Skip to content
Snippets Groups Projects
Unverified Commit 06aa9041 authored by Lucas Ondel Yang's avatar Lucas Ondel Yang
Browse files

ensure preservation of the acyclic property

parent 73e96441
No related branches found
No related tags found
No related merge requests found
......@@ -576,16 +576,16 @@ end
edges
# ╔═╡ c8d7966a-61c1-4ab2-856c-6ca5d10648cd
fsadet(M3 |> renorm, edges, states) |> renorm
fsadet(M3, edges, states) |> renorm
# ╔═╡ 358d297d-4def-44dc-b79d-6d23aa67d179
sum(M3 |> renorm)
M3
# ╔═╡ c31ccfdc-3687-46cb-9eed-03791bde56d4
sparsevec([2, 3], 1, 5)
# ╔═╡ 75c4a277-9edb-4f47-bd5e-13dcb498bd96
M3
sum(union(AcyclicFSA(M3), AcyclicFSA(M3)))
# ╔═╡ 68b7380b-2514-4362-9504-552fb4e467f7
Z1 = spdiagm(M3.α) * C
......
......@@ -32,6 +32,7 @@ export
addskipedges,
closure,
globalrenorm,
propagate,
renorm
include("abstractfsa.jl")
......
......@@ -50,12 +50,13 @@ function Base.convert(f::Function, A::AbstractFSA{K,L}) where {K,L}
end
struct AcyclicFSA{K,L} <: AbstractAcyclicFSA{K,L}
fsa::FSA{K,L}
fsa::AbstractFSA{K,L}
end
AcyclicFSA(α, T, ω, ρ, λ) = AcyclicFSA(FSA(α, T, ω, ρ, λ))
Base.parent(A::AcyclicFSA) = A.fsa
Base.parent(A::AcyclicFSA) = parent(A.fsa)
Base.convert(f, A::AbstractAcyclicFSA) = AcyclicFSA(convert(f, A.fsa))
Base.convert(f::Function, A::AbstractAcyclicFSA{K,L}) where {K,L} =
AcyclicFSA(convert(f, parent(A)))
......@@ -87,9 +87,9 @@ function Base.filter(f::Function, A::AbstractFSA)
end
"""
notaccessible(A::AbstractFSA{K}) where K
accessible(A::AbstractFSA{K}) where K
Returns a vector `x` of dimension `nstates(A)` where `x[i]` is `one(K)`
Return a vector `x` of dimension `nstates(A)` where `x[i]` is `one(K)`
if the state `i` is not accessible, `zero(K)` otherwise.
"""
function accessible(A::AbstractFSA{K}) where K
......@@ -125,7 +125,7 @@ one.
function renorm(A::AbstractFSA)
Z = inv.((sum(T(A), dims=2) .+ ω(A)))
Zₐ = inv(sum(α(A)) + ρ(A))
FSA(
typeof(A)(
Zₐ * α(A),
Z .* T(A),
Z[:, 1] .* ω(A),
......@@ -182,22 +182,38 @@ Base.union(A1::AbstractFSA{K}, AN::AbstractFSA{K}...) where K =
#= Functions for acyclic FSA =#
renorm(A::AbstractAcyclicFSA) = AcyclicFSA(parent(A) |> renorm)
Base.reverse(A::AbstractAcyclicFSA) = AcyclicFSA(parent(A) |> reverse)
Base.cat(A1::AbstractAcyclicFSA, A2::AbstractAcyclicFSA) =
AcyclicFSA(cat(parent(A1), parent(A2)))
Base.union(A1::AbstractAcyclicFSA, A2::AbstractAcyclicFSA) =
AcyclicFSA(union(parent(A1), parent(A2)))
"""
globalrenorm(A::AbstractAcyclicFSA)
propagate(A::AbstractAcyclicFSA[; forward = true])
Global renormalization of the weights of `A`.
Multiply the weight of each arc by the sum-product of all the prefix
paths. If `forward` is `false` the arc's weight is multiply by the
sum-product of all the suffix paths of this arc.
"""
function globalrenorm(A::AbstractAcyclicFSA)
# Accumulate the weight backward starting from the end state.
v = ω(A)
function propagate(A::AbstractAcyclicFSA; forward = true)
v = forward ? α(A) : ω(A)
M = forward ? T(A)' : T(A)
σ = v
while nnz(v) > 0
v = T(A) * v
v = M * v
σ += v
end
σ
D = spdiagm(σ)
FSA(σ .* α(A), T(A) * D, ω(A), ρ(A), λ(A)) |> renorm
AcyclicFSA(FSA(σ .* α(A), T(A) * D, ω(A), ρ(A), λ(A)))
end
"""
globalrenorm(A::AbstractAcyclicFSA)
Global renormalization of the weights of `A`.
"""
globalrenorm(A::AbstractAcyclicFSA) = propagate(A; forward = false) |> renorm
......@@ -41,7 +41,7 @@ for K in Ks, L in Ls
ω2 = sparsevec([2, 4], K[5, 6], 4)
ρ2 = zero(K)
λ2 = [L("a"), L("b"), L("c"), L("d")]
A2 = FSA(α2, T2, ω2, ρ2, λ2)
A2 = AcyclicFSA(α2, T2, ω2, ρ2, λ2)
B2 = convert((w, l) -> f(L, A2, w, l), A2)
= FSA(spzeros(K, 0), spzeros(K, 0, 0), spzeros(K, 0), one(K), L[])
......@@ -71,6 +71,7 @@ for K in Ks, L in Ls
cs_B1_B2 = sum(B1; n) + sum(B2; n)
@test cs_B12.tval[1] cs_B1_B2.tval[1]
@test cs_B12.tval[2] == cs_B1_B2.tval[2]
@test typeof(union(A2, A2)) <: AbstractAcyclicFSA
end
@testset verbose=true "concatenation" begin
......@@ -79,6 +80,7 @@ for K in Ks, L in Ls
cs_B12 = sum(B12; n = 2n)
cs_B1_B2 = sum(B2; n) * sum(B1; n)
@test cs_B12.tval[2] cs_B1_B2.tval[2]
@test typeof(cat(A2, A2)) <: AbstractAcyclicFSA
end
# The number of iteration for the cumulative sum depends on the
......@@ -107,6 +109,7 @@ for K in Ks, L in Ls
s1 = val(sum(B2; n).tval[2])
s2 = Set((StringMonoid reverse val).((val sum)(rB2)[2]))
@test s1 == s2
@test typeof(rA2) <: AbstractAcyclicFSA
end
@testset verbose=true "renorm" begin
......@@ -127,7 +130,9 @@ for K in Ks, L in Ls
end
@testset verbose=true "globalrenorm" begin
@test Base.isapprox(val(sum(AcyclicFSA(A2) |> globalrenorm; n = 100)), val(one(K)), atol=1e-6)
A = AcyclicFSA(A2) |> globalrenorm
@test Base.isapprox(val(sum(A; n = 100)), val(one(K)), atol=1e-6)
@test typeof(A) <: AbstractAcyclicFSA
end
end
end
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment