Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Isabelle_C
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Container Registry
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Burkhart Wolff
Isabelle_C
Commits
abc9ac81
Commit
abc9ac81
authored
4 years ago
by
bu
Browse files
Options
Downloads
Patches
Plain Diff
first sorry-free, complete solution (but not yet cleaned up).
parent
535ea708
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
C11-BackEnds/AutoCorres_wrapper/examples/IsPrime_sqrt_opt2_TCC.thy
+93
-9
93 additions, 9 deletions
...nds/AutoCorres_wrapper/examples/IsPrime_sqrt_opt2_TCC.thy
with
93 additions
and
9 deletions
C11-BackEnds/AutoCorres_wrapper/examples/IsPrime_sqrt_opt2_TCC.thy
+
93
−
9
View file @
abc9ac81
...
...
@@ -453,7 +453,11 @@ proof (rule validNF_assume_pre)
next
text
\<open>
@
{
term
is_prime_inv
}
initially
holds
when
entering
the
loop
.
\<close>
fix
s
::
lifted_globals
have
****
:
"
\<not>
n < 4
\<Longrightarrow>
partial_prime n 5"
sorry
have
****
:
"
\<not>
n < 4
\<Longrightarrow>
partial_prime n 5"
apply
(
insert
\<open>
odd
n
\<close>
\<open>\<not>
3
dvd
n
\<close>
)
apply
(
auto
simp
:
partial_prime_def
)
by
(
metis
dvd_trans
even_Suc
even_zero
le_def
less_antisym
numeral_2_eq_2
numeral_3_eq_3
numeral_eqs
(
4
))
show
"if n < 2 then (0
\<noteq>
0) = prime n
else if n < 4 then (1
\<noteq>
0) = prime n
else is_prime_inv n 5 s"
...
...
@@ -509,25 +513,105 @@ proof (rule validNF_assume_pre)
apply
(
insert
100
\<open>
r
*
r
\<le>
n
\<close>
\<open>
5
\<le>
r
\<close>
)
by
(
erule
exE
,
rename_tac
"m"
,
simp
add
:
Nat
.
add_mult_distrib
)
qed
next
next
text
\<open>
@
{
term
is_prime_inv
}
implies
postcond
when
leaving
the
loop
.
\<close>
fix
r
::
nat
fix
s
::
lifted_globals
assume
*
:
"
\<not>
(r < 65531
\<and>
r * r
\<le>
n)"
have
**
:
"r
\<ge>
65531
\<or>
r * r>n"
using
"*"
leI
by
blast
assume
***
:
"is_prime_inv n r s"
show
"((1::nat)
\<noteq>
0) = prime n"
apply
simp
apply
(
case_tac
"r
\<ge>
65531"
)
defer
1
using
"*"
"***"
apply
auto
[
1
]
using
"**"
partial_prime_sqr
apply
blast
apply
(
insert
***
)
have
****
:
"partial_prime n r"
using
"***"
by
auto
show
"((1::nat)
\<noteq>
0) = prime n"
proof
(
simp
,
insert
**
,
elim
disjE
)
assume
"65531
\<le>
r"
have
1000
:
"r = 65531
\<or>
r = 65532
\<or>
r = 65533
\<or>
r = 65534
\<or>
r = 65535
\<or>
r
\<ge>
SQRT_UINT_MAX"
unfolding
SQRT_UINT_MAX_def
apply
(
insert
\<open>
65531
\<le>
r
\<close>
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
apply
(
subst
(
asm
)
Nat
.
less_eq_Suc_le
,
simp
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
apply
(
subst
(
asm
)
Nat
.
less_eq_Suc_le
,
simp
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
apply
(
subst
(
asm
)
Nat
.
less_eq_Suc_le
,
simp
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
apply
(
subst
(
asm
)
Nat
.
less_eq_Suc_le
,
simp
)
by
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
have
"r
\<le>
n"
using
"***"
by
auto
show
"prime n"
(* feasible : between 65531 and 65536 (the integer square of no primes,
SQRT_UINT_MAX), there are no primes. *)
sorry
apply
(
rule
partial_prime_sqr
[
of
_
"SQRT_UINT_MAX"
,
THEN
iffD1
])
apply
(
metis
"1"
One_nat_def
SQRT_UINT_MAX_def
mult_is_0
nat_le_Suc_less
neq0_conv
rel_simps
(
76
)
uint_max_factor
)
unfolding
SQRT_UINT_MAX_def
apply
(
insert
****
\<open>
r
\<le>
n
\<close>
\<open>
65531
\<le>
r
\<close>
)
apply
(
subst
partial_prime_def
,
auto
)
apply
(
erule_tac
Q
=
"i dvd n"
in
contrapos_pp
)
apply
(
case_tac
"i < r"
)
apply
(
simp
add
:
partial_prime_def
,
simp
add
:
not_less_eq
less_Suc_eq_le
)
proof
-
fix
i
::
nat
assume
a
:
"partial_prime n r"
and
b
:
"65531
\<le>
r"
and
c
:
"i < n"
and
d
:
"i < 65536"
and
e
:
"r
\<le>
i"
have
g
:
"r
\<le>
n"
by
(
simp
add
:
\<open>
r
\<le>
n
\<close>
)
have
h
:
"65531
\<le>
i"
using
b
e
order
.
trans
by
blast
have
i
:
"i = 65531
\<or>
i = 65532
\<or>
i = 65533
\<or>
i = 65534
\<or>
i = 65535"
apply
(
insert
\<open>
65531
\<le>
i
\<close>
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
apply
(
subst
(
asm
)
Nat
.
less_eq_Suc_le
,
simp
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
apply
(
subst
(
asm
)
Nat
.
less_eq_Suc_le
,
simp
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
apply
(
subst
(
asm
)
Nat
.
less_eq_Suc_le
,
simp
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
apply
(
subst
(
asm
)
Nat
.
less_eq_Suc_le
,
simp
)
apply
(
subst
(
asm
)
Nat
.
le_eq_less_or_eq
,
elim
disjE
,
simp_all
)
using
d
by
linarith
show
"
\<not>
i dvd n"
proof
(
insert
i
,
elim
disjE
)
have
X
:
"(19::nat) dvd 65531"
by
simp
have
"r
\<le>
n"
using
"***"
by
auto
have
"
\<not>
((19::nat) dvd n)"
apply
(
insert
b
)
using
a
g
partial_prime_def
by
fastforce
show
"i = 65531
\<Longrightarrow>
\<not>
i dvd n"
apply
(
insert
****
X
\<open>
r
\<le>
n
\<close>
)
using
\<open>\<not>
19
dvd
n
\<close>
gcd_nat
.
trans
by
blast
next
show
"i = 65532
\<Longrightarrow>
\<not>
i dvd n"
using
\<open>
odd
n
\<close>
aux99
gcd_nat
.
trans
by
blast
next
have
"(13::nat) dvd 65533"
by
simp
have
"
\<not>
((13::nat) dvd n)"
apply
(
insert
b
)
using
a
g
partial_prime_def
by
fastforce
show
"i = 65533
\<Longrightarrow>
\<not>
i dvd n"
using
\<open>\<not>
13
dvd
n
\<close>
aux98
gcd_nat
.
trans
by
blast
next
show
"i = 65534
\<Longrightarrow>
\<not>
i dvd n"
using
\<open>
odd
n
\<close>
aux97
gcd_nat
.
trans
by
blast
next
have
"(3::nat) dvd 65535"
by
(
simp
)
have
"
\<not>
3 dvd n"
by
(
simp
add
:
False
)
show
"i = 65535
\<Longrightarrow>
\<not>
i dvd n"
using
False
\<open>
3
dvd
65535\<close>
dvd_trans
by
blast
qed
qed
next
assume
"n < r * r"
show
"prime n"
using
"****"
\<open>
n
<
r
*
r
\<close>
partial_prime_sqr
by
blast
qed
qed
qed
qed
qed
qed
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment