Skip to content
Snippets Groups Projects
Unverified Commit 73e96441 authored by Lucas Ondel Yang's avatar Lucas Ondel Yang
Browse files

re-organized tests

parent a8107e2e
No related branches found
No related tags found
No related merge requests found
......@@ -26,28 +26,27 @@ T(fsa::AbstractFSA) = parent(fsa).T
λ(fsa::AbstractFSA) = parent(fsa).λ
function Base.convert(f::Function, A::AbstractFSA{K,L}) where {K,L}
l = λ(A)
ρ = f(emptystring(A), one(L))
ρ = f(emptystring(A), nstates(A) + 1)
U = typeof(ρ)
α = sparsevec(
initstates(A)[1],
[f(v, l[i]) for (i, v) in zip(initstates(A)...)],
[f(v, i) for (i, v) in zip(initstates(A)...)],
nstates(A)
)
T = sparse(
edges(A)[1],
edges(A)[2],
[f(v, l[j]) for (i, j, v) in zip(edges(A)...)],
[f(v, j) for (i, j, v) in zip(edges(A)...)],
nstates(A),
nstates(A)
)
ω = sparsevec(
finalstates(A)[1],
[f(v, one(L)) for (i, v) in zip(finalstates(A)...)],
[f(v, nstates(A) + 1) for (i, v) in zip(finalstates(A)...)],
nstates(A)
)
FSA{U,L}(α, T, ω, ρ, l)
FSA{U,L}(α, T, ω, ρ, λ(A))
end
struct AcyclicFSA{K,L} <: AbstractAcyclicFSA{K,L}
......
......@@ -16,7 +16,8 @@ Ls = [
StringMonoid,
]
f(L, w, l) = begin
f(L, A, w, i) = begin
l = i <= nstates(A) ? λ(A)[i] : one(L)
S = UnionConcatSemiring{L}
if iszero(w)
return ProductSemiring((w, zero(S)))
......@@ -25,15 +26,15 @@ f(L, w, l) = begin
end
end
@testset "FSA" begin
for K in Ks, L in Ls
for K in Ks, L in Ls
@testset verbose=true "FSA - $K" begin
α1 = sparsevec([1, 2], K[2, 3], 3)
T1 = sparse([1, 1, 2], [2, 3, 3], K[1, 2, 3], 3, 3)
ω1 = sparsevec([3], K(5), 3)
ρ1 = K(0.6)
λ1 = [L("a"), L("b"), L("c")]
A1 = FSA(α1, T1, ω1, ρ1, λ1)
B1 = convert((w, l) -> f(L, w, l), A1)
B1 = convert((w, l) -> f(L, A1, w, l), A1)
α2 = sparsevec([1, 3], K[3, 5], 4)
T2 = sparse([1, 1, 2, 3], [2, 3, 4, 4], K[4, 3, 2, 2], 4, 4)
......@@ -41,81 +42,93 @@ end
ρ2 = zero(K)
λ2 = [L("a"), L("b"), L("c"), L("d")]
A2 = FSA(α2, T2, ω2, ρ2, λ2)
B2 = convert((w, l) -> f(L, w, l), A2)
B2 = convert((w, l) -> f(L, A2, w, l), A2)
= FSA(spzeros(K, 0), spzeros(K, 0, 0), spzeros(K, 0), one(K), L[])
= convert((w, l) -> f(L, w, l), )
@test all(α(A1) . α1)
@test all(T(A1) . T1)
@test all(ω(A1) . ω1)
@test all(ρ(A1) ρ1)
@test all(λ(A1) .== λ1)
@test all(α(A2) . α2)
@test all(T(A2) . T2)
@test all(ω(A2) . ω2)
@test all(ρ(A2) ρ2)
@test all(λ(A2) .== λ2)
= convert((w, l) -> f(L, , w, l), )
@testset verbose=true "properties" begin
@test all(α(A1) . α1)
@test all(T(A1) . T1)
@test all(ω(A1) . ω1)
@test all(ρ(A1) ρ1)
@test all(λ(A1) .== λ1)
@test all(α(A2) . α2)
@test all(T(A2) . T2)
@test all(ω(A2) . ω2)
@test all(ρ(A2) ρ2)
@test all(λ(A2) .== λ2)
end
# Number of iteration to sum over the FSA.
n = max(nstates(A1), nstates(A2))
# union
B12 = convert((w, l) -> f(L, w, l), union(A1, A2))
cs_B12 = sum(B12; n)
cs_B1_B2 = sum(B1; n) + sum(B2; n)
@test cs_B12.tval[1] cs_B1_B2.tval[1]
@test cs_B12.tval[2] == cs_B1_B2.tval[2]
# concatenation
B12 = convert((w, l) -> f(L, w, l), cat(A1, A2))
cs_B12 = sum(B12; n = 2n)
cs_B1_B2 = sum(B2; n) * sum(B1; n)
@test cs_B12.tval[2] cs_B1_B2.tval[2]
@testset verbose=true "union" begin
A12 = union(A1, A2)
B12 = convert((w, l) -> f(L, A12, w, l), A12)
cs_B12 = sum(B12; n)
cs_B1_B2 = sum(B1; n) + sum(B2; n)
@test cs_B12.tval[1] cs_B1_B2.tval[1]
@test cs_B12.tval[2] == cs_B1_B2.tval[2]
end
@testset verbose=true "concatenation" begin
A12 = cat(A1, A2)
B12 = convert((w, l) -> f(L, A12, w, l), A12)
cs_B12 = sum(B12; n = 2n)
cs_B1_B2 = sum(B2; n) * sum(B1; n)
@test cs_B12.tval[2] cs_B1_B2.tval[2]
end
# The number of iteration for the cumulative sum depends on the
# structure of the FSA for the test to pass.
# It should be 3 times the maximum path length of B2.
n = 6
# closure
B2p_n3 = B2 cat(B2, B2) cat(B2, B2, B2)
B2_n3 = B2 cat(B2, B2) cat(B2, B2, B2)
cB2p = closure(B2; plus = true)
cB2 = closure(B2; plus = false)
cs_B2p_n3 = sum(B2p_n3; n)
cs_B2_n3 = sum(B2_n3; n)
cs_cB2p = sum(cB2p; n)
cs_cB2 = sum(cB2; n)
@test cs_cB2p.tval[1] cs_B2p_n3.tval[1]
@test cs_cB2p.tval[2] == cs_B2p_n3.tval[2]
@test cs_cB2.tval[1] cs_B2_n3.tval[1]
@test cs_cB2.tval[2] == cs_B2_n3.tval[2]
# reverse
rB2 = convert((w, l) -> f(L, w, l), A2 |> reverse)
s1 = val(sum(B2; n).tval[2])
s2 = Set((StringMonoid reverse val).((val sum)(rB2)[2]))
@test s1 == s2
# renorm
@test Base.isapprox(val(sum(A1 |> renorm; n = 100)), val(one(K)), atol=1e-6)
@test Base.isapprox(val(sum(A2 |> renorm; n = 100)), val(one(K)), atol=1e-6)
# (co)accessibility
A = FSA(
sparsevec([1, 2], one(K), 5),
sparse([2, 3], [3, 3], one(K), 5, 5),
sparsevec([3, 4], one(K), 5),
zero(K),
[L("$i") for i in 1:5]
)
@test all(accessible(A) .== [true, true, true, false, false])
@test all(coaccessible(A) .== [false, true, true, true, false])
# globalrenorm
@test Base.isapprox(val(sum(AcyclicFSA(A2) |> globalrenorm; n = 100)), val(one(K)), atol=1e-6)
@testset verbose=true "closure" begin
B2p_n3 = B2 cat(B2, B2) cat(B2, B2, B2)
B2_n3 = B2 cat(B2, B2) cat(B2, B2, B2)
cB2p = closure(B2; plus = true)
cB2 = closure(B2; plus = false)
cs_B2p_n3 = sum(B2p_n3; n)
cs_B2_n3 = sum(B2_n3; n)
cs_cB2p = sum(cB2p; n)
cs_cB2 = sum(cB2; n)
@test cs_cB2p.tval[1] cs_B2p_n3.tval[1]
@test cs_cB2p.tval[2] == cs_B2p_n3.tval[2]
@test cs_cB2.tval[1] cs_B2_n3.tval[1]
@test cs_cB2.tval[2] == cs_B2_n3.tval[2]
end
@testset verbose=true "reversal" begin
rA2 = A2 |> reverse
rB2 = convert((w, l) -> f(L, rA2, w, l), rA2)
s1 = val(sum(B2; n).tval[2])
s2 = Set((StringMonoid reverse val).((val sum)(rB2)[2]))
@test s1 == s2
end
@testset verbose=true "renorm" begin
@test Base.isapprox(val(sum(A1 |> renorm; n = 100)), val(one(K)), atol=1e-6)
@test Base.isapprox(val(sum(A2 |> renorm; n = 100)), val(one(K)), atol=1e-6)
end
@testset verbose=true "(co)accessible" begin
A = FSA(
sparsevec([1, 2], one(K), 5),
sparse([2, 3], [3, 3], one(K), 5, 5),
sparsevec([3, 4], one(K), 5),
zero(K),
[L("$i") for i in 1:5]
)
@test all(accessible(A) .== [true, true, true, false, false])
@test all(coaccessible(A) .== [false, true, true, true, false])
end
@testset verbose=true "globalrenorm" begin
@test Base.isapprox(val(sum(AcyclicFSA(A2) |> globalrenorm; n = 100)), val(one(K)), atol=1e-6)
end
end
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment