Skip to content
Snippets Groups Projects
Commit 47d3017e authored by bu's avatar bu
Browse files

Added Fred's B gcd example. Slight modifs in sqrt_CASS for pedagogical reasons

parent 95e637ee
No related branches found
No related tags found
No related merge requests found
theory GCD_Fred
imports Isabelle_C_AutoCorres.AutoCorres_Wrapper
"HOL-Computational_Algebra.Primes"
begin
text\<open>This is Fred's GCD example\<close>
section\<open>Background\<close>
section\<open>The Program\<close>
declare [[AutoCorres]]
text \<open>Setup of AutoCorres for semantically representing this C element:\<close>
declare_autocorres pgcd [ ts_rules = nondet, unsigned_word_abs = pgcd ]
C\<open>
int pgcd(int m, int n) {
int a = m;
int b = n;
while (a != b) {
if (a < b) {
b = b - a;
} else {
a = a - b;
}
}
return a;
}
\<close>
print_theorems
find_theorems name:pgcd
section\<open>The Correctness-Proof\<close>
definition "pgcd_inv (a::int) b m n \<equiv> a > 0 \<and> b > 0 \<and> m < INT_MAX \<and> n < INT_MAX \<and>
a \<le> m \<and> b \<le> n \<and>
(\<forall> g. g = gcd a b \<longrightarrow> g = gcd m n)"
theorem (in pgcd) pgcd'_correct:
"\<lbrace> \<lambda>\<sigma>. m > 0 \<and> n > 0 \<and> m < INT_MAX \<and> n < INT_MAX \<rbrace> pgcd' m n \<lbrace> \<lambda>res \<sigma>. res = gcd m n \<rbrace>!"
unfolding pgcd'_def
apply(rule validNF_assume_pre)
apply(subst whileLoop_add_inv [ where I = "\<lambda>(a, b) s. pgcd_inv a b m n"
and M = "\<lambda>((a, b),s) . nat a + nat b"])
proof(wp, auto simp: pgcd_inv_def, fold INT_MAX_def)
fix a b
show "0 < a \<Longrightarrow> m < INT_MAX \<Longrightarrow> n < INT_MAX \<Longrightarrow> a \<le> m \<Longrightarrow> b \<le> n \<Longrightarrow> a < b \<Longrightarrow> b - a \<le> INT_MAX"
using INT_MAX_def by linarith
next
fix a b
show "m < INT_MAX \<Longrightarrow> n < INT_MAX \<Longrightarrow> 0 < b \<Longrightarrow> a \<le> m \<Longrightarrow> b \<le> n \<Longrightarrow> \<not> a < b \<Longrightarrow> a - b \<le> INT_MAX"
using INT_MAX_def by linarith
next
fix a b
show " gcd a b = gcd m n \<Longrightarrow> gcd a (b - a) = gcd m n"
by (metis (no_types, hide_lams) gcd.commute gcd_diff1)
next
fix a b
show " gcd a b = gcd m n \<Longrightarrow> gcd (a - b) b = gcd m n"
by (simp add: gcd_diff1)
qed
......@@ -53,6 +53,14 @@ imports
begin
\<comment> \<open>Derived from: \<^file>\<open>../../../src_ext/l4v/src/tools/autocorres/tests/examples/IsPrime.thy\<close>\<close>
section \<open>Setup Standard Mapping\<close>
setup \<open>C_Module.C_Term.map_expression
(fn expr => fn _ => fn _ =>
case expr of C_Ast.CVar0 (C_Ast.Ident0 (_, x, _), _) =>
Free (C_Grammar_Rule_Lib.ident_decode x, dummyT)
| s => Free (\<^make_string> s, dummyT))\<close>
section\<open>The Theory of the \<open>O(sqrt(n))\<close> Primality Test Algorithm\<close>
text\<open>This section develops basic concepts of the invariant. This bit is presented here \<^emph>\<open>before\<close>
the actual code, but could also be after or even inside the \<^theory_text>\<open>C\<close> command as comment-annotation of
......@@ -157,13 +165,9 @@ text\<open> This C code contains a function that determines if the given number
This is a faster version than a linear primality test; runs in O(sqrt(n)). \<close>
declare [[AutoCorres]]
setup \<open>C_Module.C_Term.map_expression
(fn expr => fn _ => fn _ =>
case expr of C_Ast.CVar0 (C_Ast.Ident0 (_, x, _), _) =>
Free (C_Grammar_Rule_Lib.ident_decode x, dummyT)
| s => Free (\<^make_string> s, dummyT))\<close>
declare [[AutoCorres]]
C \<open>
#define SQRT_UINT_MAX 65536
......@@ -356,6 +360,7 @@ definition [prog_annotations]:"ensures = is_prime_ensures"
theorem is_prime_correct'''':
"\<lbrace>requires n\<rbrace> is_prime' n \<lbrace>ensures n\<rbrace>!"
by(vcg, auto)
......
......@@ -178,19 +178,27 @@ lemma five_and_divides : "prime (p::nat) \<Longrightarrow> 5 < p \<Longrightarro
section\<open>The C code for \<open>O(sqrt(n))\<close> Primality Test Algorithm\<close>
text\<open> This C code contains a function that determines if the given number
@{term n} is prime.
It returns 0 if @{term n} is composite, or non-zero if @{term n} is prime.
This is a faster version than a linear primality test; runs in O(sqrt(n)). \<close>
text \<open>The invocation of AutoCorres:\<close>
declare [[AutoCorres]]
text \<open>Setup of AutoCorres for semantically representing this C element:\<close>
declare_autocorres is_prime [ ts_rules = nondet, unsigned_word_abs = is_prime ]
text\<open> This C code contains a function that determines if the given number
@{term n} is prime.
It returns 0 if @{term n} is composite, or non-zero if @{term n} is prime.
This is a faster version than a linear primality test; runs in O(sqrt(n)). \<close>
C \<open>
#define SQRT_UINT_MAX 65536
......@@ -211,6 +219,17 @@ unsigned int is_prime(unsigned int n)
return TRUE;
}\<close>
section\<open>The Results of the AutoCorres Evaluation\<close>
C_export_file (* This exports the C code into a C file ready to be compiled by gcc. *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment