Skip to content
Snippets Groups Projects
Commit e4cb61bf authored by Martin Kocour's avatar Martin Kocour
Browse files

Special sum operator for IntersectedDenseFSA

parent 59b30542
No related branches found
No related tags found
No related merge requests found
......@@ -6,7 +6,7 @@ using InteractiveUtils
# ╔═╡ 510f7d8a-ce11-11ed-2832-cdc20fa6f700
begin
using Pkg; Pkg.activate("..")
using Pkg; Pkg.activate("./mmi")
using Revise
using FiniteStateAutomata
using Semirings
......@@ -131,11 +131,14 @@ L
# ╔═╡ 5ecadd35-feea-459f-9776-3a2762b0de9f
# FSA(C)
# ╔═╡ 2ea1644a-8836-443b-a1ee-8d13dbd4a534
H[:, 2]
# ╔═╡ 410d3e85-8946-4c74-9fd5-77c799e45277
sum(G C) sum(FSA(G C))
# ╔═╡ 68d8f4b3-48e1-49ca-b910-c65c2ec19768
ones(K, 3) * H[:,2]'
# ╔═╡ 895f0152-e4c6-4a1d-97e0-f4a4308fe362
sum(FSA(G C))
# ╔═╡ 584c1b63-3f12-4383-8bf0-8078e518910d
# ╔═╡ Cell order:
# ╠═510f7d8a-ce11-11ed-2832-cdc20fa6f700
......@@ -163,5 +166,6 @@ ones(K, 3) * H[:,2]'
# ╠═b2290feb-24a1-4f7d-8216-7c69ea363a67
# ╠═5c3893f7-b64f-410f-9be2-5c2023fd9093
# ╠═5ecadd35-feea-459f-9776-3a2762b0de9f
# ╠═2ea1644a-8836-443b-a1ee-8d13dbd4a534
# ╠═68d8f4b3-48e1-49ca-b910-c65c2ec19768
# ╠═410d3e85-8946-4c74-9fd5-77c799e45277
# ╠═895f0152-e4c6-4a1d-97e0-f4a4308fe362
# ╠═584c1b63-3f12-4383-8bf0-8078e518910d
......@@ -5,6 +5,8 @@ struct DenseFSA{K, L} <: AbstractAcyclicFSA{K, L}
DenseFSA(H, Σ, ρ) = length(Σ) == size(H, 1) ? new{eltype(H), eltype(Σ)}(H, Σ, ρ) : error("Σ not compatible")
end
DenseFSA(H::AbstractMatrix{K}, Σ::AbstractVector) where K = DenseFSA(H, Σ, zero(K))
α(G::DenseFSA) = begin
L = length(G.Σ)
N = size(G.H, 2)
......@@ -111,3 +113,12 @@ end
λ(I::IntersectedDenseFSA) = repeat(λ(I.B), size(I.A.H, 2) - 1)
ρ(I::IntersectedDenseFSA) = ρ(I.B) * ρ(I.A)
function Base.sum(I::IntersectedDenseFSA, n = size(I.A.H, 2) - 1)
CH = I.C' * I.A.H
v = CH[:, 1] .* α(I.B)
for n in 2:n
v = (T(I.B)' * v) .* CH[:, n]
end
dot(v, ω(I.B) .* CH[:, end]) + ρ(I)
end
......@@ -31,10 +31,10 @@ end
Accumulate the weight of all the paths of length less or equal to
`n`.
"""
function Base.sum(A::AbstractFSA; init = α(A), n = nstates(A) + 2)
function Base.sum(A::AbstractFSA; init = α(A), n = nstates(A))
v = init
σ = dot(v, ω(A)) + ρ(A)
for i in 2:n-1
for _ in 2:n
v = T(A)' * v
σ += dot(v, ω(A))
end
......
......@@ -162,6 +162,14 @@ for K in Ks, L in Ls
@test s1.tval[2] == s2.tval[2]
@test typeof(AcyclicFSA(A3) |> minimize) <: AbstractAcyclicFSA
end
@testset verbose=true "intersection" begin
Σ = ["a", "b", "c"]
H = K.randn(length(Σ), 4)
dfsa = DenseFSA(H, Σ)
@test sum(dfsa A3) sum(FSA(dfsa A3))
@test sum(A3 dfsa) sum(FSA(dfsa A3))
end
end
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment