Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
TensorFSTs.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FAST
FST
TensorFSTs.jl
Commits
73e96441
Unverified
Commit
73e96441
authored
2 years ago
by
Lucas Ondel Yang
Browse files
Options
Downloads
Patches
Plain Diff
re-organized tests
parent
a8107e2e
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/fsa.jl
+5
-6
5 additions, 6 deletions
src/fsa.jl
test/runtests.jl
+80
-67
80 additions, 67 deletions
test/runtests.jl
with
85 additions
and
73 deletions
src/fsa.jl
+
5
−
6
View file @
73e96441
...
...
@@ -26,28 +26,27 @@ T(fsa::AbstractFSA) = parent(fsa).T
λ
(
fsa
::
AbstractFSA
)
=
parent
(
fsa
)
.
λ
function
Base.convert
(
f
::
Function
,
A
::
AbstractFSA
{
K
,
L
})
where
{
K
,
L
}
l
=
λ
(
A
)
ρ
=
f
(
emptystring
(
A
),
one
(
L
))
ρ
=
f
(
emptystring
(
A
),
nstates
(
A
)
+
1
)
U
=
typeof
(
ρ
)
α
=
sparsevec
(
initstates
(
A
)[
1
],
[
f
(
v
,
l
[
i
]
)
for
(
i
,
v
)
in
zip
(
initstates
(
A
)
...
)],
[
f
(
v
,
i
)
for
(
i
,
v
)
in
zip
(
initstates
(
A
)
...
)],
nstates
(
A
)
)
T
=
sparse
(
edges
(
A
)[
1
],
edges
(
A
)[
2
],
[
f
(
v
,
l
[
j
]
)
for
(
i
,
j
,
v
)
in
zip
(
edges
(
A
)
...
)],
[
f
(
v
,
j
)
for
(
i
,
j
,
v
)
in
zip
(
edges
(
A
)
...
)],
nstates
(
A
),
nstates
(
A
)
)
ω
=
sparsevec
(
finalstates
(
A
)[
1
],
[
f
(
v
,
one
(
L
)
)
for
(
i
,
v
)
in
zip
(
finalstates
(
A
)
...
)],
[
f
(
v
,
nstates
(
A
)
+
1
)
for
(
i
,
v
)
in
zip
(
finalstates
(
A
)
...
)],
nstates
(
A
)
)
FSA
{
U
,
L
}(
α
,
T
,
ω
,
ρ
,
l
)
FSA
{
U
,
L
}(
α
,
T
,
ω
,
ρ
,
λ
(
A
)
)
end
struct
AcyclicFSA
{
K
,
L
}
<:
AbstractAcyclicFSA
{
K
,
L
}
...
...
This diff is collapsed.
Click to expand it.
test/runtests.jl
+
80
−
67
View file @
73e96441
...
...
@@ -16,7 +16,8 @@ Ls = [
StringMonoid
,
]
f
(
L
,
w
,
l
)
=
begin
f
(
L
,
A
,
w
,
i
)
=
begin
l
=
i
<=
nstates
(
A
)
?
λ
(
A
)[
i
]
:
one
(
L
)
S
=
UnionConcatSemiring
{
L
}
if
iszero
(
w
)
return
ProductSemiring
((
w
,
zero
(
S
)))
...
...
@@ -25,15 +26,15 @@ f(L, w, l) = begin
end
end
@testset
"FSA"
begin
for
K
in
Ks
,
L
in
Ls
for
K
in
Ks
,
L
in
Ls
@testset
verbose
=
true
"FSA -
$
K"
begin
α1
=
sparsevec
([
1
,
2
],
K
[
2
,
3
],
3
)
T1
=
sparse
([
1
,
1
,
2
],
[
2
,
3
,
3
],
K
[
1
,
2
,
3
],
3
,
3
)
ω1
=
sparsevec
([
3
],
K
(
5
),
3
)
ρ1
=
K
(
0.6
)
λ1
=
[
L
(
"a"
),
L
(
"b"
),
L
(
"c"
)]
A1
=
FSA
(
α1
,
T1
,
ω1
,
ρ1
,
λ1
)
B1
=
convert
((
w
,
l
)
->
f
(
L
,
w
,
l
),
A1
)
B1
=
convert
((
w
,
l
)
->
f
(
L
,
A1
,
w
,
l
),
A1
)
α2
=
sparsevec
([
1
,
3
],
K
[
3
,
5
],
4
)
T2
=
sparse
([
1
,
1
,
2
,
3
],
[
2
,
3
,
4
,
4
],
K
[
4
,
3
,
2
,
2
],
4
,
4
)
...
...
@@ -41,81 +42,93 @@ end
ρ2
=
zero
(
K
)
λ2
=
[
L
(
"a"
),
L
(
"b"
),
L
(
"c"
),
L
(
"d"
)]
A2
=
FSA
(
α2
,
T2
,
ω2
,
ρ2
,
λ2
)
B2
=
convert
((
w
,
l
)
->
f
(
L
,
w
,
l
),
A2
)
B2
=
convert
((
w
,
l
)
->
f
(
L
,
A2
,
w
,
l
),
A2
)
Aϵ
=
FSA
(
spzeros
(
K
,
0
),
spzeros
(
K
,
0
,
0
),
spzeros
(
K
,
0
),
one
(
K
),
L
[])
Bϵ
=
convert
((
w
,
l
)
->
f
(
L
,
w
,
l
),
Aϵ
)
@test
all
(
α
(
A1
)
.
≈
α1
)
@test
all
(
T
(
A1
)
.
≈
T1
)
@test
all
(
ω
(
A1
)
.
≈
ω1
)
@test
all
(
ρ
(
A1
)
≈
ρ1
)
@test
all
(
λ
(
A1
)
.==
λ1
)
@test
all
(
α
(
A2
)
.
≈
α2
)
@test
all
(
T
(
A2
)
.
≈
T2
)
@test
all
(
ω
(
A2
)
.
≈
ω2
)
@test
all
(
ρ
(
A2
)
≈
ρ2
)
@test
all
(
λ
(
A2
)
.==
λ2
)
Bϵ
=
convert
((
w
,
l
)
->
f
(
L
,
Aϵ
,
w
,
l
),
Aϵ
)
@testset
verbose
=
true
"properties"
begin
@test
all
(
α
(
A1
)
.
≈
α1
)
@test
all
(
T
(
A1
)
.
≈
T1
)
@test
all
(
ω
(
A1
)
.
≈
ω1
)
@test
all
(
ρ
(
A1
)
≈
ρ1
)
@test
all
(
λ
(
A1
)
.==
λ1
)
@test
all
(
α
(
A2
)
.
≈
α2
)
@test
all
(
T
(
A2
)
.
≈
T2
)
@test
all
(
ω
(
A2
)
.
≈
ω2
)
@test
all
(
ρ
(
A2
)
≈
ρ2
)
@test
all
(
λ
(
A2
)
.==
λ2
)
end
# Number of iteration to sum over the FSA.
n
=
max
(
nstates
(
A1
),
nstates
(
A2
))
# union
B12
=
convert
((
w
,
l
)
->
f
(
L
,
w
,
l
),
union
(
A1
,
A2
))
cs_B12
=
sum
(
B12
;
n
)
cs_B1_B2
=
sum
(
B1
;
n
)
+
sum
(
B2
;
n
)
@test
cs_B12
.
tval
[
1
]
≈
cs_B1_B2
.
tval
[
1
]
@test
cs_B12
.
tval
[
2
]
==
cs_B1_B2
.
tval
[
2
]
# concatenation
B12
=
convert
((
w
,
l
)
->
f
(
L
,
w
,
l
),
cat
(
A1
,
A2
))
cs_B12
=
sum
(
B12
;
n
=
2
n
)
cs_B1_B2
=
sum
(
B2
;
n
)
*
sum
(
B1
;
n
)
@test
cs_B12
.
tval
[
2
]
⊇
cs_B1_B2
.
tval
[
2
]
@testset
verbose
=
true
"union"
begin
A12
=
union
(
A1
,
A2
)
B12
=
convert
((
w
,
l
)
->
f
(
L
,
A12
,
w
,
l
),
A12
)
cs_B12
=
sum
(
B12
;
n
)
cs_B1_B2
=
sum
(
B1
;
n
)
+
sum
(
B2
;
n
)
@test
cs_B12
.
tval
[
1
]
≈
cs_B1_B2
.
tval
[
1
]
@test
cs_B12
.
tval
[
2
]
==
cs_B1_B2
.
tval
[
2
]
end
@testset
verbose
=
true
"concatenation"
begin
A12
=
cat
(
A1
,
A2
)
B12
=
convert
((
w
,
l
)
->
f
(
L
,
A12
,
w
,
l
),
A12
)
cs_B12
=
sum
(
B12
;
n
=
2
n
)
cs_B1_B2
=
sum
(
B2
;
n
)
*
sum
(
B1
;
n
)
@test
cs_B12
.
tval
[
2
]
⊇
cs_B1_B2
.
tval
[
2
]
end
# The number of iteration for the cumulative sum depends on the
# structure of the FSA for the test to pass.
# It should be 3 times the maximum path length of B2.
n
=
6
# closure
B2p_n3
=
B2
∪
cat
(
B2
,
B2
)
∪
cat
(
B2
,
B2
,
B2
)
B2_n3
=
B2
∪
cat
(
B2
,
B2
)
∪
cat
(
B2
,
B2
,
B2
)
∪
Bϵ
cB2p
=
closure
(
B2
;
plus
=
true
)
cB2
=
closure
(
B2
;
plus
=
false
)
cs_B2p_n3
=
sum
(
B2p_n3
;
n
)
cs_B2_n3
=
sum
(
B2_n3
;
n
)
cs_cB2p
=
sum
(
cB2p
;
n
)
cs_cB2
=
sum
(
cB2
;
n
)
@test
cs_cB2p
.
tval
[
1
]
≈
cs_B2p_n3
.
tval
[
1
]
@test
cs_cB2p
.
tval
[
2
]
==
cs_B2p_n3
.
tval
[
2
]
@test
cs_cB2
.
tval
[
1
]
≈
cs_B2_n3
.
tval
[
1
]
@test
cs_cB2
.
tval
[
2
]
==
cs_B2_n3
.
tval
[
2
]
# reverse
rB2
=
convert
((
w
,
l
)
->
f
(
L
,
w
,
l
),
A2
|>
reverse
)
s1
=
val
(
sum
(
B2
;
n
)
.
tval
[
2
])
s2
=
Set
((
StringMonoid
∘
reverse
∘
val
)
.
((
val
∘
sum
)(
rB2
)[
2
]))
@test
s1
==
s2
# renorm
@test
Base
.
isapprox
(
val
(
sum
(
A1
|>
renorm
;
n
=
100
)),
val
(
one
(
K
)),
atol
=
1e-6
)
@test
Base
.
isapprox
(
val
(
sum
(
A2
|>
renorm
;
n
=
100
)),
val
(
one
(
K
)),
atol
=
1e-6
)
# (co)accessibility
A
=
FSA
(
sparsevec
([
1
,
2
],
one
(
K
),
5
),
sparse
([
2
,
3
],
[
3
,
3
],
one
(
K
),
5
,
5
),
sparsevec
([
3
,
4
],
one
(
K
),
5
),
zero
(
K
),
[
L
(
"
$
i"
)
for
i
in
1
:
5
]
)
@test
all
(
accessible
(
A
)
.==
[
true
,
true
,
true
,
false
,
false
])
@test
all
(
coaccessible
(
A
)
.==
[
false
,
true
,
true
,
true
,
false
])
# globalrenorm
@test
Base
.
isapprox
(
val
(
sum
(
AcyclicFSA
(
A2
)
|>
globalrenorm
;
n
=
100
)),
val
(
one
(
K
)),
atol
=
1e-6
)
@testset
verbose
=
true
"closure"
begin
B2p_n3
=
B2
∪
cat
(
B2
,
B2
)
∪
cat
(
B2
,
B2
,
B2
)
B2_n3
=
B2
∪
cat
(
B2
,
B2
)
∪
cat
(
B2
,
B2
,
B2
)
∪
Bϵ
cB2p
=
closure
(
B2
;
plus
=
true
)
cB2
=
closure
(
B2
;
plus
=
false
)
cs_B2p_n3
=
sum
(
B2p_n3
;
n
)
cs_B2_n3
=
sum
(
B2_n3
;
n
)
cs_cB2p
=
sum
(
cB2p
;
n
)
cs_cB2
=
sum
(
cB2
;
n
)
@test
cs_cB2p
.
tval
[
1
]
≈
cs_B2p_n3
.
tval
[
1
]
@test
cs_cB2p
.
tval
[
2
]
==
cs_B2p_n3
.
tval
[
2
]
@test
cs_cB2
.
tval
[
1
]
≈
cs_B2_n3
.
tval
[
1
]
@test
cs_cB2
.
tval
[
2
]
==
cs_B2_n3
.
tval
[
2
]
end
@testset
verbose
=
true
"reversal"
begin
rA2
=
A2
|>
reverse
rB2
=
convert
((
w
,
l
)
->
f
(
L
,
rA2
,
w
,
l
),
rA2
)
s1
=
val
(
sum
(
B2
;
n
)
.
tval
[
2
])
s2
=
Set
((
StringMonoid
∘
reverse
∘
val
)
.
((
val
∘
sum
)(
rB2
)[
2
]))
@test
s1
==
s2
end
@testset
verbose
=
true
"renorm"
begin
@test
Base
.
isapprox
(
val
(
sum
(
A1
|>
renorm
;
n
=
100
)),
val
(
one
(
K
)),
atol
=
1e-6
)
@test
Base
.
isapprox
(
val
(
sum
(
A2
|>
renorm
;
n
=
100
)),
val
(
one
(
K
)),
atol
=
1e-6
)
end
@testset
verbose
=
true
"(co)accessible"
begin
A
=
FSA
(
sparsevec
([
1
,
2
],
one
(
K
),
5
),
sparse
([
2
,
3
],
[
3
,
3
],
one
(
K
),
5
,
5
),
sparsevec
([
3
,
4
],
one
(
K
),
5
),
zero
(
K
),
[
L
(
"
$
i"
)
for
i
in
1
:
5
]
)
@test
all
(
accessible
(
A
)
.==
[
true
,
true
,
true
,
false
,
false
])
@test
all
(
coaccessible
(
A
)
.==
[
false
,
true
,
true
,
true
,
false
])
end
@testset
verbose
=
true
"globalrenorm"
begin
@test
Base
.
isapprox
(
val
(
sum
(
AcyclicFSA
(
A2
)
|>
globalrenorm
;
n
=
100
)),
val
(
one
(
K
)),
atol
=
1e-6
)
end
end
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment