on considère le corpus contenant les mots de la table suivante (avec le nombre d’occurrences de chaque mot) :\n",
"\n",
"| mots | occurence |\n",
"|------|-----------|\n",
"| manger | 2 |\n",
"| voter | 3 |\n",
"| lent | 1 |\n",
"| lentement | 2 |\n",
"\n",
"Et que les \"tokens\" initiaux sont les lettres de l'alphabet alors, c'est le sufixe \"er\" qui sera ajouté à la liste des sous-mots (tokens) dans un premier temps.\n",
"\n",
"Les étapes pour réaliser l'algorithme BPE sont les suivantes :\n",
"1. Télécharger un corpus de textes (ici une page wikipedia)\n",
"2. Découper le texte en mots (en utilisant le caractère \"espace\") et compter le nombre d’occurrences de chaque mot\n",
"3. Initialiser le dictionnaire de mots avec les tokens initiaux (les lettres de l’alphabet)\n",
"4. Faire tourner l'algorithme BPE (apprendre le vocabulaire)\n",
"5. Tester la décomposition en tokens sur des phrases choisies (on applique les règles de fusion)"
]
},
{
"cell_type": "markdown",
"id": "ee88b07e-4de8-436e-9dc7-f405c69c9042",
"metadata": {},
"source": [
"### Étape 1: Télécharger un corpus"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5352d48f-27ca-41ad-9265-0e128578a5ec",
"metadata": {},
"outputs": [],
"source": [
"import urllib.request\n",
"import re\n",
"import numpy as np\n",
"import collections\n",
"import json\n",
"url_request = 'https://fr.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext&redirects=1&titles=Gr%C3%A8ce_antique'\n",
"raw_page = urllib.request.urlopen(url_request)\n",
"json_page = json.load(raw_page)\n",
"\n",
"with open('wikitest.json', 'w') as f:\n",
" json.dump(json_page, f)"
]
},
{
"cell_type": "markdown",
"id": "f8b6b7a2-74b4-4ba2-aa4b-93885a286fb2",
"metadata": {},
"source": [
"### Étape 2 : Découper le texte en mots\n",
"\n",
"Pour découper le texte en mot nous utiliserons la regex suivante ```r'(\\b[^\\s]+\\b)'```. Pour compter les mots nous utiliserons l'objet Counter de python. \n",
"1. Stocker dans **count_words** chaque mot ainsi que le nombre d’occurrences\n",
"2. En regardant la documentation donnez les 10 mots les plus fréquents (vous les stockerez dans most_commons_words)."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6d7341ff-61bf-4a5a-9d0d-4ae8fd8797ce",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['de', 'la', 'et', 'des', 'les', 'à', 'le', 'en', 'qui', 'dans']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"\n",
"corpus = list(json_page['query']['pages'].values())[0]['extract']\n",
"word_regex = re.compile(r'(\\b[^\\s]+\\b)')\n",
"words = word_regex.findall(corpus)\n",
"\n",
"count_words = collections.Counter(words)\n",
"most_commons_words = [k for k, v in count_words.most_common(10)]\n",
"\n",
"most_commons_words"
]
},
{
"cell_type": "markdown",
"id": "7a7a38b8-97f5-4851-b642-f7b40c023491",
"metadata": {},
"source": [
"### Étape 3 : Initialiser le dictionnaire de mots avec les tokens initiaux (les lettre de l'aplhabet)\n",
"\n",
"Créer le vocabulaire initial dans la variable vocab. Combien de tokens initiaux avez-vous ?"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "901f7ea5-9d71-4f8c-95bf-32b098c3241c",
"metadata": {},
"outputs": [],
"source": [
"vocab = list({char for word in count_words.keys() for char in word })\n",
"vocab.sort()"
]
},
{
"cell_type": "markdown",
"id": "efd79ab8-b1b1-4802-ac80-39b12cb5917f",
"metadata": {},
"source": [
"### Étape 4 : Apprendre le tokenizer\n",
"Pour apprendre le tokenizer nous avons besoins de plusieurs fonctions:\n",
"1. Une fonction pour calculer la fréquence de chacune des pairs de ``tokens''\n",
"2. Une fonction pour fusionner un paire\n",
"\n",
"Plusieurs variables sont nécessaires:\n",
"1. **vocab** contenant le vocabulaire courant\n",
"2. **merge_rules** contenant toutes les règles de fusion (un dictionnaire contenant comme clef un couple de tokens à fusionner et le résultat de la fusion des tokens). Par exemple : {('e', 's'), 'es', ('en', 't') :'ent'}\n",
"3. **splits** Un dictionnaire contenant le découpage courant du corpus avec pour clef le mot et comme valeur la liste des \"tokens\"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8357b6bd-9414-4263-9bf5-ef249614cb04",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'La': ['L', 'a'],\n",
" 'Grèce': ['G', 'r', 'è', 'c', 'e'],\n",
" 'antique': ['a', 'n', 't', 'i', 'q', 'u', 'e'],\n",
" 'est': ['e', 's', 't'],\n",
" 'une': ['u', 'n', 'e']}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# En première étape splits contient les mots décomposer en caractères\n",
"splits = {word: [c for c in word] for word in count_words.keys()}\n",
"{k: splits[k] for k in list(splits.keys())[:5]}"
]
},
{
"cell_type": "markdown",
"id": "722df20d-fae1-41f1-96bc-fecb6b10a0ca",
"metadata": {},
"source": [
"#### Calculer la fréquences des pairs de tokens\n",
"Créer un fonction **compute_pair_freqs** qui étant donné les mots décomposés en tokens (dictionnaire splits) et la fréquence des mots retourne la fréquence de chaque couple de tokens (attention seulement les sous-mots successifs). "
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cb995e01-74f4-432f-9ddb-5c676afc32c8",
"metadata": {},
"outputs": [],
"source": [
"def compute_pair_freqs(splits, word_freqs):\n",
" pair_freqs = {}\n",
" for word, freq in word_freqs.items():\n",
" split = splits[word]\n",
" if len(split) == 1:\n",
" continue\n",
" for i in range(len(split) - 1):\n",
" pair = (split[i], split[i + 1])\n",
" if(pair not in pair_freqs):\n",
" pair_freqs[pair] = 0\n",
" pair_freqs[pair] += freq\n",
" return pair_freqs"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d806c606-8cd3-43ff-8e14-aea74f9d4172",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{('L', 'a'): 188,\n",
" ('G', 'r'): 266,\n",
" ('r', 'è'): 279,\n",
" ('è', 'c'): 316,\n",
" ('c', 'e'): 1342}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pair_freqs = compute_pair_freqs(splits, count_words)\n",
"{k: pair_freqs[k] for k in list(pair_freqs.keys())[:5]}"
]
},
{
"cell_type": "markdown",
"id": "72e05d19-df89-4b0b-a2ad-ba5af727b1e5",
"metadata": {},
"source": [
"#### Retrouver la paire la plus fréquente et fusionner une pair \n",
"1. Créer une fonction **most_frequent(pair_freqs)** retournant la paire de token la plus fréquente.\n",
"2. Créer une fonction **merge_pair()** qui étant donnée une paire, l'objet splits retourne la nouvelle séparation en token des données (splits))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c608944a",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9b60759e-0bb4-4969-bc86-ee39fd3dc7bb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(('e', 's'), 6895)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def most_frequent(pair_freqs):\n",
" return max(pair_freqs.items(), key=lambda x: x[1])\n",
"most_frequent(pair_freqs)\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "dd44467a-326b-499c-9995-8661fd102bec",
"metadata": {},
"outputs": [],
"source": [
"def merge_pair(a, b, splits):\n",
" for word in splits.keys():\n",
" split = splits[word]\n",
" if len(split) == 1:\n",
" continue\n",
" i = 0\n",
" while i < len(split) - 1:\n",
" if split[i] == a and split[i + 1] == b:\n",
" split = split[:i] + [a + b] + split[i + 2 :]\n",
" else:\n",
" i += 1\n",
" splits[word] = split\n",
" return splits"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "462376c4-6abc-4d4c-8bb6-a7e4d5bb96bb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['g', 'r', 'e', 'c', 'q', 'u', 'es']\n"
]
}
],
"source": [
"new_splits = merge_pair(*most_frequent(pair_freqs)[0], splits)\n",
"print(new_splits['grecques'])"
]
},
{
"cell_type": "markdown",
"id": "1a9cdfeb-ade8-4ac6-9cd5-9049090ca142",
"metadata": {},
"source": [
"#### Appliquer l'algorithme jusqu'a obtenir la taille du vocabulaire souhaitée\n",
"Créer un objet BPE qui prend en argument un corpus, un nombre de mots et applique l'algorithme BPE. L'algorithme stocke dans l'attribut vocab le vcocabulaire final et dans merge_rule les règles de fusion."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "c0367f37-9b40-4ae7-8ec6-ca7ab86ae687",
"metadata": {},
"outputs": [],
"source": [
"class BPE:\n",
" def __init__(self, corpus, vocabulary_size=500):\n",
" super().__init__()\n",
" self.word_regex = re.compile(r'(\\b[^\\s]+\\b)')\n",
" words = self.word_regex.findall(corpus)\n",
"\n",
" # counting words\n",
" count_words = collections.Counter(words)\n",
" # create initial vocab\n",
" self.vocab = list({char for word in count_words.keys() for char in word })\n",
" self.vocab.sort()\n",
" # create the initial split\n",
" splits = {word: [c for c in word] for word in count_words.keys()}\n",
" # initialise merge_rules\n",
" self.merge_rules = {}\n",
" while len(self.vocab) < vocabulary_size:\n",
" pair_freqs = compute_pair_freqs(splits, count_words)\n",
" # I considered the format (('e', 's'), 6848) for best_pair\n",
" best_pair = most_frequent(pair_freqs)\n",
" \n",
" splits = merge_pair(*best_pair[0], splits)\n",
"\n",
" self.merge_rules[best_pair[0]] = best_pair[0][0] + best_pair[0][1]\n",
" self.vocab.append(''.join(best_pair[0]))\n",
"\n",
" def tokenize(self, text):\n",
" words = self.word_regex.findall(text)\n",
" splits = [[l for l in word] for word in words]\n",
" for pair, merge in self.merge_rules.items():\n",
" for idx, split in enumerate(splits):\n",
" i = 0\n",
" while i < len(split) - 1:\n",
" if split[i] == pair[0] and split[i + 1] == pair[1]:\n",
" split = split[:i] + [merge] + split[i + 2 :]\n",
" else:\n",
" i += 1\n",
" splits[idx] = split\n",
" \n",
" return sum(splits, [])\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "c282a2a1-f23c-4b22-b858-35a0049250c1",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"my_bpe = BPE(corpus)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b225b59b-6103-4b3f-b776-ea2b71714d64",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"['culture', 'grecques', 'dévelop', 'p', 'ée', 'en', 'Grèce']"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"texte = '''culture grecques développée en Grèce '''\n",
"my_bpe.tokenize(texte)[:12]"
]
},
{
"cell_type": "markdown",
"id": "a6f478a3-5f52-43c4-9b48-0e912304985a",
"metadata": {},
"source": [
"#### Testez en modifiant les paramètres ou le corpus\n",
"Tester l'algorithme avec différents hyper-paramètres ou données"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "e33bdef2-8392-44f8-a846-81249fd60ac9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{('e', 's'): 'es',\n",
" ('n', 't'): 'nt',\n",
" ('q', 'u'): 'qu',\n",
" ('r', 'e'): 're',\n",
" ('o', 'n'): 'on',\n",
" ('d', 'e'): 'de',\n",
" ('l', 'e'): 'le',\n",
" ('l', 'a'): 'la',\n",
" ('t', 'i'): 'ti',\n",
" ('i', 's'): 'is',\n",
" ('e', 'nt'): 'ent',\n",
" ('e', 'n'): 'en'}"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{k: my_bpe.merge_rules[k] for k in list(my_bpe.merge_rules.keys())[:12]}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7513567a-5237-4dad-9500-bf2cded9b8a2",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ccb41e3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}